Skip to main content
Erschienen in: Journal of Material Cycles and Waste Management 4/2013

01.10.2013 | SPECIAL FEATURE: REVIEW

An overview on the processes and technologies for recycling cathodic active materials from spent lithium-ion batteries

verfasst von: Xihua Zhang, Yongbing Xie, Xiao Lin, Haitao Li, Hongbin Cao

Erschienen in: Journal of Material Cycles and Waste Management | Ausgabe 4/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper aims to make an overview on the current status and new tendency for recycling cathodic active materials from spent lithium-ion batteries. Firstly, it introduces several kinds of pretreatment technologies, followed by the summary of all kinds of single recycling processes mainly focusing on organic acid leaching and synergistic extraction. Then, several examples of typical combined processes and industrial recycling processes are presented in detail. Meanwhile, the advantages, disadvantages and prospect of each single process, combined process, as well as industrial recycling processes, are discussed. Finally, based on a novel acidic organic solvent, the authors briefly introduce an environmental friendly process to directly recycle and resynthesize cathodic active material LiNi1/3Co1/3Mn1/3O2 from spent lithium-ion batteries. The preliminary experimental results demonstrated the advantages of low reaction temperature, high separation efficiency and organic solvent cycling and preventing secondary pollution to the environment. This process may be used for large-scale recycling of spent lithium-ion batteries after further study.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243–3262CrossRef Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243–3262CrossRef
2.
Zurück zum Zitat Bruno Scrosati B, Hassoun J, Sun YK (2011) Lithium-ion batteries. A look into the future. Energy Environ Sci 4:3287–3295CrossRef Bruno Scrosati B, Hassoun J, Sun YK (2011) Lithium-ion batteries. A look into the future. Energy Environ Sci 4:3287–3295CrossRef
3.
Zurück zum Zitat Ra DI, Han KS (2006) Used lithium ion rechargeable battery recycling using Etoile-Rebatt technology. J Power Sources 163:284–288CrossRef Ra DI, Han KS (2006) Used lithium ion rechargeable battery recycling using Etoile-Rebatt technology. J Power Sources 163:284–288CrossRef
4.
Zurück zum Zitat Nan J, Han D, Zuo X (2005) Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction. J Power Sources 152:278–284CrossRef Nan J, Han D, Zuo X (2005) Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction. J Power Sources 152:278–284CrossRef
7.
Zurück zum Zitat Suzuki T, Nakamura T, Inoue Y, Niinae M, Shibata J (2012) A hydrometallurgical process for the separation of aluminum, cobalt, copper and lithium in acidic sulfate media. Sep Purif Technol 98:396–401CrossRef Suzuki T, Nakamura T, Inoue Y, Niinae M, Shibata J (2012) A hydrometallurgical process for the separation of aluminum, cobalt, copper and lithium in acidic sulfate media. Sep Purif Technol 98:396–401CrossRef
8.
Zurück zum Zitat Contestabile M, Panero S, Scrosati B (2001) A laboratory-scale lithium-ion battery recycling process. J Power Sources 92:65–69CrossRef Contestabile M, Panero S, Scrosati B (2001) A laboratory-scale lithium-ion battery recycling process. J Power Sources 92:65–69CrossRef
10.
Zurück zum Zitat Lee CK, Rhee KI (2003) Reductive leaching of cathodic active materials from lithium ion battery wastes. Hydrometallurgy 68:5–10CrossRef Lee CK, Rhee KI (2003) Reductive leaching of cathodic active materials from lithium ion battery wastes. Hydrometallurgy 68:5–10CrossRef
11.
Zurück zum Zitat Bernardes AM, Espinosa DCR, Tenório JAS (2004) Recycling of batteries: a review of current processes and technologies. J Power Sources 130:291–298CrossRef Bernardes AM, Espinosa DCR, Tenório JAS (2004) Recycling of batteries: a review of current processes and technologies. J Power Sources 130:291–298CrossRef
12.
Zurück zum Zitat Wu Q, Lu W, Prakash J (2000) Characterization of a commercial size cylindrical Li-ion cell with a reference electrode. J Power Sources 88:237–242CrossRef Wu Q, Lu W, Prakash J (2000) Characterization of a commercial size cylindrical Li-ion cell with a reference electrode. J Power Sources 88:237–242CrossRef
13.
