Skip to main content
Erschienen in: Cellulose 8/2017

31.05.2017 | Original Paper

Effects of mechanical stretching on average orientation of cellulose and pectin in onion epidermis cell wall: A polarized FT-IR study

verfasst von: Kabindra Kafle, Yong Bum Park, Christopher M. Lee, Joshua J. Stapleton, Sarah N. Kiemle, Daniel J. Cosgrove, Seong H. Kim

Erschienen in: Cellulose | Ausgabe 8/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The organization of polysaccharides in plant cell walls is important for the mechanics of plant cells. Spectral analysis of cell walls by polarized IR can reveal polysaccharide organization, but may be complicated by dipoles not aligned with the backbone. For instance, analysis of uniaxially-aligned cellulose Iβ film revealed that the dipole transition vector of the 1160 cm−1 band involving stretch vibrations of glycosidic C1–O–C4 linkages is approximately at 30° with respect to the backbone of the cellulose chain, because of coupling with C5–O–C1 bonds in the six-membered rings. In the case of homogalacturonan, the dipole transition vector of the ester carbonyl group vibration (νC=O, 1745 cm−1) is expected to be nearly normal to the homogalacturonan backbone. Using this information and the dichroism equation, the change in net orientation of cell wall polymers upon mechanical stretch was determined by polarized IR analysis. Never-dried abaxial outer epidermal cell walls of the second scale of onion bulb were mechanically stretched along longitudinal or transverse directions with respect to the long axis of the cells and then dried while under mechanical stretch. The average orientations of both 1160 and 1745 cm−1 vibration transition dipoles were rotated by ~5° and ~4°, respectively, along the stretch direction from their initial random distributions upon longitudinal strain by 14%; and by ~4° and ~3°, respectively, upon transverse strain by 12%. These results imply that both cellulose microfibrils and pectins in the cell wall are passively realigned along the stretch direction by external mechanical force. The analytical methodology developed here will be useful to study how cell wall polymers might reorganize during cell wall growth and development.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Anderson CT, Carroll A, Akhmetova L, Somerville C (2010) Real-time imaging of cellulose reorientation during cell wall expansion in Arabidopsis roots. Plant Physiol 152(2):787–796CrossRef Anderson CT, Carroll A, Akhmetova L, Somerville C (2010) Real-time imaging of cellulose reorientation during cell wall expansion in Arabidopsis roots. Plant Physiol 152(2):787–796CrossRef
Zurück zum Zitat Baskin T (2005) Anisotropic expansion of the plant cell wall. Annu Rev Cell Dev Biol 21:203–222CrossRef Baskin T (2005) Anisotropic expansion of the plant cell wall. Annu Rev Cell Dev Biol 21:203–222CrossRef
Zurück zum Zitat Blackwell J (1977) Infrared and raman spectroscopy of cellulose. Cellul Chem Technol 48:206–218CrossRef Blackwell J (1977) Infrared and raman spectroscopy of cellulose. Cellul Chem Technol 48:206–218CrossRef
Zurück zum Zitat Bower D (1981) Orientation distribution functions for uniaxially oriented polymers. J Polym Sci Polym Phys Ed 19(1):93–107CrossRef Bower D (1981) Orientation distribution functions for uniaxially oriented polymers. J Polym Sci Polym Phys Ed 19(1):93–107CrossRef
