Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 10/2022

18.04.2022 | Technical Article

Effects of Addition of Titanium on Microstructures and Properties of Laser Butt Welded Joints of Mo–30W Alloy

verfasst von: Pei-Xin Cheng, Lin-Jie Zhang, Jie Ning, Suck-Joo Na, Yong-qing Pang

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 10/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The fusion welding of Mo–30W alloy, a kind of brittle and refractory materials, is still challenging. This study investigated effects of addition of titanium (Ti) on microstructures and properties of laser butt welded joints of Mo–30W alloy. The microstructure, phase distribution and mechanical performance of the welded joint with and without Ti were studied by optical microscope, scanning electron microscope, energy-dispersive spectrometer, electron backscattering diffraction, microhardness tests and tensile tests. The tensile strength of Mo–30W laser welded joint was increased from 108.56 to 409.57 MPa by adding Ti element, reached 58.34% that of base metal. MoO2 phase and WO2 phase precipitated at the grain boundary of FZ region of Mo–30W alloy laser butt welded joints without Ti, which significantly reduced the grain boundary strength, resulting in low tensile strength. After the addition of Ti, TiO2 phase with low Gibbs free energy was formed in GBs (grain boundaries), which reduced the number of MoO2 phase and WO2 phase harmful to the GBs strength, therefore, the tendency of grain boundary embrittlement was reduced. The research results can provide reference for laser welding of brittle and refractory metals.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H.L. Brown and C.P. Kempter, Elastic Properties of Thoriated W-Mo and W-Mo-Re Alloys, J. Less-Common Met., 1967, 12(2), p 166–168.CrossRef H.L. Brown and C.P. Kempter, Elastic Properties of Thoriated W-Mo and W-Mo-Re Alloys, J. Less-Common Met., 1967, 12(2), p 166–168.CrossRef
2.
Zurück zum Zitat B. Paul, D. Jain, S.P. Chakraborty, I.G. Sharma, and A.K. Suri, Sintering Kinetics Study of Mechanically Alloyed Nanocrystalline Mo–30wt.% W, Thermochim Acta, 2011, 512, p 134–141.CrossRef B. Paul, D. Jain, S.P. Chakraborty, I.G. Sharma, and A.K. Suri, Sintering Kinetics Study of Mechanically Alloyed Nanocrystalline Mo–30wt.% W, Thermochim Acta, 2011, 512, p 134–141.CrossRef
3.
Zurück zum Zitat S.P. Chakraborty, S. Banerjee, G. Sanyal, V.S. Bhave, B. Paul, I.G. Sharma, and A.K. Suri, Studies on the Synthesis of a Mo–30wt% W Alloy by Non-conventional Approaches, J. Alloys Compd., 2010, 501, p 211–217.CrossRef S.P. Chakraborty, S. Banerjee, G. Sanyal, V.S. Bhave, B. Paul, I.G. Sharma, and A.K. Suri, Studies on the Synthesis of a Mo–30wt% W Alloy by Non-conventional Approaches, J. Alloys Compd., 2010, 501, p 211–217.CrossRef
4.
Zurück zum Zitat S. Antusch, J. Reiser, J. Hoffmann, and A. Onea, Refractory Materials for Energy Applications, Energy Technol., 2017, 5, p 1064.CrossRef S. Antusch, J. Reiser, J. Hoffmann, and A. Onea, Refractory Materials for Energy Applications, Energy Technol., 2017, 5, p 1064.CrossRef
5.
Zurück zum Zitat T. Wang, N. Li, Y. Zhang, S. Jiang, B. Zhang, Y. Wang, and J. Feng, Influence of Welding Speed on Microstructures and Mechanical Properties of Vacuum Electron Beam Welded TZM Alloy Joints, Vacuum, 2017, 149, p 29–35.CrossRef T. Wang, N. Li, Y. Zhang, S. Jiang, B. Zhang, Y. Wang, and J. Feng, Influence of Welding Speed on Microstructures and Mechanical Properties of Vacuum Electron Beam Welded TZM Alloy Joints, Vacuum, 2017, 149, p 29–35.CrossRef
6.