Zurück zum Zitat Iwakura C, Fukumoto Y, Inoue H, Ohashi S, Kobayashi S, Tada H, Abe M (1997) Electrochemical characterization of various metal foils as a current collector of positive electrode for rechargeable lithium batteries. J Power Sources 68:301–303CrossRef Iwakura C, Fukumoto Y, Inoue H, Ohashi S, Kobayashi S, Tada H, Abe M (1997) Electrochemical characterization of various metal foils as a current collector of positive electrode for rechargeable lithium batteries. J Power Sources 68:301–303CrossRef
14.
Zurück zum Zitat Chen JM, Yao CY, Sheu SP, Chiou YC, Shih HC (1997) The study of carbon half-cell voltage in lithium-ion secondary batteries. J Power Sources 68:242–244CrossRef Chen JM, Yao CY, Sheu SP, Chiou YC, Shih HC (1997) The study of carbon half-cell voltage in lithium-ion secondary batteries. J Power Sources 68:242–244CrossRef
15.
Zurück zum Zitat Shin SM, Kim NH, Sohn JS, Yang DH, Kim YH (2005) Development of a metal recovery process from Li-ion battery wastes. Hydrometallurgy 79:172–181CrossRef Shin SM, Kim NH, Sohn JS, Yang DH, Kim YH (2005) Development of a metal recovery process from Li-ion battery wastes. Hydrometallurgy 79:172–181CrossRef
16.
Zurück zum Zitat Dorella G, Mansur MB (2007) A study of the separation of cobalt from spent Li-ion battery residues. J Power Sources 170:210–215CrossRef Dorella G, Mansur MB (2007) A study of the separation of cobalt from spent Li-ion battery residues. J Power Sources 170:210–215CrossRef
17.
Zurück zum Zitat Bernardes AM, Espinosa DCR, Tenório JAS (2003) Collection and recycling of portable batteries: a worldwide overview compared to the Brazilian situation. J Power Sources 124:586–592CrossRef Bernardes AM, Espinosa DCR, Tenório JAS (2003) Collection and recycling of portable batteries: a worldwide overview compared to the Brazilian situation. J Power Sources 124:586–592CrossRef
18.
Zurück zum Zitat Espinosa DCR, Bernardes AM, Tenório JAS (2004) An overview on the current processes for the recycling of batteries. J Power Sources 135:311–319CrossRef Espinosa DCR, Bernardes AM, Tenório JAS (2004) An overview on the current processes for the recycling of batteries. J Power Sources 135:311–319CrossRef
19.
Zurück zum Zitat Xu J, Thomas HR, Francis RW, Lum KR, Wang J, Liang B (2008) A review of processes and technologies for the recycling of lithium-ion secondary batteries. J Power Sources 177:512–527CrossRef Xu J, Thomas HR, Francis RW, Lum KR, Wang J, Liang B (2008) A review of processes and technologies for the recycling of lithium-ion secondary batteries. J Power Sources 177:512–527CrossRef
20.
Zurück zum Zitat Contestabile M, Panero S, Scrosati B (1999) A laboratory-scale lithium battery recycling process. J Power Sources 83:75–78CrossRef Contestabile M, Panero S, Scrosati B (1999) A laboratory-scale lithium battery recycling process. J Power Sources 83:75–78CrossRef
21.
Zurück zum Zitat Li J, Shi P, Wang Z, Chen Y, Chang CC (2009) A combined recovery process of metals in spent lithium-ion batteries. Chemosphere 77:1132–1136CrossRef Li J, Shi P, Wang Z, Chen Y, Chang CC (2009) A combined recovery process of metals in spent lithium-ion batteries. Chemosphere 77:1132–1136CrossRef
22.
Zurück zum Zitat Li L, Chen R, Sun F, Wu F, Liu J (2011) Preparation of LiCoO2 films from spent lithium-ion batteries by a combined recycling process. Hydrometallurgy 108:220–225CrossRef Li L, Chen R, Sun F, Wu F, Liu J (2011) Preparation of LiCoO2 films from spent lithium-ion batteries by a combined recycling process. Hydrometallurgy 108:220–225CrossRef
23.
