Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 12/2020

13.11.2020

Effects of Ti Addition on Microstructure and Tribological Properties of In Situ Composite Carbide Coating WC-TiC/FeNi Fabricated by Plasma Transferred Arc Metallurgical Reaction

verfasst von: Youlu Yuan, Yunyang Li, Xiangman Zhou, Min You, Yi Zhang, Zhuguo Li

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 12/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effects of Ti addition on the microstructure and tribological properties of in situ composite carbide WC-TiC/FeNi coating were studied using XRD, SEM, EDS, and friction and dry sliding wear tests. The results show that the composite carbide WC-TiC was successfully in situ synthesized in the coating, and with Ti addition increased by 0.1 from 0.1 to 0.4 wt.%, the in situ carbide TiC increased from 3.4 to 24.4 vol.%, while the carbide WC decreased from 32.5 to 24.2 vol.%, and the coating hardness increased from 1027 to 1196 HV4.9. The friction and dry sliding wear tests show that for WC-TiC/FeNi composite coating, the addition of Ti can not only reduce the friction coefficient, the mass loss of both the coatings and its counterpart but also improve the friction stability, service life, and wear rate (WR). The relationship between the Ti addition and the coating wear rate fits the exponential decay equation WR = 10.6 − 0.089 \(\times\) e (Ti/0.098). The main wear mechanisms of in situ WC-TiC/FeNi composite carbide coating are abrasive wear, oxidative wear, and micro-plow wear.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Z.H. Qiao, J. Rathel, L.M. Berger, and M. Herrmann, Investigation of Binderless WC-TiC-Cr3C2 Hard Materials Prepared by Spark Plasma Sintering (SPS), Int. J. Refract. Met. H., 2013, 38, p 7–14.CrossRef Z.H. Qiao, J. Rathel, L.M. Berger, and M. Herrmann, Investigation of Binderless WC-TiC-Cr3C2 Hard Materials Prepared by Spark Plasma Sintering (SPS), Int. J. Refract. Met. H., 2013, 38, p 7–14.CrossRef
2.
Zurück zum Zitat Z.X. Guo, J. Xiong, M. Yang, X.Y. Song, and C.J. Jiang, Effect of Mo2C on the Microstructure and Properties of WC-TiC-Ni Cemented Carbide, Int. J. Refract. Met. H., 2008, 26(6), p 601–605.CrossRef Z.X. Guo, J. Xiong, M. Yang, X.Y. Song, and C.J. Jiang, Effect of Mo2C on the Microstructure and Properties of WC-TiC-Ni Cemented Carbide, Int. J. Refract. Met. H., 2008, 26(6), p 601–605.CrossRef
3.
Zurück zum Zitat H.C. Kim, D.K. Kim, K.D. Woo, I.Y. Ko, and I.J. Shon, Consolidation of Binderless WC-TiC by High Frequency Induction Heating Sintering, Int. J. Refract. Met. H., 2008, 26(1), p 48–54.CrossRef H.C. Kim, D.K. Kim, K.D. Woo, I.Y. Ko, and I.J. Shon, Consolidation of Binderless WC-TiC by High Frequency Induction Heating Sintering, Int. J. Refract. Met. H., 2008, 26(1), p 48–54.CrossRef
4.
Zurück zum Zitat K.H. Lee, S.I. Cha, B.K. Kim, and S.H. Hong, Effect of WC/TiC Grain Size Ratio on Microstructure and Mechanical Properties of WC-TiC-Co Cemented Carbides, Int. J. Refract. Met. H., 2006, 24(1–2), p 109–114.CrossRef K.H. Lee, S.I. Cha, B.K. Kim, and S.H. Hong, Effect of WC/TiC Grain Size Ratio on Microstructure and Mechanical Properties of WC-TiC-Co Cemented Carbides, Int. J. Refract. Met. H., 2006, 24(1–2), p 109–114.CrossRef
5.
Zurück zum Zitat D. Duman, H. Gokce, and H. Cimenoglu, Synthesis, Microstructure, and Mechanical Properties of WC-TiC-Co Ceramic Composites, J. Eur. Ceram. Soc., 2012, 32(7), p 1427–1433.CrossRef D. Duman, H. Gokce, and H. Cimenoglu, Synthesis, Microstructure, and Mechanical Properties of WC-TiC-Co Ceramic Composites, J. Eur. Ceram. Soc., 2012, 32(7), p 1427–1433.CrossRef
6.
