Skip to main content
Erschienen in: Theoretical and Computational Fluid Dynamics 5-6/2020

18.06.2020 | Original Article

Mixing in three-dimensional cavity by moving cavity walls

verfasst von: Alex Povitsky

Erschienen in: Theoretical and Computational Fluid Dynamics | Ausgabe 5-6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The mixing in three-dimensional enclosures is investigated numerically using flow in cubical cavity as a geometrically simple model of various natural and engineering flows. The mixing rate is evaluated for up to the value of Reynolds number \(\hbox {Re}=2000\) for several representative scenarios of moving cavity walls: perpendicular motion of the parallel cavity walls, motion of a wall in its plane along its diagonal, motion of two perpendicular walls outward the common edge, and the parallel cavity walls in motion either in parallel directions or in opposite directions. The mixing rates are compared to the well-known benchmark case in which one cavity wall moves along its edge. The intensity of mixing for the considered cases was evaluated for (i) mixing in developing cavity flow initially at rest, which is started by the impulsive motion of cavity wall(s), and (ii) mixing in the developed cavity flow. For both cases, the initial interface of the two mixing fluids is a horizontal plane located at the middle of the cavity. The mixing rates are ranked from fastest to slowest for twenty time units of flow mixing. The pure convection mixing is modeled as a limit case to reveal convective mechanism of mixing. Mixing of fluids with different densities is modeled to show the advantage in terms of mixing rate of genuinely 3D cases. Grid convergence study and comparison with published numerical solutions for 3D and 2D cavity flows are presented. The effects of three-dimensionality of cavity flow on the mixing rate are discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Shankar, P.N., Deshpande, M.D.: Fluid mechanics in the driven cavity. Ann. Rev. Fluid Mech. 32, 93–126 (2000)MathSciNetCrossRef Shankar, P.N., Deshpande, M.D.: Fluid mechanics in the driven cavity. Ann. Rev. Fluid Mech. 32, 93–126 (2000)MathSciNetCrossRef
2.
Zurück zum Zitat Kuhlmann, H.C, Romanò, F.: The lid-driven cavity. In: Book “Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics, pp. 233-309, Springer, Berlin (2019) Kuhlmann, H.C, Romanò, F.: The lid-driven cavity. In: Book “Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics, pp. 233-309, Springer, Berlin (2019)
3.
Zurück zum Zitat Koseff, J.R., Street, R.L.: On end wall effects in a lid-driven cavity flow. ASME J. Fluids Eng. 106, 385–389 (1984)CrossRef Koseff, J.R., Street, R.L.: On end wall effects in a lid-driven cavity flow. ASME J. Fluids Eng. 106, 385–389 (1984)CrossRef
4.
Zurück zum Zitat Migeon, C., Texier, A., Pineau, G.: Effects of lid-driven cavity shape on the flow establishment phase. J. Fluids Struct. 14, 469–488 (2000)CrossRef Migeon, C., Texier, A., Pineau, G.: Effects of lid-driven cavity shape on the flow establishment phase. J. Fluids Struct. 14, 469–488 (2000)CrossRef
5.
Zurück zum Zitat Middleman, S.: Fundamentals of Polymer Processing. McGraw Hill, New York (1977) Middleman, S.: Fundamentals of Polymer Processing. McGraw Hill, New York (1977)
6.
Zurück zum Zitat McIlhany, K.L., Mott, D., Oran, E., Wiggins, S.: Optimizing mixing in lid-driven flow designs through predictions from Eulerian indicators. Phys. Fluids 23, 082005 (2011)CrossRef McIlhany, K.L., Mott, D., Oran, E., Wiggins, S.: Optimizing mixing in lid-driven flow designs through predictions from Eulerian indicators. Phys. Fluids 23, 082005 (2011)CrossRef
8.
Zurück zum Zitat Rao, P., Duggleby, A., Stemler, M.: Mixing analysis in a lid-driven cavity flow at finite reynolds numbers. ASME J. Fluids Eng. 134, 041203-1 (2012)CrossRef Rao, P., Duggleby, A., Stemler, M.: Mixing analysis in a lid-driven cavity flow at finite reynolds numbers. ASME J. Fluids Eng. 134, 041203-1 (2012)CrossRef
9.
