Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 1/2023

27.06.2022 | Technical Article

Effects of Various Cross Sections on Elastoplastic Behavior of Fe Nanowires under Tension/Compression

verfasst von: Sajad Mousavi Nejad Souq, Faramarz Ashenai Ghasemi, Mir Masoud Seyyed Fakhrabadi

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 1/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study aims to evaluate the effects of various cross sections on the mechanical properties of Fe nanowires including their elastic moduli and ultimate strength values using the molecular dynamics simulation. The well-known embedded atom method potential function is employed to model the interaction between the Fe atoms. Young’s moduli are calculated based on the stress–strain diagrams of uniaxial tension and compression tests of the nanowires. The mechanical behavior of bulk Fe metal is also simulated and analyzed to compare its outcomes with the nanowires. According to the results, the tensile/compressive strength values in the bulk model are higher than the nanowires. Besides, in compressive loading, the strength values depend more than tensile loading on the shapes of the cross sections following the order: circular> polygon> square> triangle. However, except for the triangular case, tensile strength values are less sensitive to the change of the shape of the cross section. In addition, different twinning planes and Burgers vectors are found for various cross sections, and their similarities and differences are investigated in detail. Analytic models are also developed for the prediction of the mechanical behavior of nanowires with various cross sections.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat F. Sedona et al., Substrate Involvement in Dioxygen Bond Dissociation Catalysed by Iron Phthalocyanine Supported on Ag (100), Chem. Commun., 2018, 54(68), p 9418–9421.CrossRef F. Sedona et al., Substrate Involvement in Dioxygen Bond Dissociation Catalysed by Iron Phthalocyanine Supported on Ag (100), Chem. Commun., 2018, 54(68), p 9418–9421.CrossRef
2.
Zurück zum Zitat F. Sedona et al., Tuning the Catalytic Activity of Ag (110)-Supported Fe Phthalocyanine in the Oxygen Reduction Reaction, Nat. Mater., 2012, 11(11), p 970–977.CrossRef F. Sedona et al., Tuning the Catalytic Activity of Ag (110)-Supported Fe Phthalocyanine in the Oxygen Reduction Reaction, Nat. Mater., 2012, 11(11), p 970–977.CrossRef
3.
Zurück zum Zitat D. Dragoni, D. Ceresoli, and N. Marzari, Vibrational and Thermoelastic Properties of bcc Iron from Selected EAM Potentials, Comput. Mater. Sci., 2018, 152, p 99–106.CrossRef D. Dragoni, D. Ceresoli, and N. Marzari, Vibrational and Thermoelastic Properties of bcc Iron from Selected EAM Potentials, Comput. Mater. Sci., 2018, 152, p 99–106.CrossRef
4.
Zurück zum Zitat H.W.C. Postma, I. Kozinsky, A. Husain, and M.L. Roukes, Dynamic Range of Nanotube-and Nanowire-Based Electromechanical Systems, Appl. Phys. Lett., 2005, 86(22), p 223105.CrossRef H.W.C. Postma, I. Kozinsky, A. Husain, and M.L. Roukes, Dynamic Range of Nanotube-and Nanowire-Based Electromechanical Systems, Appl. Phys. Lett., 2005, 86(22), p 223105.CrossRef
5.
Zurück zum Zitat P. Yang, The Chemistry and Physics of Semiconductor Nanowires, MRS Bull., 2005, 30(2), p 85–91.CrossRef P. Yang, The Chemistry and Physics of Semiconductor Nanowires, MRS Bull., 2005, 30(2), p 85–91.CrossRef
6.
Zurück zum Zitat Y. Zhang, S. Rohani, and A.K. Ray, Numerical Determination of Competitive Adsorption Isotherm of Mandelic Acid Enantiomers on Cellulose-Based Chiral Stationary Phase, J. Chromatogr. A, 2008, 1202(1), p 34–39.CrossRef Y. Zhang, S. Rohani, and A.K. Ray, Numerical Determination of Competitive Adsorption Isotherm of Mandelic Acid Enantiomers on Cellulose-Based Chiral Stationary Phase, J. Chromatogr. A, 2008, 1202(1), p 34–39.CrossRef
7.
Zurück zum Zitat S. Suresh and J. Li, Materials Science: Deformation of the Ultra-Strong, Nature, 2008, 456(7223), p 716.CrossRef S. Suresh and J. Li, Materials Science: Deformation of the Ultra-Strong, Nature, 2008, 456(7223), p 716.CrossRef
8.