Zurück zum Zitat Li L, Lu J, Ren Y, Zhang XX, Chen RJ, Wu F, Amine K (2012) Ascorbic-acid assisted recovery of cobalt and lithium from spent Li-ion batteries. J Power Sources 218:21–27CrossRef Li L, Lu J, Ren Y, Zhang XX, Chen RJ, Wu F, Amine K (2012) Ascorbic-acid assisted recovery of cobalt and lithium from spent Li-ion batteries. J Power Sources 218:21–27CrossRef
24.
Zurück zum Zitat Li L, Ge J, Wu F, Chen R, Chen S, Wu B (2010) Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant. J Hazard Mater 176:288–293CrossRef Li L, Ge J, Wu F, Chen R, Chen S, Wu B (2010) Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant. J Hazard Mater 176:288–293CrossRef
25.
Zurück zum Zitat Li L, Ge J, Chen R, Wu F, Chen S, Zhang X (2010) Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries. Waste Manag 30:2615–2621CrossRef Li L, Ge J, Chen R, Wu F, Chen S, Zhang X (2010) Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries. Waste Manag 30:2615–2621CrossRef
26.
Zurück zum Zitat Chen L, Tang X, Zhang Y, Li L, Zeng Z, Zhang Y (2011) Process for the recovery of cobalt oxalate from spent lithium-ion batteries. Hydrometallurgy 108:80–86CrossRef Chen L, Tang X, Zhang Y, Li L, Zeng Z, Zhang Y (2011) Process for the recovery of cobalt oxalate from spent lithium-ion batteries. Hydrometallurgy 108:80–86CrossRef
27.
Zurück zum Zitat Ferreira DA, Prados LMZ, Majuste D, Mansur MB (2009) Hydrometallurgical separation of aluminium, cobalt, copper and lithium from spent Li-ion batteries. J Power Sources 187:238–246CrossRef Ferreira DA, Prados LMZ, Majuste D, Mansur MB (2009) Hydrometallurgical separation of aluminium, cobalt, copper and lithium from spent Li-ion batteries. J Power Sources 187:238–246CrossRef
28.
Zurück zum Zitat Nan J, Han D, Yang M, Cui M, Hou X (2006) Recovery of metal values from a mixture of spent lithium-ion batteries and nickel-metal hydride batteries. Hydrometallurgy 84:75–80CrossRef Nan J, Han D, Yang M, Cui M, Hou X (2006) Recovery of metal values from a mixture of spent lithium-ion batteries and nickel-metal hydride batteries. Hydrometallurgy 84:75–80CrossRef
29.
Zurück zum Zitat Lee CK, Rhee KI (2002) Preparation of LiCoO2 from spent lithium-ion batteries. J Power Sources 109:17–21CrossRef Lee CK, Rhee KI (2002) Preparation of LiCoO2 from spent lithium-ion batteries. J Power Sources 109:17–21CrossRef
30.
Zurück zum Zitat Sun L, Qiu K (2012) Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries. Waste Manag 32:1575–1582MathSciNetCrossRef Sun L, Qiu K (2012) Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries. Waste Manag 32:1575–1582MathSciNetCrossRef
31.
Zurück zum Zitat Sun L, Qiu K (2011) Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries. J Hazard Mater 194:378–384CrossRef Sun L, Qiu K (2011) Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries. J Hazard Mater 194:378–384CrossRef
32.
Zurück zum Zitat Paulino JF, Busnardo NG, Afonso JC (2008) Recovery of valuable elements from spent Li-batteries. J Hazard Mater 150:843–849CrossRef Paulino JF, Busnardo NG, Afonso JC (2008) Recovery of valuable elements from spent Li-batteries. J Hazard Mater 150:843–849CrossRef
33.
Zurück zum Zitat Mishra D, Kim D, Ralph DE, Ahn J, Rhee Y (2008) Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans. Waste Manag 28:333–338CrossRef Mishra D, Kim D, Ralph DE, Ahn J, Rhee Y (2008) Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans. Waste Manag 28:333–338CrossRef
34.