Zurück zum Zitat Chafe SC, Wardrop AB (1972) Fine structural observations on the epidermis. Planta 107(3):269–278CrossRef Chafe SC, Wardrop AB (1972) Fine structural observations on the epidermis. Planta 107(3):269–278CrossRef
Zurück zum Zitat Chen L, Wilson RH, McCann MC (1997) Investigation of macromolecule orientation in dry and hydrated walls of single onion epidermal cells by FTIR microspectroscopy. J Mol Struct 408:257–260CrossRef Chen L, Wilson RH, McCann MC (1997) Investigation of macromolecule orientation in dry and hydrated walls of single onion epidermal cells by FTIR microspectroscopy. J Mol Struct 408:257–260CrossRef
Zurück zum Zitat Cosgrove DJ (1989) Characterization of long-term extension of isolated cell walls from growing cucumber hypocotyls. Planta 177(1):121–130CrossRef Cosgrove DJ (1989) Characterization of long-term extension of isolated cell walls from growing cucumber hypocotyls. Planta 177(1):121–130CrossRef
Zurück zum Zitat Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6(11):850–861CrossRef Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6(11):850–861CrossRef
Zurück zum Zitat Cosgrove DJ (2016) Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes. J Exp Bot 67(2):463–476CrossRef Cosgrove DJ (2016) Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes. J Exp Bot 67(2):463–476CrossRef
Zurück zum Zitat Dick-Pérez M, Zhang Y, Hayes J, Salazar A, Zabotina OA, Hong M (2011) Structure and interactions of plant cell-wall polysaccharides by two-and three-dimensional magic-angle-spinning solid-state NMR. Biochemistry 50(6):989–1000CrossRef Dick-Pérez M, Zhang Y, Hayes J, Salazar A, Zabotina OA, Hong M (2011) Structure and interactions of plant cell-wall polysaccharides by two-and three-dimensional magic-angle-spinning solid-state NMR. Biochemistry 50(6):989–1000CrossRef
Zurück zum Zitat Durachko DM, Cosgrove DJ (2009) Measuring plant cell wall extension (creep) induced by acidic pH and by alpha-expansin. J Vis Exp 25:1263 Durachko DM, Cosgrove DJ (2009) Measuring plant cell wall extension (creep) induced by acidic pH and by alpha-expansin. J Vis Exp 25:1263
Zurück zum Zitat Green PB (1960) Multinet growth in the cell wall of Nitella. J Biophys Biochem Cytol 7(2):289–296CrossRef Green PB (1960) Multinet growth in the cell wall of Nitella. J Biophys Biochem Cytol 7(2):289–296CrossRef
Zurück zum Zitat Hepworth DG, Bruce DM (2004) Relationships between primary plant cell wall architecture and mechanical properties for onion bulb scale epidermal cells. J Texture Stud 35(6):586–602CrossRef Hepworth DG, Bruce DM (2004) Relationships between primary plant cell wall architecture and mechanical properties for onion bulb scale epidermal cells. J Texture Stud 35(6):586–602CrossRef
Zurück zum Zitat Holland-Moritz K, Van Werden K (1981) FTIR-spectroscopic studies on polyethylene during elongation. Macromol Chem Phys 182(2):651–655CrossRef Holland-Moritz K, Van Werden K (1981) FTIR-spectroscopic studies on polyethylene during elongation. Macromol Chem Phys 182(2):651–655CrossRef
Zurück zum Zitat Kafle K, Xi X, Lee CM, Tittmann BR, Cosgrove DJ, Park YB, Kim SH (2014) Cellulose microfibril orientation in onion (Allium cepa L.) epidermis studied by atomic force microscopy (AFM) and vibrational sum frequency generation (SFG) spectroscopy. Cellulose 21(2):1075–1086CrossRef Kafle K, Xi X, Lee CM, Tittmann BR, Cosgrove DJ, Park YB, Kim SH (2014) Cellulose microfibril orientation in onion (Allium cepa L.) epidermis studied by atomic force microscopy (AFM) and vibrational sum frequency generation (SFG) spectroscopy. Cellulose 21(2):1075–1086CrossRef