Zurück zum Zitat J.J. Roa, E. Jimenez-Pique, C. Verge, J.M. Tarrago, A. Mateo, J. Fair, and L. Llanes, Intrinsic Hardness of Constitutive Phases in WC-Co Composites: Nanoindentation Testing, Statistical Analysis, WC Crystal Orientation Effects and Flow Stress for the Constrained Metallic Binder, J. Eur. Ceram. Soc., 2015, 35(13), p 3419–3425.CrossRef J.J. Roa, E. Jimenez-Pique, C. Verge, J.M. Tarrago, A. Mateo, J. Fair, and L. Llanes, Intrinsic Hardness of Constitutive Phases in WC-Co Composites: Nanoindentation Testing, Statistical Analysis, WC Crystal Orientation Effects and Flow Stress for the Constrained Metallic Binder, J. Eur. Ceram. Soc., 2015, 35(13), p 3419–3425.CrossRef
7.
Zurück zum Zitat M. Zhang, M. Li, J. Chi, S. Wang, L. Ren, M. Fang, and C. Zhou, Microstructure Evolution, Recrystallization and Tribological Behavior of TiC/WC Composite Ceramics Coating, Vacuum, 2019, 166, p 64–71.CrossRef M. Zhang, M. Li, J. Chi, S. Wang, L. Ren, M. Fang, and C. Zhou, Microstructure Evolution, Recrystallization and Tribological Behavior of TiC/WC Composite Ceramics Coating, Vacuum, 2019, 166, p 64–71.CrossRef
8.
Zurück zum Zitat B. Fotovvati, N. Namdari, and A. Dehghanghadikolaei, On Coating Techniques for Surface Protection: A Review, J. Manuf. Mater. Process., 2019, 3(1), p 28. B. Fotovvati, N. Namdari, and A. Dehghanghadikolaei, On Coating Techniques for Surface Protection: A Review, J. Manuf. Mater. Process., 2019, 3(1), p 28.
9.
Zurück zum Zitat A. Garcia, M.R. Fernandez, J.M. Cuetos, R. Gonzalez, A. Ortiz, and M. Cadenas, Study of the Sliding Wear and Friction Behavior of WC plus NiCrBSi Laser Cladding Coatings as a Function of Actual Concentration of WC Reinforcement Particles in Ball-on-Disk Test, Tribol. Lett., 2016, 63(3), p 41.CrossRef A. Garcia, M.R. Fernandez, J.M. Cuetos, R. Gonzalez, A. Ortiz, and M. Cadenas, Study of the Sliding Wear and Friction Behavior of WC plus NiCrBSi Laser Cladding Coatings as a Function of Actual Concentration of WC Reinforcement Particles in Ball-on-Disk Test, Tribol. Lett., 2016, 63(3), p 41.CrossRef
10.
Zurück zum Zitat D. Shu, Z. Li, K. Zhang, C. Yao, D. Li, and Z. Dai, In Situ Synthesized High Volume Fraction WC Reinforced Ni-Based Coating by Laser Cladding, Mater. Lett., 2017, 195, p 178–181.CrossRef D. Shu, Z. Li, K. Zhang, C. Yao, D. Li, and Z. Dai, In Situ Synthesized High Volume Fraction WC Reinforced Ni-Based Coating by Laser Cladding, Mater. Lett., 2017, 195, p 178–181.CrossRef
11.
Zurück zum Zitat D. Gu and W. Meiners, Microstructure Characteristics and Formation Mechanisms of in situ WC Cemented Carbide Based Hardmetals Prepared by Selective Laser Melting, Mat. Sci. Eng. A-Struct., 2010, 527(29–30), p 7585–7592.CrossRef D. Gu and W. Meiners, Microstructure Characteristics and Formation Mechanisms of in situ WC Cemented Carbide Based Hardmetals Prepared by Selective Laser Melting, Mat. Sci. Eng. A-Struct., 2010, 527(29–30), p 7585–7592.CrossRef
12.
Zurück zum Zitat M. Zhang, M. Li, J. Chi, S. Wang, L. Ren, and M. Fang, Microstructure and Tribology Properties of In-Situ MC(M:Ti, Nb) Coatings Prepared Via PTA Technology, Vacuum, 2019, 160, p 264–271.CrossRef M. Zhang, M. Li, J. Chi, S. Wang, L. Ren, and M. Fang, Microstructure and Tribology Properties of In-Situ MC(M:Ti, Nb) Coatings Prepared Via PTA Technology, Vacuum, 2019, 160, p 264–271.CrossRef
13.
