Skip to main content
Erschienen in: Journal of Elasticity 1/2021

13.09.2021

Effective Model for Elastic Waves in a Substrate Supporting an Array of Plates/Beams with Flexural and Longitudinal Resonances

verfasst von: Jean-Jacques Marigo, Kim Pham, Agnès Maurel, Sébastien Guenneau

Erschienen in: Journal of Elasticity | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In a previous study (Marigo et al. in J. Mech. Phys. Solids 143:104029, 2020) we have studied the effect of a periodic array of subwavelength plates or beams over a semi-infinite elastic ground on the propagation of waves hitting the interface. The study was restricted to the low frequency regime where only flexural resonances take place. Here, we present a generalization to higher frequencies which allows us to account for both flexural and longitudinal resonances and to evaluate their interplay. An effective model is obtained using asymptotic analysis and homogenization techniques, which can be expressed in terms of the ground alone with an effective dynamic (frequency-dependent) boundary conditions of the Robin’s type. For an in-plane wave at oblique incidence, the scattered displacement fields and the reflection coefficients are obtained in closed forms and their effectiveness to reproduce the actual scattering is inspected by comparison with direct numerics in a two-dimensional setting.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
The dispersion relation of the flexural resonances reads \(D(\kappa )=(1+\cos \kappa h_{\text{\tiny b}}\text{ch}\kappa h_{\text{\tiny b}})=0\) resulting in \(\kappa h_{\text{\tiny b}}=1.875\), 4.694, 7.855, 10.995, ⋯; the approximation \(\kappa h_{\text{\tiny b}}\sim \frac{\pi }{2}+n\pi \) provides \(\kappa h_{\text{\tiny b}}=\) 1.571, 4.712, 7.854, 10.995 ⋯ and the agreement gets better as \(n\) increases.
 
2
The parameter \({\mathcal{K}}\) can be written \({\mathcal{K}}=\frac{K}{\kappa }= \frac{h_{\text{\tiny F}}}{h_{\text{\tiny L}}}\); at prescribed frequency, it measures the relative wavelengths associated with flexural and longitudinal motions.
 
3
At the occurrence of the first longitudinal resonance, \(f_{\text{\tiny L}}\) diverges in (44) resulting in \(u_{z}(x,0)=0\) in (43); this was not captured in the model of [1] as \(f_{\text{\tiny L}}=\varphi \frac{\rho _{\text{\tiny b}}}{\rho _{\text{\tiny s}}}k_{\text{\tiny T}}h_{\text{\tiny b}}\) was obtained as an approximation of \(f_{\text{\tiny L}}\) in (43) for \(Kh_{\text{\tiny b}}\ll 1\).
 
4
In Fig. 7, spectra are reported against \(\theta _{\text{\tiny L}}\in (0,90^{\circ })\) in their lower-parts. As \(\theta _{\text{\tiny L}}=90^{\circ }\), \(\theta _{\text{\tiny T}}=\theta _{c}\) with \(\theta _{c}=\text{asin}\sqrt{ \frac{\mu _{\text{\tiny s}}}{\lambda _{\text{\tiny s}}+2\mu _{\text{\tiny s}}}} \simeq 37.8^{\circ }\). Increasing further the incidence of the transverse wave above \(\theta _{c}\), the longitudinal waves become evanescent and no mode conversion occurs (hence \(|R_{\text{\tiny TT}}|=1\) and Fig. 7 shows the real part). Note that the expressions of the reflection coefficients in (50) remain valid, with \(\sin \theta _{\text{\tiny L}}=\frac{\beta }{k_{\text{\tiny L}}}>1\), hence \(\alpha _{\text{\tiny L}}\) becomes purely imaginary.
 
5
It is worth noting that the discrepancy between our model (dotted black lines) and that neglecting flexural motions (dashed-dotted green lines) is more prominent for the absolute values reported in Fig. 9 than for the real parts in Figs. 7 and 8. This is due to the fact that imaginary parts of the reflexion coefficients have more pronounced variations around resonances (they cancel for the substrate on its own, (50)).
 