Zurück zum Zitat W.F. McDonough and S.-S. Sun, The Composition of the Earth, Chem. Geol., 1995, 120(3–4), p 223–253.CrossRef W.F. McDonough and S.-S. Sun, The Composition of the Earth, Chem. Geol., 1995, 120(3–4), p 223–253.CrossRef
9.
Zurück zum Zitat Y. Tan and X. Yang, Molecular Dynamics Simulations on the Tensile Failure of Crystalline CoSb 3 Along Different Orientations, J. Mater. Eng. Perform., 2020, 29(7), p 4659–4668.CrossRef Y. Tan and X. Yang, Molecular Dynamics Simulations on the Tensile Failure of Crystalline CoSb 3 Along Different Orientations, J. Mater. Eng. Perform., 2020, 29(7), p 4659–4668.CrossRef
10.
Zurück zum Zitat C.M. Lieber, Nanoscale Science and Technology: Building A Big Future from Small Things, MRS Bull., 2003, 28(7), p 486–491.CrossRef C.M. Lieber, Nanoscale Science and Technology: Building A Big Future from Small Things, MRS Bull., 2003, 28(7), p 486–491.CrossRef
11.
Zurück zum Zitat H. Liu and J. Zhou, Plasticity in Nanotwinned Polycrystalline Ni Nanowires Under Uniaxial Compression, Mater. Lett., 2016, 163, p 179–182.CrossRef H. Liu and J. Zhou, Plasticity in Nanotwinned Polycrystalline Ni Nanowires Under Uniaxial Compression, Mater. Lett., 2016, 163, p 179–182.CrossRef
12.
Zurück zum Zitat H.A. Wu, Molecular Dynamics Study on Mechanics of Metal Nanowire, Mech. Res. Commun., 2006, 33(1), p 9–16.CrossRef H.A. Wu, Molecular Dynamics Study on Mechanics of Metal Nanowire, Mech. Res. Commun., 2006, 33(1), p 9–16.CrossRef
13.
Zurück zum Zitat E. Dimaggio, D. Narducci, and G. Pennelli, Fabrication of Silicon Nanowire Forests for Thermoelectric Applications by Metal-Assisted Chemical Etching, J. Mater. Eng. Perform., 2018, 27(12), p 6279–6285.CrossRef E. Dimaggio, D. Narducci, and G. Pennelli, Fabrication of Silicon Nanowire Forests for Thermoelectric Applications by Metal-Assisted Chemical Etching, J. Mater. Eng. Perform., 2018, 27(12), p 6279–6285.CrossRef
14.
Zurück zum Zitat A.T. Jennings and J.R. Greer, Tensile Deformation of Electroplated Copper Nanopillars, Philos. Mag., 2011, 91(7–9), p 1108–1120.CrossRef A.T. Jennings and J.R. Greer, Tensile Deformation of Electroplated Copper Nanopillars, Philos. Mag., 2011, 91(7–9), p 1108–1120.CrossRef
15.
Zurück zum Zitat C. Peng, Y. Zhong, Y. Lu, S. Narayanan, T. Zhu, and J. Lou, Strain Rate Dependent Mechanical Properties in Single Crystal Nickel Nanowires, Appl. Phys. Lett., 2013, 102(8), p 83102.CrossRef C. Peng, Y. Zhong, Y. Lu, S. Narayanan, T. Zhu, and J. Lou, Strain Rate Dependent Mechanical Properties in Single Crystal Nickel Nanowires, Appl. Phys. Lett., 2013, 102(8), p 83102.CrossRef
16.
Zurück zum Zitat D.-L. Chen and T.-C. Chen, Mechanical Properties of Au Nanowires Under Uniaxial Tension with High Strain-Rate by Molecular Dynamics, Nanotechnology, 2005, 16(12), p 2972.CrossRef D.-L. Chen and T.-C. Chen, Mechanical Properties of Au Nanowires Under Uniaxial Tension with High Strain-Rate by Molecular Dynamics, Nanotechnology, 2005, 16(12), p 2972.CrossRef
17.