Zurück zum Zitat Povitsky, A.: Three-dimensional flow with elevated helicity in driven cavity by parallel walls moving in perpendicular directions. Phys. Fluids 29, 083601 (2017)CrossRef Povitsky, A.: Three-dimensional flow with elevated helicity in driven cavity by parallel walls moving in perpendicular directions. Phys. Fluids 29, 083601 (2017)CrossRef
10.
Zurück zum Zitat Mariotti, A., Galletti, C., Brunazzi, E., Salvetti, M.V.: Steady flow regimes and mixing performance in arrow-shaped micro-mixers. Phys. Rev. Fluids 4, 034201 (2019)CrossRef Mariotti, A., Galletti, C., Brunazzi, E., Salvetti, M.V.: Steady flow regimes and mixing performance in arrow-shaped micro-mixers. Phys. Rev. Fluids 4, 034201 (2019)CrossRef
11.
Zurück zum Zitat Povitsky, A.: Three-dimensional flow in cavity at yaw. Nonlinear Anal. Theory Methods Appl. 63, e1573–e1584 (2005). Preliminary versions: AIAA Paper 2847–2001, Technical Report 211232, NASA/CR (2001), ICASE Report No. (2001-31) Povitsky, A.: Three-dimensional flow in cavity at yaw. Nonlinear Anal. Theory Methods Appl. 63, e1573–e1584 (2005). Preliminary versions: AIAA Paper 2847–2001, Technical Report 211232, NASA/CR (2001), ICASE Report No. (2001-31)
12.
Zurück zum Zitat Ryu, Y.-H., Baik, J.-J.: Flow and dispersion in an urban cubical cavity. Atmos. Environ. 43(10), 1721–1729 (2009)CrossRef Ryu, Y.-H., Baik, J.-J.: Flow and dispersion in an urban cubical cavity. Atmos. Environ. 43(10), 1721–1729 (2009)CrossRef
13.
Zurück zum Zitat Kosinski, P., Kosinska, A., Hoffmann, A.C.: Simulation of solid particles behavior in a driven cavity flow. Powder Technol. 191(3), 327–339 (2009)CrossRef Kosinski, P., Kosinska, A., Hoffmann, A.C.: Simulation of solid particles behavior in a driven cavity flow. Powder Technol. 191(3), 327–339 (2009)CrossRef
14.
Zurück zum Zitat Beya, B.B., Lili, T.: Three-dimensional incompressible flow in a two-sided non-facing lid-driven cubical cavity. C. R. Mecanique 336, 863 (2008)CrossRef Beya, B.B., Lili, T.: Three-dimensional incompressible flow in a two-sided non-facing lid-driven cubical cavity. C. R. Mecanique 336, 863 (2008)CrossRef
15.
Zurück zum Zitat Oueslati, F., Ben Beya, B., Lili, T.: Aspect ratio effects on three-dimensional incompressible flow in a two-sided non-facing lid-driven parallelepiped cavity. C. R. Mecanique 339, 655–665 (2011)CrossRef Oueslati, F., Ben Beya, B., Lili, T.: Aspect ratio effects on three-dimensional incompressible flow in a two-sided non-facing lid-driven parallelepiped cavity. C. R. Mecanique 339, 655–665 (2011)CrossRef
16.
Zurück zum Zitat Arun, S., Satheesh, A.: Analysis of flow behavior in a two-sided lid driven cavity using Lattice Boltzmann technique. Alex. Eng. J. 54, 795–806 (2015)CrossRef Arun, S., Satheesh, A.: Analysis of flow behavior in a two-sided lid driven cavity using Lattice Boltzmann technique. Alex. Eng. J. 54, 795–806 (2015)CrossRef
17.
Zurück zum Zitat Romanò, F., Albensoeder, S., Kuhlmann, H.C.: Topology of three-dimensional steady cellular flow in a two-sided anti-parallel lid-driven cavity. J. Fluid Mech. 826, 302–334 (2017)MathSciNetCrossRef Romanò, F., Albensoeder, S., Kuhlmann, H.C.: Topology of three-dimensional steady cellular flow in a two-sided anti-parallel lid-driven cavity. J. Fluid Mech. 826, 302–334 (2017)MathSciNetCrossRef
18.