6
Expressions of the reflection coefficients (53) apply at longitudinal resonances, \(|f_{\text{\tiny L}}|\to \infty \). Symmetrically, at flexural resonances, \(|f_{\text{\tiny F}}|\to \infty \), (50) simplify to
$$ \displaystyle R_{\text{\tiny TT}}= \frac{ \cos \theta _{\text{\tiny T}}-i\xi ^{-1}f_{\text{\tiny L}}\cos (\theta _{\text{\tiny L}}+\theta _{\text{\tiny T}})}{\cos \theta _{\text{\tiny T}}-i\xi ^{-1}f_{\text{\tiny L}}\cos (\theta _{\text{\tiny L}}-\theta _{\text{\tiny T}})}, \quad \displaystyle R_{\text{\tiny LT}}= \frac{-i\sin 2\theta _{\text{\tiny T}}f_{\text{\tiny L}}}{\cos \theta _{\text{\tiny T}}-i\xi ^{-1}f_{\text{\tiny L}}\cos (\theta _{\text{\tiny L}}-\theta _{\text{\tiny T}})}, $$
hence strictly, we do not have \(|R_{\text{\tiny TT}}|=1\) and \(|R_{\text{\tiny LT}}=0\) at flexural resonances. This is less visible in Fig. 9 as most of these resonances take place as \(|f_{\text{\tiny F}}|\ll 1\) (far from a longitudinal resonance).
 
