Skip to main content
Erschienen in: Journal of Materials Science 27/2020

16.06.2020 | Energy materials

Effective regeneration of scrapped LiFePO4 material from spent lithium-ion batteries

verfasst von: Xin Tang, Rui Wang, Yifei Ren, Jidong Duan, Jing Li, Pengyu Li

Erschienen in: Journal of Materials Science | Ausgabe 27/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Since LiFePO4 has few other valuable metals except lithium, there are no economic advantages in recovery of scrapped LiFePO4 by leaching. Therefore, regeneration of scrapped LiFePO4 is the most reasonable choice. Based on the study of the main cause of the capacity fading of LiFePO4 (the loss of lithium), traditional regeneration method (solid-phase calcination) and a new process (hydrothermal treatment followed by annealing) are both applied to replenish lithium ions in this work. Compared with solid-phase calcination, hydrothermal treatment can not only make the lithium replenishment more uniform and make the particles have better morphology, but also avoid the side reactions to reduce the formation of impurities. In hydrothermal reaction, the solution dissolves only LiOH and Na2SO3. So the waste liquid is easily disposed of and it can’t trigger environmental secondary pollution. In addition, hydrothermal re-lithiation does not require tedious calculation of the amount of lithium to be added. The subsequent annealing can improve the crystallinity, improving the initial and rate capacity. The LiFePO4 regenerated by solid-phase calcination regained the initial capacity of 135.13 mAh g−1. After hydrothermal reaction at suitable temperatures (150 and 180  °C) followed by annealing, the initial capacity can increase to 144.02 and 141.81 mAh g−1, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ra D-I, Han K-S (2006) Used lithium ion rechargeable battery recycling using Etoile-Rebatt technology. J Power Sources 163(1):284–288CrossRef Ra D-I, Han K-S (2006) Used lithium ion rechargeable battery recycling using Etoile-Rebatt technology. J Power Sources 163(1):284–288CrossRef
2.
Zurück zum Zitat Nan J, Han D, Zuo X (2005) Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction. J Power Sources 152:278–284CrossRef Nan J, Han D, Zuo X (2005) Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction. J Power Sources 152:278–284CrossRef
3.
Zurück zum Zitat Zhang X, Xie Y, Lin X, Li H, Cao H (2013) An overview on the processes and technologies for recycling cathodic active materials from spent lithium-ion batteries. J Mater Cycles Waste Manag 15(4):420–430CrossRef Zhang X, Xie Y, Lin X, Li H, Cao H (2013) An overview on the processes and technologies for recycling cathodic active materials from spent lithium-ion batteries. J Mater Cycles Waste Manag 15(4):420–430CrossRef
4.
Zurück zum Zitat Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144(4):1188–1194CrossRef Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144(4):1188–1194CrossRef
5.
Zurück zum Zitat Striebel K, Guerfi A, Shim J, Armand M, Gauthier M, Zaghib K (2003) LiFePO4/gel/natural graphite cells for the BATT program. J Power Sources 119–121:951–954CrossRef Striebel K, Guerfi A, Shim J, Armand M, Gauthier M, Zaghib K (2003) LiFePO4/gel/natural graphite cells for the BATT program. J Power Sources 119–121:951–954CrossRef
6.
Zurück zum Zitat Chung S-Y, Bloking JT, Chiang Y-M (2002) Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater 1(2):123–128CrossRef Chung S-Y, Bloking JT, Chiang Y-M (2002) Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater 1(2):123–128CrossRef
7.
Zurück zum Zitat Li Z, Peng Z, Zhang H, Hu T, Hu M, Zhu K, Wang X (2016) [100]-Oriented LiFePO4 Nanoflakes toward High Rate Li-Ion Battery Cathode. Nano Lett 16(1):795–799CrossRef Li Z, Peng Z, Zhang H, Hu T, Hu M, Zhu K, Wang X (2016) [100]-Oriented LiFePO4 Nanoflakes toward High Rate Li-Ion Battery Cathode. Nano Lett 16(1):795–799CrossRef
8.
