Skip to main content
Erschienen in: Theoretical and Computational Fluid Dynamics 5-6/2020

09.07.2020 | Original Article

Effects of finite ion size on transport of neutral solute across porous wall of a nanotube

verfasst von: Saikat Bhattacharjee, Morteza Dejam, Sirshendu De

Erschienen in: Theoretical and Computational Fluid Dynamics | Ausgabe 5-6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Effect of finite ion size on the transport of a neutral solute across the porous wall of a nanotube is presented in this study. Modified Poisson–Boltzmann equation without the Debye–Huckel approximation is used to determine the potential distribution within the tube. Power law fluid is selected for the study, as its rheology resembles closely to the real-life physiological fluids. The flow within the tube is actuated by the combined effects of pressure and electroosmotic forces. Steady-state solute balance equation is solved by the similarity technique in order to track the solute transport across the tube. The effects of ionic radius, ionic concentration, and flow behavioral index on the length-averaged Sherwood number, permeate flux, and permeate concentration are analyzed. This study will be extremely helpful in predicting the transport characteristics of a neutral solute in real physiological systems and also to fine-tune the performance of microfluidic devices having porous wall.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Whitesides, G.M.: The origins and the future of microfluidics. Nature 442, 368–373 (2006) Whitesides, G.M.: The origins and the future of microfluidics. Nature 442, 368–373 (2006)
2.
Zurück zum Zitat Dhar, B.C., Lee, N.Y.: Lab-on-a-chip technology for environmental monitoring of microorganisms. BioChip J. 12, 173–183 (2018) Dhar, B.C., Lee, N.Y.: Lab-on-a-chip technology for environmental monitoring of microorganisms. BioChip J. 12, 173–183 (2018)
3.
Zurück zum Zitat Cabibbe, A.M., Miotto, P., Moure, R., Alcaide, F., Feuerriegel, S., Pozzi, G., Nikolayevskyy, V., Drobniewski, F., Niemann, S., Reither, K., Cirillo, D.M.: Lab-on-chip-based platform for fast molecular diagnosis of multidrug-resistant tuberculosis. J. Clin. Microbiol. 53, 3876–3880 (2015) Cabibbe, A.M., Miotto, P., Moure, R., Alcaide, F., Feuerriegel, S., Pozzi, G., Nikolayevskyy, V., Drobniewski, F., Niemann, S., Reither, K., Cirillo, D.M.: Lab-on-chip-based platform for fast molecular diagnosis of multidrug-resistant tuberculosis. J. Clin. Microbiol. 53, 3876–3880 (2015)
4.
Zurück zum Zitat Yetisen, A.K., Akram, M.S., Lowe, C.R.: Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 13, 2210 (2013) Yetisen, A.K., Akram, M.S., Lowe, C.R.: Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 13, 2210 (2013)
5.
Zurück zum Zitat Mark, D., Haeberle, S., Roth, G., von Stetten, F., Zengerle, R.: Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem. Soc. Rev. 39, 1153 (2010) Mark, D., Haeberle, S., Roth, G., von Stetten, F., Zengerle, R.: Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem. Soc. Rev. 39, 1153 (2010)
6.
Zurück zum Zitat Das, S.S., Kar, S., Anwar, T., Saha, P., Chakraborty, S.: Hydroelectric power plant on a paper strip. Lab Chip 18, 1560–1568 (2018) Das, S.S., Kar, S., Anwar, T., Saha, P., Chakraborty, S.: Hydroelectric power plant on a paper strip. Lab Chip 18, 1560–1568 (2018)
7.
Zurück zum Zitat Beebe, D.J., Mensing, G.A., Walker, G.M.: Physics and applications of microfluidics in biology. Annu. Rev. Biomed. Eng. 4, 261–286 (2002) Beebe, D.J., Mensing, G.A., Walker, G.M.: Physics and applications of microfluidics in biology. Annu. Rev. Biomed. Eng. 4, 261–286 (2002)
8.