Zurück zum Zitat Zeng G, Deng X, Luo S, Luo X, Zou J (2012) A copper-catalyzed bioleaching process for enhancement of cobalt dissolution from spent lithium-ion batteries. J Hazard Mater 199–200:164–169CrossRef Zeng G, Deng X, Luo S, Luo X, Zou J (2012) A copper-catalyzed bioleaching process for enhancement of cobalt dissolution from spent lithium-ion batteries. J Hazard Mater 199–200:164–169CrossRef
35.
Zurück zum Zitat Xin B, Zhang D, Zhang X, Xia Y, Wu F, Chen S, Li L (2009) Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria. Bioresource Technol 100:6163–6169CrossRef Xin B, Zhang D, Zhang X, Xia Y, Wu F, Chen S, Li L (2009) Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria. Bioresource Technol 100:6163–6169CrossRef
36.
Zurück zum Zitat Huang K, Li J, Xu ZM (2009) A novel process for recovering valuable metals from waste nickel-cadmium batteries. Environ Sci Technol 43:8974–8978CrossRef Huang K, Li J, Xu ZM (2009) A novel process for recovering valuable metals from waste nickel-cadmium batteries. Environ Sci Technol 43:8974–8978CrossRef
37.
Zurück zum Zitat Pietrelli L, Bellomo B, Fontana D, Montereali M (2005) Characterization and leaching of NiCd and NiMH spent batteries for the recovery of metals. Waste Manag 25:221–226CrossRef Pietrelli L, Bellomo B, Fontana D, Montereali M (2005) Characterization and leaching of NiCd and NiMH spent batteries for the recovery of metals. Waste Manag 25:221–226CrossRef
38.
Zurück zum Zitat Zhang P, Yokoyama T, Itabashi O, Suzuki TM, Inoue K (1998) Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries. Hydrometallurgy 47:259–271CrossRef Zhang P, Yokoyama T, Itabashi O, Suzuki TM, Inoue K (1998) Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries. Hydrometallurgy 47:259–271CrossRef
39.
Zurück zum Zitat Castillo S, Ansart F, Laberty-Robert C, Portal J (2002) Advances in the recovering of spent lithium battery compounds. J Power Sources 112:247–254CrossRef Castillo S, Ansart F, Laberty-Robert C, Portal J (2002) Advances in the recovering of spent lithium battery compounds. J Power Sources 112:247–254CrossRef
40.
Zurück zum Zitat Aktas S, Fray DJ, Burheim O, Fenstad J, Acma E (2006) Recovery of metallic values from spent Li ion secondary batteries. Miner Process Extr M (Trans Inst Min Metall C) 115:95–100CrossRef Aktas S, Fray DJ, Burheim O, Fenstad J, Acma E (2006) Recovery of metallic values from spent Li ion secondary batteries. Miner Process Extr M (Trans Inst Min Metall C) 115:95–100CrossRef
41.
Zurück zum Zitat Wang RC, Lin YC, Wu SH (2009) A novel recovery process of metal values from the cathode active materials of the lithium-ion secondary batteries. Hydrometallurgy 99:194–201CrossRef Wang RC, Lin YC, Wu SH (2009) A novel recovery process of metal values from the cathode active materials of the lithium-ion secondary batteries. Hydrometallurgy 99:194–201CrossRef
42.
Zurück zum Zitat Li J, Li X, Hu Q, Wang Z, Zheng J, Wu L, Zhang L (2009) Study of extraction and purification of Ni, Co and Mn from spent battery material. Hydrometallurgy 99:7–12CrossRef Li J, Li X, Hu Q, Wang Z, Zheng J, Wu L, Zhang L (2009) Study of extraction and purification of Ni, Co and Mn from spent battery material. Hydrometallurgy 99:7–12CrossRef
43.
Zurück zum Zitat Li J, Li X, Zhang Y, Hu Q, Wang Z, Zhou Y (2009) Study of spent battery material leaching process. Trans Nonferrous Met Soc China 19:751–755CrossRef Li J, Li X, Zhang Y, Hu Q, Wang Z, Zhou Y (2009) Study of spent battery material leaching process. Trans Nonferrous Met Soc China 19:751–755CrossRef
44.