Zurück zum Zitat Singh DP, Mulder FM, Abdelkader AM, Wagemaker M (2013) Facile micro templating LiFePO4 electrodes for high performance Li-ion batteries. Adv Energy Mater 3(5):572–578CrossRef Singh DP, Mulder FM, Abdelkader AM, Wagemaker M (2013) Facile micro templating LiFePO4 electrodes for high performance Li-ion batteries. Adv Energy Mater 3(5):572–578CrossRef
9.
Zurück zum Zitat Swain B, Jeong J, Lee J-c, Lee G-H, Sohn J-S (2007) Hydrometallurgical process for recovery of cobalt from waste cathodic active material generated during manufacturing of lithium ion batteries. J Power Sources 167(2):536–544CrossRef Swain B, Jeong J, Lee J-c, Lee G-H, Sohn J-S (2007) Hydrometallurgical process for recovery of cobalt from waste cathodic active material generated during manufacturing of lithium ion batteries. J Power Sources 167(2):536–544CrossRef
10.
Zurück zum Zitat Kang J, Senanayake G, Sohn J, Shin SM (2010) Recovery of cobalt sulfate from spent lithium ion batteries by reductive leaching and solvent extraction with Cyanex 272. Hydrometallurgy 100(3–4):168–171CrossRef Kang J, Senanayake G, Sohn J, Shin SM (2010) Recovery of cobalt sulfate from spent lithium ion batteries by reductive leaching and solvent extraction with Cyanex 272. Hydrometallurgy 100(3–4):168–171CrossRef
11.
Zurück zum Zitat Wang R-C, Lin Y-C, Wu S-H (2009) A novel recovery process of metal values from the cathode active materials of the lithium-ion secondary batteries. Hydrometallurgy 99(3–4):194–201CrossRef Wang R-C, Lin Y-C, Wu S-H (2009) A novel recovery process of metal values from the cathode active materials of the lithium-ion secondary batteries. Hydrometallurgy 99(3–4):194–201CrossRef
12.
Zurück zum Zitat Weng Y, Xu S, Huang G, Jiang C (2013) Synthesis and performance of Li[(Ni1/3Co1/3Mn1/3)1-xMgx]O2 prepared from spent lithium ion batteries. J Hazard Mater 246–247:163–172CrossRef Weng Y, Xu S, Huang G, Jiang C (2013) Synthesis and performance of Li[(Ni1/3Co1/3Mn1/3)1-xMgx]O2 prepared from spent lithium ion batteries. J Hazard Mater 246–247:163–172CrossRef
13.
Zurück zum Zitat Jha AK, Jha MK, Kumari A, Sahu SK, Kumar V, Pandey BD (2013) Selective separation and recovery of cobalt from leach liquor of discarded Li-ion batteries using thiophosphinic extractant. Sep Purif Technol 104:160–166CrossRef Jha AK, Jha MK, Kumari A, Sahu SK, Kumar V, Pandey BD (2013) Selective separation and recovery of cobalt from leach liquor of discarded Li-ion batteries using thiophosphinic extractant. Sep Purif Technol 104:160–166CrossRef
14.
Zurück zum Zitat Gratz E, Sa Q, Apelian D, Wang Y (2014) A closed loop process for recycling spent lithium ion batteries. J Power Sources 262:255–262CrossRef Gratz E, Sa Q, Apelian D, Wang Y (2014) A closed loop process for recycling spent lithium ion batteries. J Power Sources 262:255–262CrossRef
15.
Zurück zum Zitat Li X, Zhang J, Song D, Song J, Zhang L (2017) Direct regeneration of recycled cathode material mixture from scrapped LiFePO4 batteries. J Power Sources 345:78–84CrossRef Li X, Zhang J, Song D, Song J, Zhang L (2017) Direct regeneration of recycled cathode material mixture from scrapped LiFePO4 batteries. J Power Sources 345:78–84CrossRef
16.