Zurück zum Zitat R. Kishore and A. Kumar, Effect of Carbon on the Ductilisation of Electron-Beam Welds in Molybdenum, J. Nucl. Mater., 1981, 101(1–2), p 16–27.CrossRef R. Kishore and A. Kumar, Effect of Carbon on the Ductilisation of Electron-Beam Welds in Molybdenum, J. Nucl. Mater., 1981, 101(1–2), p 16–27.CrossRef
7.
Zurück zum Zitat M. Kolarikova, L. Kolarik, and P. Vondrous. Welding of Thin Molybdenum Sheets by EBW and GTAW, Annals of Daaam & Proceedings. 2012 M. Kolarikova, L. Kolarik, and P. Vondrous. Welding of Thin Molybdenum Sheets by EBW and GTAW, Annals of Daaam & Proceedings. 2012
8.
Zurück zum Zitat M.X. Xie, Y.X. Li, X.T. Shang, X.W. Wang, and J.Y. Pei, Effect of Heat Input on Porosity Defects in a Fiber Laser Welded Socket-Joint Made of Powder Metallurgy Molybdenum Alloy, Materials, 2019, 12(9), p 1433.CrossRef M.X. Xie, Y.X. Li, X.T. Shang, X.W. Wang, and J.Y. Pei, Effect of Heat Input on Porosity Defects in a Fiber Laser Welded Socket-Joint Made of Powder Metallurgy Molybdenum Alloy, Materials, 2019, 12(9), p 1433.CrossRef
9.
Zurück zum Zitat M.X. Xie, Y.X. Li, X.T. Shang, X.W. Wang, and J.Y. Pei, Microstructure and Mechanical Properties of a Fiber Welded Socket-Joint made of Powder Metallurgy Molybdenum Alloy, Metals, 2019, 9(6), p 640.CrossRef M.X. Xie, Y.X. Li, X.T. Shang, X.W. Wang, and J.Y. Pei, Microstructure and Mechanical Properties of a Fiber Welded Socket-Joint made of Powder Metallurgy Molybdenum Alloy, Metals, 2019, 9(6), p 640.CrossRef
10.
Zurück zum Zitat M.X. Xie, X.T. Shang, Y.X. Li, Z.H. Zhang, M.H. Zhu, and J.T. Xiong, Rotary Friction Welding of Molybdenum without Upset Forging, Materials, 2020, 13(8), p 1957.CrossRef M.X. Xie, X.T. Shang, Y.X. Li, Z.H. Zhang, M.H. Zhu, and J.T. Xiong, Rotary Friction Welding of Molybdenum without Upset Forging, Materials, 2020, 13(8), p 1957.CrossRef
11.
Zurück zum Zitat P. Liu, K.Y. Feng, and G.M. Zhang, A Novel Study on Laser Lap Welding of Refractory Alloy 50Mo–50Re of Small-Scale Thin Sheet, Vacuum, 2017, 136, p 10–13.CrossRef P. Liu, K.Y. Feng, and G.M. Zhang, A Novel Study on Laser Lap Welding of Refractory Alloy 50Mo–50Re of Small-Scale Thin Sheet, Vacuum, 2017, 136, p 10–13.CrossRef
12.
Zurück zum Zitat L.L. Zhang, L.J. Zhang, J. Long, X. Sun, J.X. Zhang, and S.J. Na, Enhanced Mechanical Performance of Fusion Zone in Laser Beam Welding Joint of Molybdenum Alloy Due to Solid Carburizing, Mater. Des., 2019, 181, p 107957.CrossRef L.L. Zhang, L.J. Zhang, J. Long, X. Sun, J.X. Zhang, and S.J. Na, Enhanced Mechanical Performance of Fusion Zone in Laser Beam Welding Joint of Molybdenum Alloy Due to Solid Carburizing, Mater. Des., 2019, 181, p 107957.CrossRef
13.