Zurück zum Zitat Kang J, Senanayake G, Sohn J, Shin SM (2010) Recovery of cobalt sulfate from spent lithium ion batteries by reductive leaching and solvent extraction with Cyanex 272. Hydrometallurgy 100:168–171CrossRef Kang J, Senanayake G, Sohn J, Shin SM (2010) Recovery of cobalt sulfate from spent lithium ion batteries by reductive leaching and solvent extraction with Cyanex 272. Hydrometallurgy 100:168–171CrossRef
45.
Zurück zum Zitat Kang J, Sohn J, Chang H, Senanayake G, Shin SM (2010) Preparation of cobalt oxide from concentrated cathode material of spent lithium ion batteries by hydrometallurgical method. Adv Powder Technol 21:175–179CrossRef Kang J, Sohn J, Chang H, Senanayake G, Shin SM (2010) Preparation of cobalt oxide from concentrated cathode material of spent lithium ion batteries by hydrometallurgical method. Adv Powder Technol 21:175–179CrossRef
46.
Zurück zum Zitat Lupi C, Pasquali M (2003) Electrolytic nickel recovery from lithium-ion batteries. Miner Eng 16:537–542CrossRef Lupi C, Pasquali M (2003) Electrolytic nickel recovery from lithium-ion batteries. Miner Eng 16:537–542CrossRef
47.
Zurück zum Zitat Wang F, He F, Zhao J, Sui N, Xu L, Liu H (2012) Extraction and separation of cobalt(II), copper(II) and manganese(II) by Cyanex 272, PC-88A and their mixtures. Sep Purif Technol 93:8–14CrossRef Wang F, He F, Zhao J, Sui N, Xu L, Liu H (2012) Extraction and separation of cobalt(II), copper(II) and manganese(II) by Cyanex 272, PC-88A and their mixtures. Sep Purif Technol 93:8–14CrossRef
48.
Zurück zum Zitat Zhao JM, Shen XY, Deng FL, Wang FC, Wu Y, Liu HZ (2011) Synergistic extraction and separation of valuable metals from waste cathodic material of lithium ion batteries using Cyanex 272 and PC-88A. Sep Purif Technol 78:345–351CrossRef Zhao JM, Shen XY, Deng FL, Wang FC, Wu Y, Liu HZ (2011) Synergistic extraction and separation of valuable metals from waste cathodic material of lithium ion batteries using Cyanex 272 and PC-88A. Sep Purif Technol 78:345–351CrossRef
49.
Zurück zum Zitat Cerpa A, Alguacil FJ (2004) Separation of cobalt and nickel from acidic sulfate solutions using mixtures of di(2-ethylhexyl)phosphoric acid (DP-8R) and hydroxyoxime (ACORGA M5640). J Chen Technol Biot 79:455–460CrossRef Cerpa A, Alguacil FJ (2004) Separation of cobalt and nickel from acidic sulfate solutions using mixtures of di(2-ethylhexyl)phosphoric acid (DP-8R) and hydroxyoxime (ACORGA M5640). J Chen Technol Biot 79:455–460CrossRef
50.
Zurück zum Zitat Cheng CY (2006) Solvent extraction of nickel and cobalt with synergistic systems consisting of carboxylic acid and aliphatic hydroxyoxime. Hydrometallurgy 84:109–117CrossRef Cheng CY (2006) Solvent extraction of nickel and cobalt with synergistic systems consisting of carboxylic acid and aliphatic hydroxyoxime. Hydrometallurgy 84:109–117CrossRef
51.
Zurück zum Zitat du Preez AC, Preston JS (2004) Separation of nickel and cobalt from calcium, magnesium and manganese by solvent extraction with synergistic mixtures of carboxylic acids. J S Afr Inst Min Metall 104:333–338 du Preez AC, Preston JS (2004) Separation of nickel and cobalt from calcium, magnesium and manganese by solvent extraction with synergistic mixtures of carboxylic acids. J S Afr Inst Min Metall 104:333–338
52.
Zurück zum Zitat Cheng CY, Zhang WS, Pranolo Y (2010) Separation of cobalt and zinc from manganese, magnesium, and calcium using a synergistic solvent extraction system consisting of Versatic 10 and LIX 63. Solvent Extr Ion Exch 28:608–624CrossRef Cheng CY, Zhang WS, Pranolo Y (2010) Separation of cobalt and zinc from manganese, magnesium, and calcium using a synergistic solvent extraction system consisting of Versatic 10 and LIX 63. Solvent Extr Ion Exch 28:608–624CrossRef
53.