Zurück zum Zitat S.J.A. Koh, H.P. Lee, C. Lu, and Q.H. Cheng, Molecular Dynamics Simulation of a Solid Platinum Nanowire Under Uniaxial Tensile Strain: Temperature and Strain-Rate Effects, Phys. Rev. B, 2005, 72(8), p 85414.CrossRef S.J.A. Koh, H.P. Lee, C. Lu, and Q.H. Cheng, Molecular Dynamics Simulation of a Solid Platinum Nanowire Under Uniaxial Tensile Strain: Temperature and Strain-Rate Effects, Phys. Rev. B, 2005, 72(8), p 85414.CrossRef
18.
Zurück zum Zitat S. Xu, J.K. Startt, T.G. Payne, C.S. Deo, and D.L. McDowell, Size-Dependent Plastic Deformation of Twinned Nanopillars in Body-Centered Cubic Tungsten, J. Appl. Phys., 2017, 121(17), p 175101.CrossRef S. Xu, J.K. Startt, T.G. Payne, C.S. Deo, and D.L. McDowell, Size-Dependent Plastic Deformation of Twinned Nanopillars in Body-Centered Cubic Tungsten, J. Appl. Phys., 2017, 121(17), p 175101.CrossRef
19.
Zurück zum Zitat S. Xu and S.Z. Chavoshi, Uniaxial Deformation of Nanotwinned Nanotubes in Body-Centered Cubic Tungsten, Curr. Appl. Phys., 2018, 18(1), p 114–121.CrossRef S. Xu and S.Z. Chavoshi, Uniaxial Deformation of Nanotwinned Nanotubes in Body-Centered Cubic Tungsten, Curr. Appl. Phys., 2018, 18(1), p 114–121.CrossRef
20.
Zurück zum Zitat S. Xu, Y. Su, D. Chen, and L. Li, An Atomistic Study of the Deformation Behavior of Tungsten Nanowires, Appl. Phys. A, 2017, 123(12), p 788.CrossRef S. Xu, Y. Su, D. Chen, and L. Li, An Atomistic Study of the Deformation Behavior of Tungsten Nanowires, Appl. Phys. A, 2017, 123(12), p 788.CrossRef
21.
Zurück zum Zitat W. Liang, M. Zhou, and F. Ke, Shape Memory Effect in Cu Nanowires, Nano Lett., 2005, 5(10), p 2039–2043.CrossRef W. Liang, M. Zhou, and F. Ke, Shape Memory Effect in Cu Nanowires, Nano Lett., 2005, 5(10), p 2039–2043.CrossRef
22.
Zurück zum Zitat K.C. Katakam, P. Gupta, and N. Yedla, Large-Scale Molecular Dynamics Simulation Studies on defOrmation of Ni Nanowires: Surface Profile, Defects and Stacking Fault Width Analysis, J. Mater. Eng. Perform., 2019, 28(1), p 63–78.CrossRef K.C. Katakam, P. Gupta, and N. Yedla, Large-Scale Molecular Dynamics Simulation Studies on defOrmation of Ni Nanowires: Surface Profile, Defects and Stacking Fault Width Analysis, J. Mater. Eng. Perform., 2019, 28(1), p 63–78.CrossRef
23.
Zurück zum Zitat J.R. Greer, J.-Y. Kim, and M.J. Burek, The in-Situ Mechanical Testing of Nanoscale Single-Crystalline Nanopillars, Jom, 2009, 61(12), p 19.CrossRef J.R. Greer, J.-Y. Kim, and M.J. Burek, The in-Situ Mechanical Testing of Nanoscale Single-Crystalline Nanopillars, Jom, 2009, 61(12), p 19.CrossRef
25.
Zurück zum Zitat A. Cao, Shape Memory Effects and Pseudoelasticity in Bcc Metallic Nanowires, J. Appl. Phys., 2010, 108(11), p 113531.CrossRef A. Cao, Shape Memory Effects and Pseudoelasticity in Bcc Metallic Nanowires, J. Appl. Phys., 2010, 108(11), p 113531.CrossRef
26.
Zurück zum Zitat J.-Y. Kim and J.R. Greer, Tensile and Compressive Behavior of Gold and Molybdenum Single Crystals at the Nano-Scale, Acta Mater., 2009, 57(17), p 5245–5253.CrossRef J.-Y. Kim and J.R. Greer, Tensile and Compressive Behavior of Gold and Molybdenum Single Crystals at the Nano-Scale, Acta Mater., 2009, 57(17), p 5245–5253.CrossRef
27.