Zurück zum Zitat Holmes, D., Gawad, S.: The application of microfluidics in biology. Methods Mol. Biol. 583, 55–80 (2010) Holmes, D., Gawad, S.: The application of microfluidics in biology. Methods Mol. Biol. 583, 55–80 (2010)
9.
Zurück zum Zitat Weibel, D., Whitesides, G.: Applications of microfluidics in chemical biology. Curr. Opin. Chem. Biol. 10, 584–591 (2006) Weibel, D., Whitesides, G.: Applications of microfluidics in chemical biology. Curr. Opin. Chem. Biol. 10, 584–591 (2006)
10.
Zurück zum Zitat Santiago, J.G.: Electroosmotic flows in microchannels with finite inertial and pressure forces. Anal. Chem. 73, 2353–2365 (2001) Santiago, J.G.: Electroosmotic flows in microchannels with finite inertial and pressure forces. Anal. Chem. 73, 2353–2365 (2001)
11.
Zurück zum Zitat Jiang, L., Mikkelsen, J., Koo, J.-M., Huber, D., Yao, S., Zhang, L., Zhou, P., Maveety, J.G., Prasher, R., Santiago, J.G., Kenny, T.W., Goodson, K.E.: Closed-loop electroosmotic microchannel coolingsystem for VLSI circuits. IEEE Trans. Compon. Packag. Technol. 25, 347–355 (2002) Jiang, L., Mikkelsen, J., Koo, J.-M., Huber, D., Yao, S., Zhang, L., Zhou, P., Maveety, J.G., Prasher, R., Santiago, J.G., Kenny, T.W., Goodson, K.E.: Closed-loop electroosmotic microchannel coolingsystem for VLSI circuits. IEEE Trans. Compon. Packag. Technol. 25, 347–355 (2002)
12.
Zurück zum Zitat Jain, A., Jensen, M.K.: Analytical modeling of electrokinetic effects on flow and heat transfer in microchannels. Int. J. Heat Mass Transf. 50, 5161–5167 (2007)MATH Jain, A., Jensen, M.K.: Analytical modeling of electrokinetic effects on flow and heat transfer in microchannels. Int. J. Heat Mass Transf. 50, 5161–5167 (2007)MATH
13.
Zurück zum Zitat Qian, S., Bau, H.H.: Magneto-hydrodynamics based microfluidics. Mech. Res. Commun. 36, 10–21 (2009)MATH Qian, S., Bau, H.H.: Magneto-hydrodynamics based microfluidics. Mech. Res. Commun. 36, 10–21 (2009)MATH
14.
Zurück zum Zitat Wang, X., Cheng, C., Wang, S., Liu, S.: Electroosmotic pumps and their applications in microfluidic systems. Microfluid. Nanofluidics 6, 145–162 (2009) Wang, X., Cheng, C., Wang, S., Liu, S.: Electroosmotic pumps and their applications in microfluidic systems. Microfluid. Nanofluidics 6, 145–162 (2009)
15.
Zurück zum Zitat Dey, B., Raja Sekhar, G.P.: An analytical study on hydrodynamics of an unsteady flow and mass transfer through a channel asymmetrically lined with deformable porous layer. Eur. J. Mech. B/Fluids. 55, 71–87 (2016)MathSciNetMATH Dey, B., Raja Sekhar, G.P.: An analytical study on hydrodynamics of an unsteady flow and mass transfer through a channel asymmetrically lined with deformable porous layer. Eur. J. Mech. B/Fluids. 55, 71–87 (2016)MathSciNetMATH
16.
Zurück zum Zitat Sui, Y.: Mass transport in a microchannel bioreactor with a porous wall. J. Biomech. Eng. 132, 061001 (2010) Sui, Y.: Mass transport in a microchannel bioreactor with a porous wall. J. Biomech. Eng. 132, 061001 (2010)
17.