Zurück zum Zitat Song X, Hu T, Liang C, Long HL, Zhou L, Song W, You L, Wu ZS, Liu JW (2017) Direct regeneration of cathode materials from spent lithium iron phosphate batteries using a solid phase sintering method. RSC Adv 7(8):4783–4790CrossRef Song X, Hu T, Liang C, Long HL, Zhou L, Song W, You L, Wu ZS, Liu JW (2017) Direct regeneration of cathode materials from spent lithium iron phosphate batteries using a solid phase sintering method. RSC Adv 7(8):4783–4790CrossRef
17.
Zurück zum Zitat Ganter MJ, Landi BJ, Babbitt CW, Anctil A, Gaustad G (2014) Cathode refunctionalization as a lithium ion battery recycling alternative. J Power Sources 256:274–280CrossRef Ganter MJ, Landi BJ, Babbitt CW, Anctil A, Gaustad G (2014) Cathode refunctionalization as a lithium ion battery recycling alternative. J Power Sources 256:274–280CrossRef
18.
Zurück zum Zitat Hong S-A, Kim SJ, Kim J, Lee BG, Chung KY, Lee WY (2012) Carbon coating on lithium iron phosphate (LiFePO4): comparison between continuous supercritical hydrothermal method and solid-state method. Chem Eng J 198:318–326CrossRef Hong S-A, Kim SJ, Kim J, Lee BG, Chung KY, Lee WY (2012) Carbon coating on lithium iron phosphate (LiFePO4): comparison between continuous supercritical hydrothermal method and solid-state method. Chem Eng J 198:318–326CrossRef
19.
Zurück zum Zitat Andersson AS, Kalska B, Haggstrom L, Thomas JO (2000) Lithium extraction/insertion in LiFePO4: an X-ray diffraction and Moessbauer spectroscopy study. Solid State Ionics 130(1–2):41–52CrossRef Andersson AS, Kalska B, Haggstrom L, Thomas JO (2000) Lithium extraction/insertion in LiFePO4: an X-ray diffraction and Moessbauer spectroscopy study. Solid State Ionics 130(1–2):41–52CrossRef
20.
Zurück zum Zitat Shim J, Striebel KA (2003) Cycling performance of low-cost lithium ion batteries with natural graphite and LiFePO4. J Power Sources 119:955–958CrossRef Shim J, Striebel KA (2003) Cycling performance of low-cost lithium ion batteries with natural graphite and LiFePO4. J Power Sources 119:955–958CrossRef
21.
Zurück zum Zitat Tan L, Zhang L, Sun Q, Shen M, Qu Q, Zheng H (2013) Capacity loss induced by lithium deposition at graphite anode for LiFePO4/graphite cell cycling at different temperatures. Electrochim Acta 111:802–808CrossRef Tan L, Zhang L, Sun Q, Shen M, Qu Q, Zheng H (2013) Capacity loss induced by lithium deposition at graphite anode for LiFePO4/graphite cell cycling at different temperatures. Electrochim Acta 111:802–808CrossRef
22.
Zurück zum Zitat Dubarry M, Liaw BY (2009) Identify capacity fading mechanism in a commercial LiFePO4 cell. J Power Sources 194(1):541–549CrossRef Dubarry M, Liaw BY (2009) Identify capacity fading mechanism in a commercial LiFePO4 cell. J Power Sources 194(1):541–549CrossRef
23.
Zurück zum Zitat Kim J-H, Woo SC, Park M-S, Kim KJ, Yim T, Kim JS, Kim Y-K (2013) Capacity fading mechanism of LiFePO4-based lithium secondary batteries for stationary energy storage. J Power Sources 229:190–197CrossRef Kim J-H, Woo SC, Park M-S, Kim KJ, Yim T, Kim JS, Kim Y-K (2013) Capacity fading mechanism of LiFePO4-based lithium secondary batteries for stationary energy storage. J Power Sources 229:190–197CrossRef
24.