Zurück zum Zitat D.P. Kramer, J.R. Mcdougal, B.A. Booher, J.D. Ruhkamp, and J.J. Kwiatkowski. Electron beam and Nd-YAG laser welding of niobium-1% zirconium and molybdenum-44.5% rhenium thin select material, Energy Conversion Engineering Conference & Exhibit IEEE 2013 D.P. Kramer, J.R. Mcdougal, B.A. Booher, J.D. Ruhkamp, and J.J. Kwiatkowski. Electron beam and Nd-YAG laser welding of niobium-1% zirconium and molybdenum-44.5% rhenium thin select material, Energy Conversion Engineering Conference & Exhibit IEEE 2013
14.
Zurück zum Zitat S. Majumdar, G.B. Kale, and I.G. Sharma, A Study on Preparation of Mo–30W alloy by Aluminothermic Co-Reduction of Mixed Oxides, J. Alloys Compd., 2005, 394(1–2), p 168–175.CrossRef S. Majumdar, G.B. Kale, and I.G. Sharma, A Study on Preparation of Mo–30W alloy by Aluminothermic Co-Reduction of Mixed Oxides, J. Alloys Compd., 2005, 394(1–2), p 168–175.CrossRef
15.
Zurück zum Zitat C.Y. Wang, Y.K. Teng, and D. Dong, Study on Recrystallization Behavior of Mo-30W Molybdenum Alloy, Powder Metall. Technol., 2018, 36(6), p 418–422. C.Y. Wang, Y.K. Teng, and D. Dong, Study on Recrystallization Behavior of Mo-30W Molybdenum Alloy, Powder Metall. Technol., 2018, 36(6), p 418–422.
16.
Zurück zum Zitat S. Majumdar, I.G. Sharma, and A.K. Suri, Development of Oxidation Resistant Coatings on Mo–30W Alloy, Int. J. Refract. Met. Hard Mater., 2008, 26(6), p 549–554.CrossRef S. Majumdar, I.G. Sharma, and A.K. Suri, Development of Oxidation Resistant Coatings on Mo–30W Alloy, Int. J. Refract. Met. Hard Mater., 2008, 26(6), p 549–554.CrossRef
17.
Zurück zum Zitat M.K. Miller, E.A. Kenik, M.S. Mousa, K.F. Russell, and A.J. Bryhan, Improvement in the Ductility of Molybdenum Alloys due to Grain Boundary Segregation, Scr. Mater., 2002, 46(4), p 299–303.CrossRef M.K. Miller, E.A. Kenik, M.S. Mousa, K.F. Russell, and A.J. Bryhan, Improvement in the Ductility of Molybdenum Alloys due to Grain Boundary Segregation, Scr. Mater., 2002, 46(4), p 299–303.CrossRef
18.
Zurück zum Zitat K. Leitner, D. Lutz, W. Knabl, M. Eidenberger-Schober, K. Huber, A. Lorich, H. Clemens, and V. Maier-Kiener, Grain Boundary Segregation Engineering in As-Sintered Molybdenum for Improved Ductility, Scr. Mater., 2018, 156, p 60–63.CrossRef K. Leitner, D. Lutz, W. Knabl, M. Eidenberger-Schober, K. Huber, A. Lorich, H. Clemens, and V. Maier-Kiener, Grain Boundary Segregation Engineering in As-Sintered Molybdenum for Improved Ductility, Scr. Mater., 2018, 156, p 60–63.CrossRef
19.
Zurück zum Zitat L.J. Zhang, J.Y. Pei, L.L. Zhang, J. Long, J.X. Zhang, and S.J. Na, Laser Seal Welding of End Plug to Thin-Walled Nanostructured High-Strength Molybdenum Alloy Cladding with a Zirconium Interlayer, J. Mater. Process. Technol., 2019, 267, p 338–347.CrossRef L.J. Zhang, J.Y. Pei, L.L. Zhang, J. Long, J.X. Zhang, and S.J. Na, Laser Seal Welding of End Plug to Thin-Walled Nanostructured High-Strength Molybdenum Alloy Cladding with a Zirconium Interlayer, J. Mater. Process. Technol., 2019, 267, p 338–347.CrossRef
20.