Zurück zum Zitat Matin, M.H., Khan, W.A.: Entropy generation analysis of heat and mass transfer in mixed electrokinetically and pressure driven flow through a slit microchannel. Energy 56, 207–217 (2013) Matin, M.H., Khan, W.A.: Entropy generation analysis of heat and mass transfer in mixed electrokinetically and pressure driven flow through a slit microchannel. Energy 56, 207–217 (2013)
18.
Zurück zum Zitat Yousefian, Z., Hassan Saidi, M.: Mass transport analysis of non-Newtonian fluids under combined electroosmotically and pressure driven flow in rectangular microreactors. Colloids Surf. A Physicochem. Eng. Asp. 508, 345–359 (2016) Yousefian, Z., Hassan Saidi, M.: Mass transport analysis of non-Newtonian fluids under combined electroosmotically and pressure driven flow in rectangular microreactors. Colloids Surf. A Physicochem. Eng. Asp. 508, 345–359 (2016)
19.
Zurück zum Zitat Naik, K.: Guy: Transdermal drug delivery: overcoming the skin’s barrier function. Pharm. Sci. Technol. Today 3, 318–326 (2000) Naik, K.: Guy: Transdermal drug delivery: overcoming the skin’s barrier function. Pharm. Sci. Technol. Today 3, 318–326 (2000)
20.
Zurück zum Zitat Prausnitz, M.R., Langer, R.: Transdermal drug delivery. Nat. Biotechnol. 26, 1261–8 (2008) Prausnitz, M.R., Langer, R.: Transdermal drug delivery. Nat. Biotechnol. 26, 1261–8 (2008)
21.
Zurück zum Zitat Chen, X.B., Sui, Y., Lee, H.P., Bai, H.X., Yu, P., Winoto, S.H., Low, H.T.: Mass transport in a microchannel bioreactor with a porous wall. J. Biomech. Eng. 132, 061001 (2010) Chen, X.B., Sui, Y., Lee, H.P., Bai, H.X., Yu, P., Winoto, S.H., Low, H.T.: Mass transport in a microchannel bioreactor with a porous wall. J. Biomech. Eng. 132, 061001 (2010)
22.
Zurück zum Zitat Dejam, M., Hassanzadeh, H., Chen, Z.: Shear dispersion in combined pressure-driven and electro-osmotic flows in a channel with porous walls. Chem. Eng. Sci. 137, 205–215 (2015) Dejam, M., Hassanzadeh, H., Chen, Z.: Shear dispersion in combined pressure-driven and electro-osmotic flows in a channel with porous walls. Chem. Eng. Sci. 137, 205–215 (2015)
23.
Zurück zum Zitat Dejam, M., Hassanzadeh, H., Chen, Z.: Shear dispersion in combined pressure-driven and electro-osmotic flows in a capillary tube with a porous wall. AIChE J. 61, 3981–3995 (2015) Dejam, M., Hassanzadeh, H., Chen, Z.: Shear dispersion in combined pressure-driven and electro-osmotic flows in a capillary tube with a porous wall. AIChE J. 61, 3981–3995 (2015)
24.
Zurück zum Zitat Dejam, M.: Dispersion in non-Newtonian fluid flows in a conduit with porous walls. Chem. Eng. Sci. 189, 296–310 (2018) Dejam, M.: Dispersion in non-Newtonian fluid flows in a conduit with porous walls. Chem. Eng. Sci. 189, 296–310 (2018)
25.
Zurück zum Zitat Dejam, M.: Derivation of dispersion coefficient in an electro-osmotic flow of a viscoelastic fluid through a porous-walled microchannel. Chem. Eng. Sci. 204, 298–309 (2019) Dejam, M.: Derivation of dispersion coefficient in an electro-osmotic flow of a viscoelastic fluid through a porous-walled microchannel. Chem. Eng. Sci. 204, 298–309 (2019)
26.