Zurück zum Zitat Kim DS, Sohn JS, Lee CK, Lee JH, Han KS, Lee YI (2004) Simultaneous separation and renovation of lithium cobalt oxide from the cathode of spent lithium ion rechargeable batteries. J Power Sources 132:145–149CrossRef Kim DS, Sohn JS, Lee CK, Lee JH, Han KS, Lee YI (2004) Simultaneous separation and renovation of lithium cobalt oxide from the cathode of spent lithium ion rechargeable batteries. J Power Sources 132:145–149CrossRef
54.
Zurück zum Zitat Yoshimura M, Han KS, Tsurimoto S (1998) Direct fabrication of thin-film LiNiO2 electrodes in LiOH solution by electrochemical-hydrothermal method. Solid State Ionics 106:39–44CrossRef Yoshimura M, Han KS, Tsurimoto S (1998) Direct fabrication of thin-film LiNiO2 electrodes in LiOH solution by electrochemical-hydrothermal method. Solid State Ionics 106:39–44CrossRef
55.
Zurück zum Zitat Han KS, Song SW, Fujita H, Yoshimura M (2000) Single-step fabrication of Li1−x Ni1+x O2 and LiCoO2 films by soft solution-processing at 20–200°C. Solid State Ionics 135:273–276CrossRef Han KS, Song SW, Fujita H, Yoshimura M (2000) Single-step fabrication of Li1−x Ni1+x O2 and LiCoO2 films by soft solution-processing at 20–200°C. Solid State Ionics 135:273–276CrossRef
56.
Zurück zum Zitat Han KS, Tsurimoto S, Yoshimura M (1999) Fabrication temperature and applied current density effects on the direct fabrication of lithium nickel oxide thin-film electrodes in LiOH solution by the electrochemical-hydrothermal method. Solid State Ionics 121:229–233CrossRef Han KS, Tsurimoto S, Yoshimura M (1999) Fabrication temperature and applied current density effects on the direct fabrication of lithium nickel oxide thin-film electrodes in LiOH solution by the electrochemical-hydrothermal method. Solid State Ionics 121:229–233CrossRef
57.
Zurück zum Zitat Song SW, Han KS, Sasagawa I, Watanabe T, Yoshimura M (2000) Effect of LiOH concentration change on simultaneous preparation of LiCoO2 film and powder by hydrothermal method. Solid State Ionics 135:277–281CrossRef Song SW, Han KS, Sasagawa I, Watanabe T, Yoshimura M (2000) Effect of LiOH concentration change on simultaneous preparation of LiCoO2 film and powder by hydrothermal method. Solid State Ionics 135:277–281CrossRef
58.
Zurück zum Zitat Watanabe T, Uono H, Song SW, Han KS, Yoshimura M (2001) Direct fabrication of lithium cobalt oxide films on various substrates in flowing aqueous solutions at 150°C. J Solid State Chem 162:364–370CrossRef Watanabe T, Uono H, Song SW, Han KS, Yoshimura M (2001) Direct fabrication of lithium cobalt oxide films on various substrates in flowing aqueous solutions at 150°C. J Solid State Chem 162:364–370CrossRef
59.
Zurück zum Zitat Han KS, Song SW, Tsurimoto S, Fujita H, Sasagawa I, Choi KH, Kang HK, Yoshimura M (2002) Soft solution processing for direct fabrication of LiMO2 (M=Ni and Co) film. Solid State Ionics 151:11–18CrossRef Han KS, Song SW, Tsurimoto S, Fujita H, Sasagawa I, Choi KH, Kang HK, Yoshimura M (2002) Soft solution processing for direct fabrication of LiMO2 (M=Ni and Co) film. Solid State Ionics 151:11–18CrossRef
60.
Zurück zum Zitat U.S. Geological Survey (2011) Mineral commodity summaries 2011. U.S. Geological Survey, Reston, Virginia U.S. Geological Survey (2011) Mineral commodity summaries 2011. U.S. Geological Survey, Reston, Virginia
61.