Zurück zum Zitat Albensoeder, S., Kuhlmann, H.C.: Accurate three-dimensional lid-driven cavity flow. J. Comput. Phys. 206, 536–558 (2005)CrossRef Albensoeder, S., Kuhlmann, H.C.: Accurate three-dimensional lid-driven cavity flow. J. Comput. Phys. 206, 536–558 (2005)CrossRef
19.
Zurück zum Zitat Ghasemi, B., Aminossadati, S.M.: Mixed convection in a lid-driven triangular enclosure filled with nanofluids. Int. Commun. Heat Mass Transf. 37(8), 1142–1148 (2010)CrossRef Ghasemi, B., Aminossadati, S.M.: Mixed convection in a lid-driven triangular enclosure filled with nanofluids. Int. Commun. Heat Mass Transf. 37(8), 1142–1148 (2010)CrossRef
20.
Zurück zum Zitat Romanò, F., Hajisharifi, A., Kuhlmann, H.C.: Cellular flow in a partially filled rotating drum: regular and chaotic advection. J. Fluid Mech. 825, 631–650 (2017)MathSciNetCrossRef Romanò, F., Hajisharifi, A., Kuhlmann, H.C.: Cellular flow in a partially filled rotating drum: regular and chaotic advection. J. Fluid Mech. 825, 631–650 (2017)MathSciNetCrossRef
21.
Zurück zum Zitat Mendu, S.S., Das, P.K.: Flow of power-law fluids in a cavity driven by the motion of two facing lids—a simulation by lattice Boltzmann method. J. Nonnewton. Fluid Mech. 175–176, 10–24 (2012)CrossRef Mendu, S.S., Das, P.K.: Flow of power-law fluids in a cavity driven by the motion of two facing lids—a simulation by lattice Boltzmann method. J. Nonnewton. Fluid Mech. 175–176, 10–24 (2012)CrossRef
22.
Zurück zum Zitat ANSYS Fluent guide, ANSYS Inc., Version 2018, PDF Documentation (2018) ANSYS Fluent guide, ANSYS Inc., Version 2018, PDF Documentation (2018)
23.
Zurück zum Zitat Barth, T., Jespersen, J.: The design and application of upwind schemes on unstructured meshes. AIAA-89-0366, AIAA 27th Aerospace Sciences Meeting. Reno, Nevada (1989) Barth, T., Jespersen, J.: The design and application of upwind schemes on unstructured meshes. AIAA-89-0366, AIAA 27th Aerospace Sciences Meeting. Reno, Nevada (1989)
24.
Zurück zum Zitat Patankar, S.: Numerical Heat Transfer and Fluid Flow. CRC Press, Boca Raton (1980)MATH Patankar, S.: Numerical Heat Transfer and Fluid Flow. CRC Press, Boca Raton (1980)MATH
25.
Zurück zum Zitat Jiang, B., Lin, T.L., Povinelli, L.A.: Large-scale computation of incompressible viscous flow by least-squares finite element method. Comput. Methods Appl. Mech. Eng. 114, 212–231 (1994)MathSciNetCrossRef Jiang, B., Lin, T.L., Povinelli, L.A.: Large-scale computation of incompressible viscous flow by least-squares finite element method. Comput. Methods Appl. Mech. Eng. 114, 212–231 (1994)MathSciNetCrossRef
26.
Zurück zum Zitat Guy, G., Stella, F.: A vorticity–velocity method for the numerical solution of 3D incompressible flows. J. Comput. Phys. 106, 286–289 (1993)MathSciNetCrossRef Guy, G., Stella, F.: A vorticity–velocity method for the numerical solution of 3D incompressible flows. J. Comput. Phys. 106, 286–289 (1993)MathSciNetCrossRef
27.