Zurück zum Zitat Kou, Z., Dejam, M.: Dispersion due to combined pressure-driven and electro-osmotic flows in a channel surrounded by a permeable porous medium. Phys. Fluids 31(5), 056603 (2019) Kou, Z., Dejam, M.: Dispersion due to combined pressure-driven and electro-osmotic flows in a channel surrounded by a permeable porous medium. Phys. Fluids 31(5), 056603 (2019)
27.
Zurück zum Zitat Dejam, M.: Tracer dispersion in a hydraulic fracture with porous walls. Chem. Eng. Res. Des. 150, 169–178 (2019) Dejam, M.: Tracer dispersion in a hydraulic fracture with porous walls. Chem. Eng. Res. Des. 150, 169–178 (2019)
28.
Zurück zum Zitat Dejam, M.: Advective-diffusive-reactive solute transport due to non-Newtonian fluid flows in a fracture surrounded by a tight porous medium. Int. J. Heat Mass Transf. 128, 1307–1321 (2019) Dejam, M.: Advective-diffusive-reactive solute transport due to non-Newtonian fluid flows in a fracture surrounded by a tight porous medium. Int. J. Heat Mass Transf. 128, 1307–1321 (2019)
29.
Zurück zum Zitat Dejam, M.: Hydrodynamic dispersion due to a variety of flow velocity profiles in a porous-walled microfluidic channel. Int. J. Heat Mass Transf. 136, 87–98 (2019) Dejam, M.: Hydrodynamic dispersion due to a variety of flow velocity profiles in a porous-walled microfluidic channel. Int. J. Heat Mass Transf. 136, 87–98 (2019)
30.
Zurück zum Zitat Vennela, N., Bhattacharjee, S., De, S.: Sherwood number in porous microtube due to combined pressure and electroosmotically driven flow. Chem. Eng. Sci. 66, 6515–6524 (2011) Vennela, N., Bhattacharjee, S., De, S.: Sherwood number in porous microtube due to combined pressure and electroosmotically driven flow. Chem. Eng. Sci. 66, 6515–6524 (2011)
31.
Zurück zum Zitat Vennela, N., Mondal, S., De, S., Bhattacharjee, S.: Sherwood number in flow through parallel porous plates (microchannel) due to pressure and electroosmotic flow. AIChE J. 58, 1693–1703 (2012) Vennela, N., Mondal, S., De, S., Bhattacharjee, S.: Sherwood number in flow through parallel porous plates (microchannel) due to pressure and electroosmotic flow. AIChE J. 58, 1693–1703 (2012)
32.
Zurück zum Zitat Mondal, S., De, S.: Effects of non-Newtonian power law rheology on mass transport of a neutral solute for electro-osmotic flow in a porous microtube. Biomicrofluidics 7, 044113 (2013) Mondal, S., De, S.: Effects of non-Newtonian power law rheology on mass transport of a neutral solute for electro-osmotic flow in a porous microtube. Biomicrofluidics 7, 044113 (2013)
33.
Zurück zum Zitat Bhattacharjee, S., Mondal, M., De, S.: Effects of overlapping electric double layer on mass transport of a macro-solute across porous wall of a micro/nanochannel for power law fluid. Electrophoresis 38, 1301–1309 (2017) Bhattacharjee, S., Mondal, M., De, S.: Effects of overlapping electric double layer on mass transport of a macro-solute across porous wall of a micro/nanochannel for power law fluid. Electrophoresis 38, 1301–1309 (2017)
34.
Zurück zum Zitat Guyton, A.C., Hall, J.E.: Textbook of Medical Physiology. W.B. Saunders, Philadelphia (2000) Guyton, A.C., Hall, J.E.: Textbook of Medical Physiology. W.B. Saunders, Philadelphia (2000)
35.
Zurück zum Zitat Blank, M. (ed.): Electrical Double Layers in Biology. Springer, Boston (1986) Blank, M. (ed.): Electrical Double Layers in Biology. Springer, Boston (1986)
36.