Zurück zum Zitat Rentz O, Engels B, Schultmann F (2001) Environmental research plan of the German Federal Ministry for the Environment, nature conservation and nuclear safety. Research Project 299 35 330. French-German Institute for Environmental Research, Universität Karlsruhe (TH) Rentz O, Engels B, Schultmann F (2001) Environmental research plan of the German Federal Ministry for the Environment, nature conservation and nuclear safety. Research Project 299 35 330. French-German Institute for Environmental Research, Universität Karlsruhe (TH)
62.
Zurück zum Zitat Bau-, Verkehrs- und Energiedirektion des Kantons Bern, GSA – Amt für Gewässerschutz und Abfallwirtschaft (Ed.) (2003) Altbatterien gehören nicht in den Kehrrichtsack, Abfallsplitter, Waste Information Canton Bern Bau-, Verkehrs- und Energiedirektion des Kantons Bern, GSA – Amt für Gewässerschutz und Abfallwirtschaft (Ed.) (2003) Altbatterien gehören nicht in den Kehrrichtsack, Abfallsplitter, Waste Information Canton Bern
63.
Zurück zum Zitat Pistoia G, Wiaux JP, Wolsky SP (2001) Used battery collection and recycling. Elsevier Science, Amsterdam Pistoia G, Wiaux JP, Wolsky SP (2001) Used battery collection and recycling. Elsevier Science, Amsterdam
64.
Zurück zum Zitat Henrion P (2004) ICBR—international congress for battery recycling, Como Henrion P (2004) ICBR—international congress for battery recycling, Como
65.
Zurück zum Zitat Henrion P (2008) EBR—electronics & battery recycling, Toronto Henrion P (2008) EBR—electronics & battery recycling, Toronto
66.
Zurück zum Zitat Henrion P (2008) ICBR—international congress for battery recycling, Düsseldorf Henrion P (2008) ICBR—international congress for battery recycling, Düsseldorf
67.
Zurück zum Zitat Tollinsky N (2008) Xstrata boosts recycling capacity. Sudbury Min Solut J 5:1–36 Tollinsky N (2008) Xstrata boosts recycling capacity. Sudbury Min Solut J 5:1–36
68.
Zurück zum Zitat Chéret D (2004) ICBR—international congress for battery recycling, Como Chéret D (2004) ICBR—international congress for battery recycling, Como
69.
Zurück zum Zitat Chéret D (2006) ICBR—international congress for battery recycling, Interlaken Chéret D (2006) ICBR—international congress for battery recycling, Interlaken
70.
Zurück zum Zitat Meskers CEM, Hagelüken C, Van Damme G (2009) Greeen recycling of EEE: special and precious metal recovery from EEE. In: Stanley M, Howard (eds) Proceedings of sessions and symposia sponsored by the extraction & processing division (EPD) of the minerals, metals & materials society (TMS), San Franscisco, California, pp 1131–1136 Meskers CEM, Hagelüken C, Van Damme G (2009) Greeen recycling of EEE: special and precious metal recovery from EEE. In: Stanley M, Howard (eds) Proceedings of sessions and symposia sponsored by the extraction & processing division (EPD) of the minerals, metals & materials society (TMS), San Franscisco, California, pp 1131–1136
71.
Zurück zum Zitat Siret C (2008) ICBR—international congress for battery recycling, Düsseldorf Siret C (2008) ICBR—international congress for battery recycling, Düsseldorf
72.
Zurück zum Zitat Siret C, Van Damme G (2008) EBR—electronics & battery recycling, Toronto Siret C, Van Damme G (2008) EBR—electronics & battery recycling, Toronto
Metadaten
Titel
An overview on the processes and technologies for recycling cathodic active materials from spent lithium-ion batteries
verfasst von
Xihua Zhang
Yongbing Xie
Xiao Lin
Haitao Li
Hongbin Cao
Publikationsdatum
01.10.2013
Verlag
Springer Japan
Erschienen in
Journal of Material Cycles and Waste Management / Ausgabe 4/2013
Print ISSN: 1438-4957
Elektronische ISSN: 1611-8227
DOI
https://doi.org/10.1007/s10163-013-0140-y

Weitere Artikel der Ausgabe 4/2013

Journal of Material Cycles and Waste Management 4/2013 Zur Ausgabe