Zurück zum Zitat Yang, J.-Y., Yang, S.-C., Chen, Y.-N., Hsu, C.-A.: Implicit weighted ENO schemes for the three-dimensional incompressible Navier–Stokes equations. J. Comput. Phys. 146, 464–487 (1998)CrossRef Yang, J.-Y., Yang, S.-C., Chen, Y.-N., Hsu, C.-A.: Implicit weighted ENO schemes for the three-dimensional incompressible Navier–Stokes equations. J. Comput. Phys. 146, 464–487 (1998)CrossRef
28.
Zurück zum Zitat Iwatsu, R., Ishii, K., Kawanura, T., Kuwahara, K.: Numerical simulation of three-dimensional flow structure in a driven cavity. Fluid Dyn. Res. 5, 173–189 (1989)CrossRef Iwatsu, R., Ishii, K., Kawanura, T., Kuwahara, K.: Numerical simulation of three-dimensional flow structure in a driven cavity. Fluid Dyn. Res. 5, 173–189 (1989)CrossRef
30.
Zurück zum Zitat Feldman, Y.: Oscillatory instability of fully 3D flow in a cubic diagonally lid-driven cavity. arXiv:1306.3267 [physics.flu-dyn] (June 2013) Feldman, Y.: Oscillatory instability of fully 3D flow in a cubic diagonally lid-driven cavity. arXiv:​1306.​3267 [physics.flu-dyn] (June 2013)
31.
Zurück zum Zitat Tannehill, J.C., Anderson, D.A., Fletcher, R.H.: Computational Fluid Mechanics and Heat Transfer, 3rd edn. Taylor and Francis, Milton Park (2012) Tannehill, J.C., Anderson, D.A., Fletcher, R.H.: Computational Fluid Mechanics and Heat Transfer, 3rd edn. Taylor and Francis, Milton Park (2012)
32.
Zurück zum Zitat Chella, R., Vinals, J.: Mixing of a two-phase fluid by cavity flow. Phys. Rev. E 53(4), 3832–3840 (1996)CrossRef Chella, R., Vinals, J.: Mixing of a two-phase fluid by cavity flow. Phys. Rev. E 53(4), 3832–3840 (1996)CrossRef
33.
Zurück zum Zitat Ghia, U., Ghia, K.N., Shin, T.: High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method. J. Comput. Phys. 48, 387–411 (1982)CrossRef Ghia, U., Ghia, K.N., Shin, T.: High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method. J. Comput. Phys. 48, 387–411 (1982)CrossRef
34.
Zurück zum Zitat Botella, O., Peyret, R.: Benchmark spectral results on the lid-driven cavity flow. Comput. Fluids 27(4), 421–433 (1998)CrossRef Botella, O., Peyret, R.: Benchmark spectral results on the lid-driven cavity flow. Comput. Fluids 27(4), 421–433 (1998)CrossRef
35.
Zurück zum Zitat Romanò, F., Kuhlmann, H.C.: Smoothed-profile method for momentum and heat transfer in particulate flows. Int. J. Numer. Methods Fluids 83, 485–512 (2017)MathSciNetCrossRef Romanò, F., Kuhlmann, H.C.: Smoothed-profile method for momentum and heat transfer in particulate flows. Int. J. Numer. Methods Fluids 83, 485–512 (2017)MathSciNetCrossRef
36.
Zurück zum Zitat Khorasanizade, S., Sousa, J.M.M.: A detailed study of lid-driven cavity flow at moderate Reynolds numbers using Incompressible SPH. Int. J. Numer. Methods Fluids 76, 653–668 (2014)MathSciNetCrossRef Khorasanizade, S., Sousa, J.M.M.: A detailed study of lid-driven cavity flow at moderate Reynolds numbers using Incompressible SPH. Int. J. Numer. Methods Fluids 76, 653–668 (2014)MathSciNetCrossRef
Metadaten
Titel
Mixing in three-dimensional cavity by moving cavity walls
verfasst von
Alex Povitsky
Publikationsdatum
18.06.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Theoretical and Computational Fluid Dynamics / Ausgabe 5-6/2020
Print ISSN: 0935-4964
Elektronische ISSN: 1432-2250
DOI
https://doi.org/10.1007/s00162-020-00535-x

Weitere Artikel der Ausgabe 5-6/2020

Theoretical and Computational Fluid Dynamics 5-6/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.