Zurück zum Zitat Hink, M.A., Griep, R.A., Borst, J.W., van Hoek, A., Eppink, M.H.M., Schots, A., Visser, A.J.W.G.: Structural dynamics of green fluorescent protein alone and fused with a single chain FV protein. J. Biol. Chem. 275, 17556–17560 (2000) Hink, M.A., Griep, R.A., Borst, J.W., van Hoek, A., Eppink, M.H.M., Schots, A., Visser, A.J.W.G.: Structural dynamics of green fluorescent protein alone and fused with a single chain FV protein. J. Biol. Chem. 275, 17556–17560 (2000)
37.
Zurück zum Zitat Mullineaux, C.W., Nenninger, A., Ray, N., Robinson, C.: Diffusion of green fluorescent protein in three cell environments in Escherichia coli. J. Bacteriol. 188, 3442–3448 (2006) Mullineaux, C.W., Nenninger, A., Ray, N., Robinson, C.: Diffusion of green fluorescent protein in three cell environments in Escherichia coli. J. Bacteriol. 188, 3442–3448 (2006)
38.
Zurück zum Zitat Chalfie, M., Kain, S.R.: Green Fluorescent Protein: Properties, Applications and Protocols. Wiley, London (2005) Chalfie, M., Kain, S.R.: Green Fluorescent Protein: Properties, Applications and Protocols. Wiley, London (2005)
39.
Zurück zum Zitat Lee, K.G., Park, T.J., Soo, S.Y., Wang, K.W., Kim, B.I.I., Park, J.H., Lee, C.-S., Kim, D.H., Lee, S.J.: Synthesis and utilization of E. coli-encapsulated PEG-based microdroplet using a microfluidic chip for biological application. Biotechnol. Bioeng. 107, 747–751 (2010) Lee, K.G., Park, T.J., Soo, S.Y., Wang, K.W., Kim, B.I.I., Park, J.H., Lee, C.-S., Kim, D.H., Lee, S.J.: Synthesis and utilization of E. coli-encapsulated PEG-based microdroplet using a microfluidic chip for biological application. Biotechnol. Bioeng. 107, 747–751 (2010)
40.
Zurück zum Zitat Gogoi, S.K., Gopinath, P., Paul, A., Ramesh, A., Ghosh, S.S., Chattopadhyay, A.: Green fluorescent protein-expressing Escherichia coli as a model system for investigating the antimicrobial activities of silver nanoparticles. Langmuir 22, 9322–9328 (2006) Gogoi, S.K., Gopinath, P., Paul, A., Ramesh, A., Ghosh, S.S., Chattopadhyay, A.: Green fluorescent protein-expressing Escherichia coli as a model system for investigating the antimicrobial activities of silver nanoparticles. Langmuir 22, 9322–9328 (2006)
41.
Zurück zum Zitat Yazdi, A., Sadeghi, A., Saidi, M.H.: Steric effects on electrokinetic flow of non-linear biofluids. Colloids Surf. A Physicochem. Eng. Asp. 484, 394–401 (2015) Yazdi, A., Sadeghi, A., Saidi, M.H.: Steric effects on electrokinetic flow of non-linear biofluids. Colloids Surf. A Physicochem. Eng. Asp. 484, 394–401 (2015)
42.
Zurück zum Zitat Hoshyargar, V., Ashrafizadeh, S.N., Sadeghi, A.: Drastic alteration of diffusioosmosis due to steric effects. Phys. Chem. Chem. Phys. 17, 29193–29200 (2015) Hoshyargar, V., Ashrafizadeh, S.N., Sadeghi, A.: Drastic alteration of diffusioosmosis due to steric effects. Phys. Chem. Chem. Phys. 17, 29193–29200 (2015)
43.
Zurück zum Zitat Dey, R., Ghonge, T., Chakraborty, S.: Steric-effect-induced alteration of thermal transport phenomenon for mixed electroosmotic and pressure driven flows through narrow confinements. Int. J. Heat Mass Transf. 56, 251–262 (2013) Dey, R., Ghonge, T., Chakraborty, S.: Steric-effect-induced alteration of thermal transport phenomenon for mixed electroosmotic and pressure driven flows through narrow confinements. Int. J. Heat Mass Transf. 56, 251–262 (2013)
44.