Zurück zum Zitat P.Y. Park, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami, and K. Hashimoto, The Corrosion Behavior of Sputter-Deposited Amorphous Mo-Zr Alloys in 12 M HCl, Corros. Sci., 1994, 36(8), p 1395–1410.CrossRef P.Y. Park, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami, and K. Hashimoto, The Corrosion Behavior of Sputter-Deposited Amorphous Mo-Zr Alloys in 12 M HCl, Corros. Sci., 1994, 36(8), p 1395–1410.CrossRef
21.
Zurück zum Zitat M. Nagae, Y. Takemoto, T. Yoshio, J. Takada, and Y. Hiraoka, Preparation of Structurally Controlled Dilute Molybdenum–Titanium Alloys Through a Novel Multi-Step Internal Nitriding Technique and Their Mechanical Properties, Mater. Sci. Eng. A, 2005, 406, p 50–56.CrossRef M. Nagae, Y. Takemoto, T. Yoshio, J. Takada, and Y. Hiraoka, Preparation of Structurally Controlled Dilute Molybdenum–Titanium Alloys Through a Novel Multi-Step Internal Nitriding Technique and Their Mechanical Properties, Mater. Sci. Eng. A, 2005, 406, p 50–56.CrossRef
22.
Zurück zum Zitat Q. Shen, L.M. Zhang, H.P. Xiong, J.S. Hua, and H. Tan, Fabrication of W-Mo-Ti System Flier-Plate with Graded Impedance for Generating Quasi-Isentropic Compression, Chin. Sci. Bull., 2000, 45(15), p 1421–1424.CrossRef Q. Shen, L.M. Zhang, H.P. Xiong, J.S. Hua, and H. Tan, Fabrication of W-Mo-Ti System Flier-Plate with Graded Impedance for Generating Quasi-Isentropic Compression, Chin. Sci. Bull., 2000, 45(15), p 1421–1424.CrossRef
23.
Zurück zum Zitat J.L. Fan, M.Y. Lu, H.C. Cheng, J.M. Tian, and B.Y. Huang, Effect of Alloying Elements Ti, Zr on the Property and Microstructure of Molybdenum, Int. J. Refract. Met. Hard Mater., 2009, 27(1), p 78–82.CrossRef J.L. Fan, M.Y. Lu, H.C. Cheng, J.M. Tian, and B.Y. Huang, Effect of Alloying Elements Ti, Zr on the Property and Microstructure of Molybdenum, Int. J. Refract. Met. Hard Mater., 2009, 27(1), p 78–82.CrossRef
24.
Zurück zum Zitat D.W. Jones and A.D. McQuillan, Magnetic Susceptibility and Hydrogen Affinity of B.C.C. Alloys of Nb-Mo Nb-Re and Mo-Re, J. Phys. Chem. Solids, 1962, 23(10), p 1441–1447.CrossRef D.W. Jones and A.D. McQuillan, Magnetic Susceptibility and Hydrogen Affinity of B.C.C. Alloys of Nb-Mo Nb-Re and Mo-Re, J. Phys. Chem. Solids, 1962, 23(10), p 1441–1447.CrossRef
25.
Zurück zum Zitat H. Yutaka, Effect of Rhenium and Carbon Additions on Low-Temperature Fracture Behavior of Molybdenum, J. Jpn. Inst. Met., 1992, 56(2), p 161–167.CrossRef H. Yutaka, Effect of Rhenium and Carbon Additions on Low-Temperature Fracture Behavior of Molybdenum, J. Jpn. Inst. Met., 1992, 56(2), p 161–167.CrossRef
26.
Zurück zum Zitat G. Liu, G.J. Zhang, F. Jiang, X.D. Ding, Y.J. Sun, J. Sun, and E. Ma, Nanostructured High-Strength Molybdenum Alloys with Unprecedented Tensile Ductility, Nat. Mater., 2013, 12(4), p 344–350.CrossRef G. Liu, G.J. Zhang, F. Jiang, X.D. Ding, Y.J. Sun, J. Sun, and E. Ma, Nanostructured High-Strength Molybdenum Alloys with Unprecedented Tensile Ductility, Nat. Mater., 2013, 12(4), p 344–350.CrossRef
27.