Zurück zum Zitat Kerstens S, Decraemer WF, Verbelen J-P (2001) Cell walls at the plant surface behave mechanically like fiber-reinforced composite materials. Plant Physiol 127(2):381–385CrossRef Kerstens S, Decraemer WF, Verbelen J-P (2001) Cell walls at the plant surface behave mechanically like fiber-reinforced composite materials. Plant Physiol 127(2):381–385CrossRef
Zurück zum Zitat Kim K, Yi H, Zamil MS, Haque MA, Puri VM (2015) Multiscale stress–strain characterization of onion outer epidermal tissue in wet and dry states. Am J Bot 102(1):12–20CrossRef Kim K, Yi H, Zamil MS, Haque MA, Puri VM (2015) Multiscale stress–strain characterization of onion outer epidermal tissue in wet and dry states. Am J Bot 102(1):12–20CrossRef
Zurück zum Zitat Lee CM, Mohamed NMA, Watts HD, Kubicki JD, Kim SH (2013) Sum-frequency-generation vibration spectroscopy and density functional theory calculations with dispersion corrections (DFT-D2) for cellulose Iα and Iβ. J Phys Chem B 117(22):6681–6692CrossRef Lee CM, Mohamed NMA, Watts HD, Kubicki JD, Kim SH (2013) Sum-frequency-generation vibration spectroscopy and density functional theory calculations with dispersion corrections (DFT-D2) for cellulose Iα and Iβ. J Phys Chem B 117(22):6681–6692CrossRef
Zurück zum Zitat Lee CM, Kubicki JD, Fan B, Zhong L, Jarvis MC, Kim SH (2015) Hydrogen-bonding network and OH stretch vibration of cellulose: comparison of computational modeling with polarized IR and SFG spectra. J Phys Chem B 119(49):15138–15149CrossRef Lee CM, Kubicki JD, Fan B, Zhong L, Jarvis MC, Kim SH (2015) Hydrogen-bonding network and OH stretch vibration of cellulose: comparison of computational modeling with polarized IR and SFG spectra. J Phys Chem B 119(49):15138–15149CrossRef
Zurück zum Zitat Marchessault R, Sundararajan P (1983) Cellulose. In: Go A (ed) The polysaccharides, 2nd edn. Academic Press, New York, pp 11–95CrossRef Marchessault R, Sundararajan P (1983) Cellulose. In: Go A (ed) The polysaccharides, 2nd edn. Academic Press, New York, pp 11–95CrossRef
Zurück zum Zitat Marchessault RH, Morehead FF, Walter NM (1959) Liquid crystal systems from fibrillar polysaccharides. Nature 184(4686):632–633CrossRef Marchessault RH, Morehead FF, Walter NM (1959) Liquid crystal systems from fibrillar polysaccharides. Nature 184(4686):632–633CrossRef
Zurück zum Zitat Marga F, Grandbois M, Cosgrove DJ, Baskin TI (2005) Cell wall extension results in the coordinate separation of parallel microfibrils: evidence from scanning electron microscopy and atomic force microscopy. Plant J 43(2):181–190CrossRef Marga F, Grandbois M, Cosgrove DJ, Baskin TI (2005) Cell wall extension results in the coordinate separation of parallel microfibrils: evidence from scanning electron microscopy and atomic force microscopy. Plant J 43(2):181–190CrossRef
Zurück zum Zitat Ng A, Parker ML, Parr AJ, Saunders PK, Smith AC, Waldron KW (2000) Physicochemical characteristics of onion (Allium cepa L.) tissues. J Agric Food Chem 48(11):5612–5617CrossRef Ng A, Parker ML, Parr AJ, Saunders PK, Smith AC, Waldron KW (2000) Physicochemical characteristics of onion (Allium cepa L.) tissues. J Agric Food Chem 48(11):5612–5617CrossRef