Zurück zum Zitat M. Zhang, M. Li, J. Chi, S. Wang, S. Yang, J. Yang, and Y. Wei, Effect of Ti on Microstructure Characteristics, Carbide Precipitation Mechanism and Tribological Behavior of Different WC Types Reinforced Ni-Based Gradient Coating, Surf. Coat. Tech., 2019, 374, p 645–655.CrossRef M. Zhang, M. Li, J. Chi, S. Wang, S. Yang, J. Yang, and Y. Wei, Effect of Ti on Microstructure Characteristics, Carbide Precipitation Mechanism and Tribological Behavior of Different WC Types Reinforced Ni-Based Gradient Coating, Surf. Coat. Tech., 2019, 374, p 645–655.CrossRef
14.
Zurück zum Zitat T. Liyanage, G. Fisher, and A.P. Gerlich, Microstructures and Abrasive Wear Performance of PTAW Deposited Ni–WC Overlays Using Different Ni-alloy Chemistries, Wear, 2012, 274, p 345–354.CrossRef T. Liyanage, G. Fisher, and A.P. Gerlich, Microstructures and Abrasive Wear Performance of PTAW Deposited Ni–WC Overlays Using Different Ni-alloy Chemistries, Wear, 2012, 274, p 345–354.CrossRef
15.
Zurück zum Zitat P. Skarvelis, G.D. Papadimitriou, and M. Perraki, Self Lubricating Composite Coatings Containing TiC-MnS or WC-MnS Compounds Prepared by the Plasma Transferred Arc (PTA) Technique, J. Tribol-T Asme., 2010, 132(3), p 1–8.CrossRef P. Skarvelis, G.D. Papadimitriou, and M. Perraki, Self Lubricating Composite Coatings Containing TiC-MnS or WC-MnS Compounds Prepared by the Plasma Transferred Arc (PTA) Technique, J. Tribol-T Asme., 2010, 132(3), p 1–8.CrossRef
16.
Zurück zum Zitat D.X. Peng, Optimizing wear Resistance of Ceramic (TiN, WC and TiC) Clad Layer by Gas Tungsten Arc Welding (GTAW), Ind. Lubr. Tribol., 2014, 66(3), p 452–458.CrossRef D.X. Peng, Optimizing wear Resistance of Ceramic (TiN, WC and TiC) Clad Layer by Gas Tungsten Arc Welding (GTAW), Ind. Lubr. Tribol., 2014, 66(3), p 452–458.CrossRef
17.
Zurück zum Zitat P. Yu, X. Chai, D. Landwehr, and S. Kou, Ni-WC Hardfacing by Gas Metal Arc Welding, Weld J., 2016, 95(12), p 451–466. P. Yu, X. Chai, D. Landwehr, and S. Kou, Ni-WC Hardfacing by Gas Metal Arc Welding, Weld J., 2016, 95(12), p 451–466.
18.
Zurück zum Zitat N. Vashishtha, R.K. Khatirkar, and S.G. Sapate, Tribological Behaviour of HVOF Sprayed WC-12Co, WC-10Co-4Cr and Cr3C2-25NiCr Coatings, Tribol. Int., 2017, 105, p 55–68.CrossRef N. Vashishtha, R.K. Khatirkar, and S.G. Sapate, Tribological Behaviour of HVOF Sprayed WC-12Co, WC-10Co-4Cr and Cr3C2-25NiCr Coatings, Tribol. Int., 2017, 105, p 55–68.CrossRef
19.
Zurück zum Zitat P.C. Du, X.P. Zhu, Y. Meng, H. Feng, Q.F. Wang, and M.K. Lei, Water-Lubricated Tribological Behavior of WC-Ni Coatings Deposited by Off-Angle HVOF Spraying, Surf. Coat. Tech., 2017, 309, p 663–670.CrossRef P.C. Du, X.P. Zhu, Y. Meng, H. Feng, Q.F. Wang, and M.K. Lei, Water-Lubricated Tribological Behavior of WC-Ni Coatings Deposited by Off-Angle HVOF Spraying, Surf. Coat. Tech., 2017, 309, p 663–670.CrossRef
20.
Zurück zum Zitat X.B. Zhao, Y.G. Zhuo, S. Liu, Y.F. Zhou, C.C. Zhao, C.X. Wang, and Q.X. Yang, Investigation on WC/TiC Interface Relationship in Wear-Resistant Coating by First-Principles, Surf. Coat. Tech., 2016, 305, p 200–207.CrossRef X.B. Zhao, Y.G. Zhuo, S. Liu, Y.F. Zhou, C.C. Zhao, C.X. Wang, and Q.X. Yang, Investigation on WC/TiC Interface Relationship in Wear-Resistant Coating by First-Principles, Surf. Coat. Tech., 2016, 305, p 200–207.CrossRef
21.