Zurück zum Zitat Bikerman, J.J.: Structure and capacity of electrical double layer. Philos. Mag. J. Sci. 33, 384–397 (1942)MATH Bikerman, J.J.: Structure and capacity of electrical double layer. Philos. Mag. J. Sci. 33, 384–397 (1942)MATH
45.
Zurück zum Zitat Kilic, M.S., Bazant, M.Z., Ajdari, A.: Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. Phys. Rev. E 75, 021502 (2007) Kilic, M.S., Bazant, M.Z., Ajdari, A.: Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. Phys. Rev. E 75, 021502 (2007)
46.
Zurück zum Zitat Borukhov, I., Andelman, D., Orland, H.: Steric effects in electrolytes: a modified Poisson–Boltzmann equation. Phys. Rev. Lett. 79, 435–438 (1997) Borukhov, I., Andelman, D., Orland, H.: Steric effects in electrolytes: a modified Poisson–Boltzmann equation. Phys. Rev. Lett. 79, 435–438 (1997)
47.
Zurück zum Zitat Chakraborty, J., Chakraborty, S.: Combined influence of streaming potential and substrate compliance on load capacity of a planar slider bearing. Phys. Fluids 23, 082004 (2011) Chakraborty, J., Chakraborty, S.: Combined influence of streaming potential and substrate compliance on load capacity of a planar slider bearing. Phys. Fluids 23, 082004 (2011)
48.
Zurück zum Zitat Das, S., Chakraborty, S.: Steric-effect-induced enhancement of electrical-double-layer overlapping phenomena. Phys. Rev. E 84, 012501 (2011) Das, S., Chakraborty, S.: Steric-effect-induced enhancement of electrical-double-layer overlapping phenomena. Phys. Rev. E 84, 012501 (2011)
49.
Zurück zum Zitat De, S., Bhattacharjee, S., Sharma, A., Bhattacharya, P.K.: Generalized integral and similarity solutions of the concentration profiles for osmotic pressure controlled ultrafiltration. J. Membr. Sci. 130, 99–121 (1997) De, S., Bhattacharjee, S., Sharma, A., Bhattacharya, P.K.: Generalized integral and similarity solutions of the concentration profiles for osmotic pressure controlled ultrafiltration. J. Membr. Sci. 130, 99–121 (1997)
50.
Zurück zum Zitat Bird, B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena, Revised 2nd Edition, Chapter 18: Solid Catalyzed Reactions (2006) Bird, B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena, Revised 2nd Edition, Chapter 18: Solid Catalyzed Reactions (2006)
51.
Zurück zum Zitat Opong, W.S., Zydney, A.L.: Diffusive and convective protein transport through asymmetric membranes. AIChE J. 37, 1497–1510 (1991) Opong, W.S., Zydney, A.L.: Diffusive and convective protein transport through asymmetric membranes. AIChE J. 37, 1497–1510 (1991)
52.
Zurück zum Zitat Kedem, O.: A physical interpretation of the phenomenological coefficients of membrane permeability. J. Gen. Physiol. 45, 143–179 (1961) Kedem, O.: A physical interpretation of the phenomenological coefficients of membrane permeability. J. Gen. Physiol. 45, 143–179 (1961)
Metadaten
Titel
Effects of finite ion size on transport of neutral solute across porous wall of a nanotube
verfasst von
Saikat Bhattacharjee
Morteza Dejam
Sirshendu De
Publikationsdatum
09.07.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Theoretical and Computational Fluid Dynamics / Ausgabe 5-6/2020
Print ISSN: 0935-4964
Elektronische ISSN: 1432-2250
DOI
https://doi.org/10.1007/s00162-020-00540-0

Weitere Artikel der Ausgabe 5-6/2020

Theoretical and Computational Fluid Dynamics 5-6/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.