Zurück zum Zitat Olsson A-M, Bjurhager I, Gerber L, Sundberg B, Salmén L (2011) Ultra-structural organisation of cell wall polymers in normal and tension wood of aspen revealed by polarisation FTIR microspectroscopy. Planta 233(6):1277–1286CrossRef Olsson A-M, Bjurhager I, Gerber L, Sundberg B, Salmén L (2011) Ultra-structural organisation of cell wall polymers in normal and tension wood of aspen revealed by polarisation FTIR microspectroscopy. Planta 233(6):1277–1286CrossRef
Zurück zum Zitat Park YB, Cosgrove DJ (2012) A revised architecture of primary cell walls based on biomechanical changes induced by substrate-specific endoglucanases. Plant Physiol 158(4):1933–1943CrossRef Park YB, Cosgrove DJ (2012) A revised architecture of primary cell walls based on biomechanical changes induced by substrate-specific endoglucanases. Plant Physiol 158(4):1933–1943CrossRef
Zurück zum Zitat Pettifer R, Brouder C, Benfatto M, Natoli C, Hermes C, López MR (1990) Magic-angle theorem in powder X-ray-absorption spectroscopy. Phys Rev B 42(1):37CrossRef Pettifer R, Brouder C, Benfatto M, Natoli C, Hermes C, López MR (1990) Magic-angle theorem in powder X-ray-absorption spectroscopy. Phys Rev B 42(1):37CrossRef
Zurück zum Zitat Preston RD (1982) The case for multinet growth in growing walls of plant cells. Planta 155(4):356–363CrossRef Preston RD (1982) The case for multinet growth in growing walls of plant cells. Planta 155(4):356–363CrossRef
Zurück zum Zitat Salmén L, Bergström E (2009) Cellulose structural arrangement in relation to spectral changes in tensile loading FTIR. Cellulose 16(6):975–982CrossRef Salmén L, Bergström E (2009) Cellulose structural arrangement in relation to spectral changes in tensile loading FTIR. Cellulose 16(6):975–982CrossRef
Zurück zum Zitat Smith-Moritz AM, Hao Z, Fernández-Niño SG, Fangel JU, Verhertbruggen Y, Holman H-YN, Willats WG, Ronald PC, Scheller HV, Heazlewood JL (2015) Structural characterization of a mixed-linkage glucan deficient mutant reveals alteration in cellulose microfibril orientation in rice coleoptile mesophyll cell walls. Front Plant Sci 6:628CrossRef Smith-Moritz AM, Hao Z, Fernández-Niño SG, Fangel JU, Verhertbruggen Y, Holman H-YN, Willats WG, Ronald PC, Scheller HV, Heazlewood JL (2015) Structural characterization of a mixed-linkage glucan deficient mutant reveals alteration in cellulose microfibril orientation in rice coleoptile mesophyll cell walls. Front Plant Sci 6:628CrossRef
Zurück zum Zitat Spatz H, Kohler L, Niklas K (1999) Mechanical behaviour of plant tissues: composite materials or structures? J Exp Biol 202(23):3269–3272 Spatz H, Kohler L, Niklas K (1999) Mechanical behaviour of plant tissues: composite materials or structures? J Exp Biol 202(23):3269–3272
Zurück zum Zitat Šturcová A, His I, Wess TJ, Cameron G, Jarvis MC (2003) Polarized vibrational spectroscopy of fiber polymers: hydrogen bonding in cellulose II. Biomacromolecules 4(6):1589–1595CrossRef Šturcová A, His I, Wess TJ, Cameron G, Jarvis MC (2003) Polarized vibrational spectroscopy of fiber polymers: hydrogen bonding in cellulose II. Biomacromolecules 4(6):1589–1595CrossRef
Zurück zum Zitat Sun L, Singh S, Joo M, Vega-Sanchez M, Ronald P, Simmons BA, Adams P, Auer M (2016) Non-invasive imaging of cellulose microfibril orientation within plant cell walls by polarized Raman microspectroscopy. Biotechnol Bioeng 113(1):82–90CrossRef Sun L, Singh S, Joo M, Vega-Sanchez M, Ronald P, Simmons BA, Adams P, Auer M (2016) Non-invasive imaging of cellulose microfibril orientation within plant cell walls by polarized Raman microspectroscopy. Biotechnol Bioeng 113(1):82–90CrossRef