Zurück zum Zitat L.B. Niu, Y.H. Xu, and X.G. Wang, Fabrication of WC/Fe Composite Coating by Centrifugal Casting Plus In-Situ Synthesis Techniques, Surf. Coat. Tech., 2010, 205(2), p 551–556.CrossRef L.B. Niu, Y.H. Xu, and X.G. Wang, Fabrication of WC/Fe Composite Coating by Centrifugal Casting Plus In-Situ Synthesis Techniques, Surf. Coat. Tech., 2010, 205(2), p 551–556.CrossRef
22.
Zurück zum Zitat Y. Yuan, H. Wu, M. You, Z. Li, and Y. Zhang, Improving Wear Resistance and Friction Stability of FeNi Matrix Coating by In-Situ Multi-Carbide WC-TiC via PTA Metallurgical Reaction, Surf. Coat. Tech., 2019, 378, p 124957.CrossRef Y. Yuan, H. Wu, M. You, Z. Li, and Y. Zhang, Improving Wear Resistance and Friction Stability of FeNi Matrix Coating by In-Situ Multi-Carbide WC-TiC via PTA Metallurgical Reaction, Surf. Coat. Tech., 2019, 378, p 124957.CrossRef
23.
Zurück zum Zitat Y. Yuan and Z. Li, A Novel Approach of In-Situ Synthesis of WC Particulate-Reinforced Fe-30Ni Ceramic Metal Coating, Surf. Coat. Tech., 2017, 328, p 256–265.CrossRef Y. Yuan and Z. Li, A Novel Approach of In-Situ Synthesis of WC Particulate-Reinforced Fe-30Ni Ceramic Metal Coating, Surf. Coat. Tech., 2017, 328, p 256–265.CrossRef
24.
Zurück zum Zitat Y. Yuan and Z. Li, Microstructure and Tribology Behaviors of In-Situ WC/Fe Carbide Coating Fabricated by Plasma Transferred Arc Metallurgic Reaction, Appl. Surf. Sci., 2017, 423(Supplement C), p 13–24.CrossRef Y. Yuan and Z. Li, Microstructure and Tribology Behaviors of In-Situ WC/Fe Carbide Coating Fabricated by Plasma Transferred Arc Metallurgic Reaction, Appl. Surf. Sci., 2017, 423(Supplement C), p 13–24.CrossRef
25.
Zurück zum Zitat J.B. Roerdink and A. Meijster, The Watershed Transform: Definitions, Algorithms and Parallelization Strategies, Fund. Inform., 2000, 41(1,2), p 187–228. J.B. Roerdink and A. Meijster, The Watershed Transform: Definitions, Algorithms and Parallelization Strategies, Fund. Inform., 2000, 41(1,2), p 187–228.
26.
Zurück zum Zitat Y. Yuan and Z. Li, Microstructure and Dry Sliding Wear Behavior of Fe-Based (Cr, Fe)7C3 Composite Coating Fabricated by PTA Welding Process, J. Mater. Eng. Perform., 2013, 22(11), p 3439–3449.CrossRef Y. Yuan and Z. Li, Microstructure and Dry Sliding Wear Behavior of Fe-Based (Cr, Fe)7C3 Composite Coating Fabricated by PTA Welding Process, J. Mater. Eng. Perform., 2013, 22(11), p 3439–3449.CrossRef
27.
Zurück zum Zitat Y. Yuan and Z. Li, Effects of Rod Carbide Size, Content, Loading and Sliding Distance on the Friction and Wear Behaviors of (Cr, Fe)7C3-Reinforced α-Fe Based Composite Coating Produced Via PTA Welding Process, Surf. Coat. Tech., 2014, 248, p 9–22.CrossRef Y. Yuan and Z. Li, Effects of Rod Carbide Size, Content, Loading and Sliding Distance on the Friction and Wear Behaviors of (Cr, Fe)7C3-Reinforced α-Fe Based Composite Coating Produced Via PTA Welding Process, Surf. Coat. Tech., 2014, 248, p 9–22.CrossRef
28.
Zurück zum Zitat B. Kaplan, S. Norgren, M. Schwind, and M. Selleby, Thermodynamic Calculations and Experimental Verification in the WC-Co-Cr Cemented Carbide System, Int. J. Refract. Met. H., 2015, 48, p 257–262.CrossRef B. Kaplan, S. Norgren, M. Schwind, and M. Selleby, Thermodynamic Calculations and Experimental Verification in the WC-Co-Cr Cemented Carbide System, Int. J. Refract. Met. H., 2015, 48, p 257–262.CrossRef
29.