Zurück zum Zitat Song H, Cao Z, Chen X, Lu H, Jia M, Zhang Z, Lai Y, Li J, Liu Y (2003) Capacity fade of LiFePO4/graphite cell at elevated temperature. J Solid State Electrochem 17(3):599–605CrossRef Song H, Cao Z, Chen X, Lu H, Jia M, Zhang Z, Lai Y, Li J, Liu Y (2003) Capacity fade of LiFePO4/graphite cell at elevated temperature. J Solid State Electrochem 17(3):599–605CrossRef
25.
Zurück zum Zitat Malmgren S, Ciosek K, Lindblad R, Plogmaker S, Kühn J, Rensmo H, Edstrom K, Hahlin M (2013) Consequences of air exposure on the lithiated graphite SEI. Electrochim Acta 105:83–91CrossRef Malmgren S, Ciosek K, Lindblad R, Plogmaker S, Kühn J, Rensmo H, Edstrom K, Hahlin M (2013) Consequences of air exposure on the lithiated graphite SEI. Electrochim Acta 105:83–91CrossRef
26.
Zurück zum Zitat Aurbach D, Markovsky B, Rodkin A, Levi E, Cohen YS, Kim H-J, Schmidt M (2003) On the capacity fading of LiCoO2 intercalation electrodes: the effect of cycling, storage, temperature, and surface film forming additives. Electrochim Acta 47(27):4291–4306CrossRef Aurbach D, Markovsky B, Rodkin A, Levi E, Cohen YS, Kim H-J, Schmidt M (2003) On the capacity fading of LiCoO2 intercalation electrodes: the effect of cycling, storage, temperature, and surface film forming additives. Electrochim Acta 47(27):4291–4306CrossRef
27.
Zurück zum Zitat Broussely M, Biensan Ph, Bonhomme F, Blanchard Ph, Herreyre S, Nechev K, Staniewicz RJ (2005) Main aging mechanisms in Li ion batteries. J Power Sources 146(1–2):90–96CrossRef Broussely M, Biensan Ph, Bonhomme F, Blanchard Ph, Herreyre S, Nechev K, Staniewicz RJ (2005) Main aging mechanisms in Li ion batteries. J Power Sources 146(1–2):90–96CrossRef
28.
Zurück zum Zitat Liang Q, Yue H, Wang S, Yang S, Lam K-h, Hou X (2020) Recycling and crystal regeneration of commercial used LiFePO4 cathode materials. Electrochim Acta 330:135323CrossRef Liang Q, Yue H, Wang S, Yang S, Lam K-h, Hou X (2020) Recycling and crystal regeneration of commercial used LiFePO4 cathode materials. Electrochim Acta 330:135323CrossRef
29.
Zurück zum Zitat Shi Y, Chen G, Liu F, Yue X, Chen Z (2018) Resolving the compositional and structural defects of degraded LiNixCoyMnzO2 particles to directly regenerate high-performance lithium-ion battery cathodes. ACS Energy Lett 3(7):1683–1692CrossRef Shi Y, Chen G, Liu F, Yue X, Chen Z (2018) Resolving the compositional and structural defects of degraded LiNixCoyMnzO2 particles to directly regenerate high-performance lithium-ion battery cathodes. ACS Energy Lett 3(7):1683–1692CrossRef
30.
Zurück zum Zitat Shi Y, Chen G, Chen Z (2018) Effective regeneration of LiCoO2 from spent lithium-ion batteries: a direct approach towards high-performance active particles. Green Chem 20(4):851–862CrossRef Shi Y, Chen G, Chen Z (2018) Effective regeneration of LiCoO2 from spent lithium-ion batteries: a direct approach towards high-performance active particles. Green Chem 20(4):851–862CrossRef
Metadaten
Titel
Effective regeneration of scrapped LiFePO4 material from spent lithium-ion batteries
verfasst von
Xin Tang
Rui Wang
Yifei Ren
Jidong Duan
Jing Li
Pengyu Li
Publikationsdatum
16.06.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 27/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04907-w

Weitere Artikel der Ausgabe 27/2020

Journal of Materials Science 27/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.