Zurück zum Zitat Suslov D, Verbelen J (2006) Cellulose orientation determines mechanical anisotropy in onion epidermis cell walls. J Exp Bot 57(10):2183–2192CrossRef Suslov D, Verbelen J (2006) Cellulose orientation determines mechanical anisotropy in onion epidermis cell walls. J Exp Bot 57(10):2183–2192CrossRef
Zurück zum Zitat Suslov D, Verbelen J-P, Vissenberg K (2009) Onion epidermis as a new model to study the control of growth anisotropy in higher plants. J Exp Bot 60(14):4175–4187CrossRef Suslov D, Verbelen J-P, Vissenberg K (2009) Onion epidermis as a new model to study the control of growth anisotropy in higher plants. J Exp Bot 60(14):4175–4187CrossRef
Zurück zum Zitat Szymanska-Chargot M, Zdunek A (2013) Use of FT-IR spectra and PCA to the bulk characterization of cell wall residues of fruits and vegetables along a fraction process. Food Biophys 8(1):29–42CrossRef Szymanska-Chargot M, Zdunek A (2013) Use of FT-IR spectra and PCA to the bulk characterization of cell wall residues of fruits and vegetables along a fraction process. Food Biophys 8(1):29–42CrossRef
Zurück zum Zitat Vian B, Roland J-C, Reis D (1993) Primary cell wall texture and its relation to surface expansion. Int J Plant Sci 154(1):1–9CrossRef Vian B, Roland J-C, Reis D (1993) Primary cell wall texture and its relation to surface expansion. Int J Plant Sci 154(1):1–9CrossRef
Zurück zum Zitat Wang T, Park YB, Daniel JC, Hong M (2015) Cellulose-pectin spatial contacts are inherent to never-dried Arabidopsis thaliana primary cell walls: evidence from solid-state nuclear magnetic resonance. Plant Physiol 168(3):871CrossRef Wang T, Park YB, Daniel JC, Hong M (2015) Cellulose-pectin spatial contacts are inherent to never-dried Arabidopsis thaliana primary cell walls: evidence from solid-state nuclear magnetic resonance. Plant Physiol 168(3):871CrossRef
Zurück zum Zitat Ward I (1985) Determination of molecular orientation by spectroscopic techniques. In: Kaush HH, Zachman HG (eds) Characterization of polymers in the solid state I: part A: NMR and other spectroscopic methods part B: mechanical methods. Springer, Berlin, pp 81–115CrossRef Ward I (1985) Determination of molecular orientation by spectroscopic techniques. In: Kaush HH, Zachman HG (eds) Characterization of polymers in the solid state I: part A: NMR and other spectroscopic methods part B: mechanical methods. Springer, Berlin, pp 81–115CrossRef
Zurück zum Zitat Wiley JH, Atalla RH (1987) Band assignments in the Raman spectra of celluloses. Carbohydr Res 160:113–129CrossRef Wiley JH, Atalla RH (1987) Band assignments in the Raman spectra of celluloses. Carbohydr Res 160:113–129CrossRef
Zurück zum Zitat Wilkes GL (1971) The measurement of molecular orientation in polymeric solids. In: Fortschritte der Hochpolymeren-Forschung. Advances in polymer science, vol 8. Springer, Berlin, pp 91–136. doi:10.1007/3-540-05483-9_10 Wilkes GL (1971) The measurement of molecular orientation in polymeric solids. In: Fortschritte der Hochpolymeren-Forschung. Advances in polymer science, vol 8. Springer, Berlin, pp 91–136. doi:10.​1007/​3-540-05483-9_​10