Zurück zum Zitat L.L. Zhang, L.J. Zhang, J. Long, J. Ning, J.X. Zhang, and S.J. Na, Effects of Titanium on Grain Boundary Strength in Molybdenum Laser Weld Bead and Formation and Strengthening Mechanisms of Brazing Layer, Mater. Des., 2019, 169, p 107681.CrossRef L.L. Zhang, L.J. Zhang, J. Long, J. Ning, J.X. Zhang, and S.J. Na, Effects of Titanium on Grain Boundary Strength in Molybdenum Laser Weld Bead and Formation and Strengthening Mechanisms of Brazing Layer, Mater. Des., 2019, 169, p 107681.CrossRef
28.
Zurück zum Zitat Z. Hu, Y. Zhao, K. Guan, Z. Wang, and Z. Ma, Pure Tungsten and Oxide Dispersion Strengthened Tungsten Manufactured by Selective Laser Melting: Microstructure and Cracking Mechanism, Addit. Manuf., 2020, 36(6), p 101579. Z. Hu, Y. Zhao, K. Guan, Z. Wang, and Z. Ma, Pure Tungsten and Oxide Dispersion Strengthened Tungsten Manufactured by Selective Laser Melting: Microstructure and Cracking Mechanism, Addit. Manuf., 2020, 36(6), p 101579.
29.
Zurück zum Zitat L.J. Zhang, C.H. Wang, Y.B. Zhang, Q. Guo, R.Y. Ma, J.X. Zhang, and S.J. Na, The Mechanical Properties and Interface Bonding Mechanism of Molybdenum/SUS304L by Laser Beam Welding with Nickel Interlayer, Mater. Des., 2019, 182, p 108002.CrossRef L.J. Zhang, C.H. Wang, Y.B. Zhang, Q. Guo, R.Y. Ma, J.X. Zhang, and S.J. Na, The Mechanical Properties and Interface Bonding Mechanism of Molybdenum/SUS304L by Laser Beam Welding with Nickel Interlayer, Mater. Des., 2019, 182, p 108002.CrossRef
30.
Zurück zum Zitat C.G. Zhang, J.L. Fan, and H.C. Cheng, Effects of W Content by Mass on the Microstructure and Mechanical Properties of Mo–W Alloy, Powder Metall. Technol., 2020, 38, p 18–24. C.G. Zhang, J.L. Fan, and H.C. Cheng, Effects of W Content by Mass on the Microstructure and Mechanical Properties of Mo–W Alloy, Powder Metall. Technol., 2020, 38, p 18–24.
31.
Zurück zum Zitat B. Tabernig and N. Reheis, Joining of Molybdenum and its Application, Int. J. Refract. Met. Hard Mater, 2010, 2, p 728–733.CrossRef B. Tabernig and N. Reheis, Joining of Molybdenum and its Application, Int. J. Refract. Met. Hard Mater, 2010, 2, p 728–733.CrossRef
32.
Zurück zum Zitat A. Chatterjee, S. Kumar, R. Tewari, and G.K. Dey, Welding of Mo-Based Alloy Using Electron Beam and Laser-GTAW Hybrid Welding Techniques, Metall. Mater. Trans. A, 2015, 47, p 1143–1152.CrossRef A. Chatterjee, S. Kumar, R. Tewari, and G.K. Dey, Welding of Mo-Based Alloy Using Electron Beam and Laser-GTAW Hybrid Welding Techniques, Metall. Mater. Trans. A, 2015, 47, p 1143–1152.CrossRef
33.
Zurück zum Zitat D. Bachurina, A. Suchkov, J. Gurova, M. Savelyev, and O. Sevryukov, Joining Tungsten with Steel for DEMO: Simultaneous Brazing by Cu-Ti Amorphous Foils and Heat Treatment, Fusion Eng. Des., 2021, 162, p 112099.CrossRef D. Bachurina, A. Suchkov, J. Gurova, M. Savelyev, and O. Sevryukov, Joining Tungsten with Steel for DEMO: Simultaneous Brazing by Cu-Ti Amorphous Foils and Heat Treatment, Fusion Eng. Des., 2021, 162, p 112099.CrossRef
34.