Zurück zum Zitat G. Sainath and B.K. Choudhary, Deformation Behaviour of Body Centered Cubic Iron Nanopillars Containing Coherent Twin Boundaries, Philos. Mag., 2016, 96(32–34), p 3502–3523.CrossRef G. Sainath and B.K. Choudhary, Deformation Behaviour of Body Centered Cubic Iron Nanopillars Containing Coherent Twin Boundaries, Philos. Mag., 2016, 96(32–34), p 3502–3523.CrossRef
28.
Zurück zum Zitat S. Li, X. Ding, J. Li, X. Ren, J. Sun, and E. Ma, High-Efficiency Mechanical Energy Storage and Retrieval Using Interfaces in Nanowires, Nano Lett., 2010, 10(5), p 1774–1779.CrossRef S. Li, X. Ding, J. Li, X. Ren, J. Sun, and E. Ma, High-Efficiency Mechanical Energy Storage and Retrieval Using Interfaces in Nanowires, Nano Lett., 2010, 10(5), p 1774–1779.CrossRef
29.
Zurück zum Zitat S. Saha, S. Mojumder, M. Mahboob, and M.Z. Islam, Effect of Temperature and Geometric Parameters on Elastic Properties of Tungsten Nanowire: A Molecular Dynamics Study, AIP Conf. Proc., 2016, 1754(1), p 30009.CrossRef S. Saha, S. Mojumder, M. Mahboob, and M.Z. Islam, Effect of Temperature and Geometric Parameters on Elastic Properties of Tungsten Nanowire: A Molecular Dynamics Study, AIP Conf. Proc., 2016, 1754(1), p 30009.CrossRef
30.
Zurück zum Zitat S. Saha, M.A. Motalab, and M. Mahboob, Investigation on Mechanical Properties of Polycrystalline W Nanowire, Comput. Mater. Sci., 2017, 136, p 52–59.CrossRef S. Saha, M.A. Motalab, and M. Mahboob, Investigation on Mechanical Properties of Polycrystalline W Nanowire, Comput. Mater. Sci., 2017, 136, p 52–59.CrossRef
31.
Zurück zum Zitat H. Zhan, Y. Gu, and H.S. Park, Beat Phenomena in Metal Nanowires, and Their Implications for Resonance-Based Elastic Property Measurements, Nanoscale, 2012, 4(21), p 6779–6785.CrossRef H. Zhan, Y. Gu, and H.S. Park, Beat Phenomena in Metal Nanowires, and Their Implications for Resonance-Based Elastic Property Measurements, Nanoscale, 2012, 4(21), p 6779–6785.CrossRef
32.
Zurück zum Zitat Y. Gao and H.M. Urbassek, Evolution of Plasticity in Nanometric Cutting of Fe Single Crystals, Appl. Surf. Sci., 2014, 317, p 6–10.CrossRef Y. Gao and H.M. Urbassek, Evolution of Plasticity in Nanometric Cutting of Fe Single Crystals, Appl. Surf. Sci., 2014, 317, p 6–10.CrossRef
33.
Zurück zum Zitat C.J. Healy and G.J. Ackland, Molecular Dynamics Simulations of Compression–Tension Asymmetry in Plasticity of Fe Nanopillars, Acta Mater., 2014, 70, p 105–112.CrossRef C.J. Healy and G.J. Ackland, Molecular Dynamics Simulations of Compression–Tension Asymmetry in Plasticity of Fe Nanopillars, Acta Mater., 2014, 70, p 105–112.CrossRef
34.
Zurück zum Zitat G. Sainath and B.K. Choudhary, Orientation Dependent Deformation Behaviour of BCC Iron Nanowires, Comput. Mater. Sci., 2016, 111, p 406–415.CrossRef G. Sainath and B.K. Choudhary, Orientation Dependent Deformation Behaviour of BCC Iron Nanowires, Comput. Mater. Sci., 2016, 111, p 406–415.CrossRef
35.
Zurück zum Zitat A. Dutta, Compressive Deformation of Fe Nanopillar at High Strain Rate: Modalities of Dislocation Dynamics, Acta Mater., 2017, 125, p 219–230.CrossRef A. Dutta, Compressive Deformation of Fe Nanopillar at High Strain Rate: Modalities of Dislocation Dynamics, Acta Mater., 2017, 125, p 219–230.CrossRef
36.