Zurück zum Zitat Wilson RH, Smith AC, Kačuráková M, Saunders PK, Wellner N, Waldron KW (2000) The mechanical properties and molecular dynamics of plant cell wall polysaccharides studied by Fourier-transform infrared spectroscopy. Plant Physiol 124(1):397–406CrossRef Wilson RH, Smith AC, Kačuráková M, Saunders PK, Wellner N, Waldron KW (2000) The mechanical properties and molecular dynamics of plant cell wall polysaccharides studied by Fourier-transform infrared spectroscopy. Plant Physiol 124(1):397–406CrossRef
Zurück zum Zitat Yoneda A, Ito T, Higaki T, Kutsuna N, Saito T, Ishimizu T, Osada H, Hasezawa S, Matsui M, Demura T (2010) Cobtorin target analysis reveals that pectin functions in the deposition of cellulose microfibrils in parallel with cortical microtubules. Plant J 64(4):657–667CrossRef Yoneda A, Ito T, Higaki T, Kutsuna N, Saito T, Ishimizu T, Osada H, Hasezawa S, Matsui M, Demura T (2010) Cobtorin target analysis reveals that pectin functions in the deposition of cellulose microfibrils in parallel with cortical microtubules. Plant J 64(4):657–667CrossRef
Zurück zum Zitat Yoshiharu N, Shigenori K, Masahisa W, Takeshi O (1997) Cellulose microcrystal film of high uniaxial orientation. Macromolecules 30(20):6395–6397CrossRef Yoshiharu N, Shigenori K, Masahisa W, Takeshi O (1997) Cellulose microcrystal film of high uniaxial orientation. Macromolecules 30(20):6395–6397CrossRef
Zurück zum Zitat Zamil MS, Yi H, Haque MA, Puri VM (2013) Characterizing microscale biological samples under tensile loading: stress–strain behavior of cell wall fragment of onion outer epidermis. Am J Bot 100(6):1105–1115CrossRef Zamil MS, Yi H, Haque MA, Puri VM (2013) Characterizing microscale biological samples under tensile loading: stress–strain behavior of cell wall fragment of onion outer epidermis. Am J Bot 100(6):1105–1115CrossRef
Zurück zum Zitat Zhang T, Mahgsoudy-Louyeh S, Tittmann B, Cosgrove D (2014) Visualization of the nanoscale pattern of recently-deposited cellulose microfibrils and matrix materials in never-dried primary walls of the onion epidermis. Cellulose 21(2):853–862CrossRef Zhang T, Mahgsoudy-Louyeh S, Tittmann B, Cosgrove D (2014) Visualization of the nanoscale pattern of recently-deposited cellulose microfibrils and matrix materials in never-dried primary walls of the onion epidermis. Cellulose 21(2):853–862CrossRef
Zurück zum Zitat Zhang T, Zheng Y, Cosgrove DJ (2016) Spatial organization of cellulose microfibrils and matrix polysaccharides in primary plant cell walls as imaged by multichannel atomic force microscopy. Plant J 85(2):179–192CrossRef Zhang T, Zheng Y, Cosgrove DJ (2016) Spatial organization of cellulose microfibrils and matrix polysaccharides in primary plant cell walls as imaged by multichannel atomic force microscopy. Plant J 85(2):179–192CrossRef
Zurück zum Zitat Zhang T, Vavylonis D, Durachko DM, Cosgrove DJ (2017) Nanoscale movements of cellulose microfibrils in primary cell walls. Nat Plants 3:17056CrossRef Zhang T, Vavylonis D, Durachko DM, Cosgrove DJ (2017) Nanoscale movements of cellulose microfibrils in primary cell walls. Nat Plants 3:17056CrossRef
Metadaten
Titel
Effects of mechanical stretching on average orientation of cellulose and pectin in onion epidermis cell wall: A polarized FT-IR study
verfasst von
Kabindra Kafle
Yong Bum Park
Christopher M. Lee
Joshua J. Stapleton
Sarah N. Kiemle
Daniel J. Cosgrove
Seong H. Kim
Publikationsdatum
31.05.2017
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 8/2017
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-017-1337-3

Weitere Artikel der Ausgabe 8/2017

Cellulose 8/2017 Zur Ausgabe