Zurück zum Zitat B. Hu, C.L. Qiu, S.L. Cui, P.S. Wang, J.Q. Zhou, W.S. Xu, F.F. Min, and J.R. Zhao, CALPHAD-type Thermodynamic Description of Phase Equilibria in the Ti-W-M (M = Zr, Mo, Nb) Ternary Systems, J. Chem. Thermodyn., 2019, 131, p 25–32.CrossRef B. Hu, C.L. Qiu, S.L. Cui, P.S. Wang, J.Q. Zhou, W.S. Xu, F.F. Min, and J.R. Zhao, CALPHAD-type Thermodynamic Description of Phase Equilibria in the Ti-W-M (M = Zr, Mo, Nb) Ternary Systems, J. Chem. Thermodyn., 2019, 131, p 25–32.CrossRef
35.
Zurück zum Zitat T. Wang, Y. Zhang, S. Jiang, X. Li, and J. Feng, Stress Relief and Purification Mechanisms for Grain Boundaries of Electron Beam Welded TZM Alloy Joint with Zirconium Addition, J. Mater. Process. Technol., 2018, 251, p 168–174.CrossRef T. Wang, Y. Zhang, S. Jiang, X. Li, and J. Feng, Stress Relief and Purification Mechanisms for Grain Boundaries of Electron Beam Welded TZM Alloy Joint with Zirconium Addition, J. Mater. Process. Technol., 2018, 251, p 168–174.CrossRef
36.
Zurück zum Zitat C.W. Bale, P. Chartrand, S.A. Degterov, G. Eriksson, K. Hack, R. Ben Mahfoud, J. Melançon, A.D. Pelton, and S. Petersen, FactSage Thermochemical Software and Databases, Calphad, 2002, 26, p 189–228.CrossRef C.W. Bale, P. Chartrand, S.A. Degterov, G. Eriksson, K. Hack, R. Ben Mahfoud, J. Melançon, A.D. Pelton, and S. Petersen, FactSage Thermochemical Software and Databases, Calphad, 2002, 26, p 189–228.CrossRef
37.
Zurück zum Zitat E. Smith, The Formation of a Cleavage Crack in a Crystalline solid—I, Acta Mater., 1996, 14(8), p 985–989.CrossRef E. Smith, The Formation of a Cleavage Crack in a Crystalline solid—I, Acta Mater., 1996, 14(8), p 985–989.CrossRef
38.
Zurück zum Zitat E. Smith, The Formation of a Cleavage Crack in a Crystalline Solid—II, Acta Mater., 1996, 14(8), p 991–996.CrossRef E. Smith, The Formation of a Cleavage Crack in a Crystalline Solid—II, Acta Mater., 1996, 14(8), p 991–996.CrossRef
39.
Zurück zum Zitat W.S. Tsurekawa, The Control of Brittleness and Development of Desirable Mechanical Properties in Polycrystalline Systems by Grain Boundary Engineering, Mater. Des., 1999, 47, p 15–16. W.S. Tsurekawa, The Control of Brittleness and Development of Desirable Mechanical Properties in Polycrystalline Systems by Grain Boundary Engineering, Mater. Des., 1999, 47, p 15–16.
40.
Zurück zum Zitat K. Leitner, N. Babinsky, P.J. Felfer, D. Holec, J. Cairney, W. Knabl, A. Lorich, H. Clemens, and S. Primig, On Grain Boundary Segregation in Molybdenum Materials, Mater. Des., 2017, 135, p 204–212.CrossRef K. Leitner, N. Babinsky, P.J. Felfer, D. Holec, J. Cairney, W. Knabl, A. Lorich, H. Clemens, and S. Primig, On Grain Boundary Segregation in Molybdenum Materials, Mater. Des., 2017, 135, p 204–212.CrossRef
Metadaten
Titel
Effects of Addition of Titanium on Microstructures and Properties of Laser Butt Welded Joints of Mo–30W Alloy
verfasst von
Pei-Xin Cheng
Lin-Jie Zhang
Jie Ning
Suck-Joo Na
Yong-qing Pang
Publikationsdatum
18.04.2022
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 10/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-06863-9

Weitere Artikel der Ausgabe 10/2022

Journal of Materials Engineering and Performance 10/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.