Literatur
1.
Zurück zum Zitat Marigo, J.-J., Pham, K., Maurel, A., Guenneau, S.: Effective model for elastic waves propagating in a substrate supporting a dense array of plates/beams with flexural resonances. J. Mech. Phys. Solids 143, 104029 (2020) MathSciNetCrossRef Marigo, J.-J., Pham, K., Maurel, A., Guenneau, S.: Effective model for elastic waves propagating in a substrate supporting a dense array of plates/beams with flexural resonances. J. Mech. Phys. Solids 143, 104029 (2020) MathSciNetCrossRef
2.
Zurück zum Zitat Xiao, Y., Wen, J., Wen, X.: Flexural wave band gaps in locally resonant thin plates with periodically attached spring–mass resonators. J. Phys. D, Appl. Phys. 45(19), 195401 (2012) ADSCrossRef Xiao, Y., Wen, J., Wen, X.: Flexural wave band gaps in locally resonant thin plates with periodically attached spring–mass resonators. J. Phys. D, Appl. Phys. 45(19), 195401 (2012) ADSCrossRef
3.
Zurück zum Zitat Torrent, D., Mayou, D., Sánchez-Dehesa, J.: Elastic analog of graphene: Dirac cones and edge states for flexural waves in thin plates. Phys. Rev. B 87(11), 115143 (2013) ADSCrossRef Torrent, D., Mayou, D., Sánchez-Dehesa, J.: Elastic analog of graphene: Dirac cones and edge states for flexural waves in thin plates. Phys. Rev. B 87(11), 115143 (2013) ADSCrossRef
4.
Zurück zum Zitat Maznev, A., Gusev, V.: Waveguiding by a locally resonant metasurface. Phys. Rev. B 92(11), 115422 (2015) ADSCrossRef Maznev, A., Gusev, V.: Waveguiding by a locally resonant metasurface. Phys. Rev. B 92(11), 115422 (2015) ADSCrossRef
5.
Zurück zum Zitat Williams, E.G., Roux, P., Rupin, M., Kuperman, W.: Theory of multiresonant metamaterials for a 0 lamb waves. Phys. Rev. B 91(10), 104307 (2015) ADSCrossRef Williams, E.G., Roux, P., Rupin, M., Kuperman, W.: Theory of multiresonant metamaterials for a 0 lamb waves. Phys. Rev. B 91(10), 104307 (2015) ADSCrossRef
6.
Zurück zum Zitat Yoritomo, J.Y., Weaver, R.L., Roux, P., Rupin, M., Williams, E.G.: On band gap predictions for multiresonant metamaterials on plates. J. Acoust. Soc. Am. 139(3), 1282–1284 (2016) ADSCrossRef Yoritomo, J.Y., Weaver, R.L., Roux, P., Rupin, M., Williams, E.G.: On band gap predictions for multiresonant metamaterials on plates. J. Acoust. Soc. Am. 139(3), 1282–1284 (2016) ADSCrossRef
7.
Zurück zum Zitat Colquitt, D., Colombi, A., Craster, R., Roux, P., Guenneau, S.: Seismic metasurfaces: sub-wavelength resonators and Rayleigh wave interaction. J. Mech. Phys. Solids 99, 379–393 (2017) ADSMathSciNetCrossRef Colquitt, D., Colombi, A., Craster, R., Roux, P., Guenneau, S.: Seismic metasurfaces: sub-wavelength resonators and Rayleigh wave interaction. J. Mech. Phys. Solids 99, 379–393 (2017) ADSMathSciNetCrossRef
8.
Zurück zum Zitat Wootton, N., Erbas, B., Kaplunov, J., Wootton, P.: Approximate analysis of surface wave-structure interaction. J. Mech. Mater. Struct. 13(2), 297–309 (2018) MathSciNet Wootton, N., Erbas, B., Kaplunov, J., Wootton, P.: Approximate analysis of surface wave-structure interaction. J. Mech. Mater. Struct. 13(2), 297–309 (2018) MathSciNet
9.
Zurück zum Zitat Wootton, P., Kaplunov, J., Colquitt, D.: An asymptotic hyperbolic–elliptic model for flexural-seismic metasurfaces. Proc. R. Soc. A 475(2227), 20190079 (2019) ADSMathSciNetCrossRef Wootton, P., Kaplunov, J., Colquitt, D.: An asymptotic hyperbolic–elliptic model for flexural-seismic metasurfaces. Proc. R. Soc. A 475(2227), 20190079 (2019) ADSMathSciNetCrossRef
10.
Zurück zum Zitat Lott, M., Roux, P.: Effective impedance of a locally resonant metasurface. Phys. Rev. Mater. 3(6), 065202 (2019) CrossRef Lott, M., Roux, P.: Effective impedance of a locally resonant metasurface. Phys. Rev. Mater. 3(6), 065202 (2019) CrossRef
11.
Zurück zum Zitat Lott, M., Roux, P.: Locally resonant metamaterials for plate waves: the respective role of compressional versus flexural resonances of a dense forest of vertical rods. In: Fundamentals and Applications of Acoustic Metamaterials: From Seismic to Radio Frequency, vol. 1, pp. 25–45 (2019) CrossRef Lott, M., Roux, P.: Locally resonant metamaterials for plate waves: the respective role of compressional versus flexural resonances of a dense forest of vertical rods. In: Fundamentals and Applications of Acoustic Metamaterials: From Seismic to Radio Frequency, vol. 1, pp. 25–45 (2019) CrossRef