Zurück zum Zitat T.S. Eyre, Wear Resistance of Metals, Treatise on Materials Science & Technology. D. Scott, Ed., Elsevier, Amsterdam, 1979, p 363–442 T.S. Eyre, Wear Resistance of Metals, Treatise on Materials Science & Technology. D. Scott, Ed., Elsevier, Amsterdam, 1979, p 363–442
30.
Zurück zum Zitat N. Lin, Y.H. He, C.H. Wu, S.F. Liu, X.H. Xiao, and Y. Jiang, Influence of TiC Additions on the Corrosion Behaviour of WC-Co Hardmetals in Alkaline Solution, Int. J. Refract. Met. H., 2014, 46, p 52–57.CrossRef N. Lin, Y.H. He, C.H. Wu, S.F. Liu, X.H. Xiao, and Y. Jiang, Influence of TiC Additions on the Corrosion Behaviour of WC-Co Hardmetals in Alkaline Solution, Int. J. Refract. Met. H., 2014, 46, p 52–57.CrossRef
31.
Zurück zum Zitat J.A. Fouts, P.J. Shiller, K.K. Mistry, R.D. Evans, and G.L. Doll, Additive Effects on the Tribological Performance of WC/a-C: H and TiC/a-C: H Coatings in Boundary Lubrication, Wear, 2017, 372, p 104–115.CrossRef J.A. Fouts, P.J. Shiller, K.K. Mistry, R.D. Evans, and G.L. Doll, Additive Effects on the Tribological Performance of WC/a-C: H and TiC/a-C: H Coatings in Boundary Lubrication, Wear, 2017, 372, p 104–115.CrossRef
32.
Zurück zum Zitat J. Pirso, M. Viljus, and S. Letunovits, Friction and Dry Sliding Wear Behaviour of Cermets, Wear, 2006, 260(7–8), p 815–824.CrossRef J. Pirso, M. Viljus, and S. Letunovits, Friction and Dry Sliding Wear Behaviour of Cermets, Wear, 2006, 260(7–8), p 815–824.CrossRef
33.
Zurück zum Zitat M. Guo-zheng, X. Bin-shi, W. Hai-dou, S. Hong-juan, and Y. Da-xiang, Effect of Surface Nanocrystallization on the Tribological Properties of 1Cr18Ni9Ti Stainless Steel, Mater. Lett., 2011, 65(9), p 1268–1271.CrossRef M. Guo-zheng, X. Bin-shi, W. Hai-dou, S. Hong-juan, and Y. Da-xiang, Effect of Surface Nanocrystallization on the Tribological Properties of 1Cr18Ni9Ti Stainless Steel, Mater. Lett., 2011, 65(9), p 1268–1271.CrossRef
34.
Zurück zum Zitat A. Emamian, S.F. Corbin, and A. Khajepour, Tribology Characteristics of In-Situ Laser Deposition of Fe-TiC, Surf. Coat. Tech., 2012, 206(22), p 4495–4501.CrossRef A. Emamian, S.F. Corbin, and A. Khajepour, Tribology Characteristics of In-Situ Laser Deposition of Fe-TiC, Surf. Coat. Tech., 2012, 206(22), p 4495–4501.CrossRef
35.
Zurück zum Zitat J. Liu, S. Yang, W.S. Xia, X. Jiang, and C.B. Gui, Microstructure and Wear Resistance Performance of Cu-Ni-Mn Alloy Based Hardfacing Coatings Reinforced by WC Particles, J. Alloy Compd., 2016, 654, p 63–70.CrossRef J. Liu, S. Yang, W.S. Xia, X. Jiang, and C.B. Gui, Microstructure and Wear Resistance Performance of Cu-Ni-Mn Alloy Based Hardfacing Coatings Reinforced by WC Particles, J. Alloy Compd., 2016, 654, p 63–70.CrossRef
Metadaten
Titel
Effects of Ti Addition on Microstructure and Tribological Properties of In Situ Composite Carbide Coating WC-TiC/FeNi Fabricated by Plasma Transferred Arc Metallurgical Reaction
verfasst von
Youlu Yuan
Yunyang Li
Xiangman Zhou
Min You
Yi Zhang
Zhuguo Li
Publikationsdatum
13.11.2020
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 12/2020
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-05275-x

Weitere Artikel der Ausgabe 12/2020

Journal of Materials Engineering and Performance 12/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.