12.
Zurück zum Zitat Wootton, P.T., Kaplunov, J., Prikazchikov, D.: A second-order asymptotic model for Rayleigh waves on a linearly elastic half plane. IMA J. Appl. Math. 85(1), 113–131 (2020) MathSciNetCrossRef Wootton, P.T., Kaplunov, J., Prikazchikov, D.: A second-order asymptotic model for Rayleigh waves on a linearly elastic half plane. IMA J. Appl. Math. 85(1), 113–131 (2020) MathSciNetCrossRef
13.
Zurück zum Zitat Achaoui, Y., Khelif, A., Benchabane, S., Robert, L., Laude, V.: Experimental observation of locally-resonant and Bragg band gaps for surface guided waves in a phononic crystal of pillars. Phys. Rev. B 83(10), 104201 (2011) ADSCrossRef Achaoui, Y., Khelif, A., Benchabane, S., Robert, L., Laude, V.: Experimental observation of locally-resonant and Bragg band gaps for surface guided waves in a phononic crystal of pillars. Phys. Rev. B 83(10), 104201 (2011) ADSCrossRef
14.
Zurück zum Zitat Colombi, A., Roux, P., Guenneau, S., Gueguen, P., Craster, R.V.: Forests as a natural seismic metamaterial: Rayleigh wave bandgaps induced by local resonances. Sci. Rep. 6, 19238 (2016) ADSCrossRef Colombi, A., Roux, P., Guenneau, S., Gueguen, P., Craster, R.V.: Forests as a natural seismic metamaterial: Rayleigh wave bandgaps induced by local resonances. Sci. Rep. 6, 19238 (2016) ADSCrossRef
15.
Zurück zum Zitat Lott, M., Roux, P., Garambois, S., Guéguen, P., Colombi, A.: Evidence of metamaterial physics at the geophysics scale: the metaforet experiment. Geophys. J. Int. 220(2), 1330–1339 (2020) ADS Lott, M., Roux, P., Garambois, S., Guéguen, P., Colombi, A.: Evidence of metamaterial physics at the geophysics scale: the metaforet experiment. Geophys. J. Int. 220(2), 1330–1339 (2020) ADS
16.
Zurück zum Zitat Achenbach, J.: Wave Propagation in Elastic Solids, vol. 16. Elsevier, Amsterdam (2012) MATH Achenbach, J.: Wave Propagation in Elastic Solids, vol. 16. Elsevier, Amsterdam (2012) MATH
17.
Zurück zum Zitat Nieves, M., Carta, G., Jones, I., Movchan, A., Movchan, N.: Vibrations and elastic waves in chiral multi-structures. J. Mech. Phys. Solids 121, 387–408 (2018) ADSMathSciNetCrossRef Nieves, M., Carta, G., Jones, I., Movchan, A., Movchan, N.: Vibrations and elastic waves in chiral multi-structures. J. Mech. Phys. Solids 121, 387–408 (2018) ADSMathSciNetCrossRef
18.
Zurück zum Zitat Maurel, A., Pham, K.: Multimodal method for the scattering by an array of plates connected to an elastic half-space. J. Acoust. Soc. Am. 146, 4402 (2019) ADSCrossRef Maurel, A., Pham, K.: Multimodal method for the scattering by an array of plates connected to an elastic half-space. J. Acoust. Soc. Am. 146, 4402 (2019) ADSCrossRef
19.
Zurück zum Zitat Pham, K., Maurel, A., Félix, S., Guenneau, S.: Hybridized love waves in a guiding layer supporting an array of plates with decorative endings. Materials 13(7), 1632 (2020) ADSCrossRef Pham, K., Maurel, A., Félix, S., Guenneau, S.: Hybridized love waves in a guiding layer supporting an array of plates with decorative endings. Materials 13(7), 1632 (2020) ADSCrossRef
20.
Zurück zum Zitat Looker, J.R., Sader, J.E.: Flexural resonant frequencies of thin rectangular cantilever plates. J. Appl. Mech. 75(1), 011007 (2008) ADSCrossRef Looker, J.R., Sader, J.E.: Flexural resonant frequencies of thin rectangular cantilever plates. J. Appl. Mech. 75(1), 011007 (2008) ADSCrossRef
Metadaten
Titel
Effective Model for Elastic Waves in a Substrate Supporting an Array of Plates/Beams with Flexural and Longitudinal Resonances
verfasst von
Jean-Jacques Marigo
Kim Pham
Agnès Maurel
Sébastien Guenneau
Publikationsdatum
13.09.2021
Verlag
Springer Netherlands
Erschienen in
Journal of Elasticity / Ausgabe 1/2021
Print ISSN: 0374-3535
Elektronische ISSN: 1573-2681
DOI
https://doi.org/10.1007/s10659-021-09854-4

Weitere Artikel der Ausgabe 1/2021

Journal of Elasticity 1/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.