Zurück zum Zitat S. Dai et al., Elastic Properties of GaN Nanowires: Revealing the Influence of Planar Defects on Young’s Modulus at Nanoscale, Nano Lett., 2015, 15(1), p 8–15.CrossRef S. Dai et al., Elastic Properties of GaN Nanowires: Revealing the Influence of Planar Defects on Young’s Modulus at Nanoscale, Nano Lett., 2015, 15(1), p 8–15.CrossRef
37.
Zurück zum Zitat S. Plimpton, Fast Parallel Algorithms for shOrt-Range Molecular Dynamics, J. Comput. Phys., 1995, 117(1), p 1–19.CrossRef S. Plimpton, Fast Parallel Algorithms for shOrt-Range Molecular Dynamics, J. Comput. Phys., 1995, 117(1), p 1–19.CrossRef
39.
Zurück zum Zitat Y. Zhao, X. Peng, T. Fu, R. Sun, C. Feng, and Z. Wang, MD Simulation of Nanoindentation on (001) and (111) Surfaces of Ag–Ni multilayers, Phys. E Low-dimensional Syst. Nanostructures, 2015, 74, p 481–488.CrossRef Y. Zhao, X. Peng, T. Fu, R. Sun, C. Feng, and Z. Wang, MD Simulation of Nanoindentation on (001) and (111) Surfaces of Ag–Ni multilayers, Phys. E Low-dimensional Syst. Nanostructures, 2015, 74, p 481–488.CrossRef
40.
Zurück zum Zitat M.I. Mendelev, S. Han, D.J. Srolovitz, G.J. Ackland, D.Y. Sun, and M. Asta, Development of new Interatomic Potentials Appropriate for Crystalline and Liquid Iron, Philos. Mag., 2003, 83(35), p 3977–3994.CrossRef M.I. Mendelev, S. Han, D.J. Srolovitz, G.J. Ackland, D.Y. Sun, and M. Asta, Development of new Interatomic Potentials Appropriate for Crystalline and Liquid Iron, Philos. Mag., 2003, 83(35), p 3977–3994.CrossRef
41.
Zurück zum Zitat G. Sainath and B.K. Choudhary, Atomistic Simulations on Ductile-Brittle Transition in< 111> BCC Fe Nanowires, J. Appl. Phys., 2017, 122(9), p 95101.CrossRef G. Sainath and B.K. Choudhary, Atomistic Simulations on Ductile-Brittle Transition in< 111> BCC Fe Nanowires, J. Appl. Phys., 2017, 122(9), p 95101.CrossRef
42.
Zurück zum Zitat S.L. Frederiksen and K.W. Jacobsen, Density Functional Theory Studies of Screw Dislocation Core Structures in Bcc Metals, Philos. Mag., 2003, 83(3), p 365–375.CrossRef S.L. Frederiksen and K.W. Jacobsen, Density Functional Theory Studies of Screw Dislocation Core Structures in Bcc Metals, Philos. Mag., 2003, 83(3), p 365–375.CrossRef
43.
Zurück zum Zitat W.P. Davey, Precision Measurements of the Lattice Constants of Twelve Common Metals, Phys. Rev., 1925, 25(6), p 753.CrossRef W.P. Davey, Precision Measurements of the Lattice Constants of Twelve Common Metals, Phys. Rev., 1925, 25(6), p 753.CrossRef
44.
Zurück zum Zitat K.S. Cheung and S. Yip, Atomic-Level Stress in an Inhomogeneous System, J. Appl. Phys., 1991, 70(10), p 5688–5690.CrossRef K.S. Cheung and S. Yip, Atomic-Level Stress in an Inhomogeneous System, J. Appl. Phys., 1991, 70(10), p 5688–5690.CrossRef
45.
Zurück zum Zitat M. Zhou, “A new Look at the Atomic Level Virial Stress: on Continuum-Molecular System Equivalence, Proc. R. Soc. London. Ser. A Math. Phys. Eng. Sci., 2003, 459(2037), p 2347–2392.CrossRef M. Zhou, “A new Look at the Atomic Level Virial Stress: on Continuum-Molecular System Equivalence, Proc. R. Soc. London. Ser. A Math. Phys. Eng. Sci., 2003, 459(2037), p 2347–2392.CrossRef
48.
Zurück zum Zitat J.D. Honeycutt and H.C. Andersen, Molecular Dynamics Study of Melting and Freezing of Small Lennard-Jones Clusters, J. Phys. Chem., 1987, 91(19), p 4950–4963.CrossRef J.D. Honeycutt and H.C. Andersen, Molecular Dynamics Study of Melting and Freezing of Small Lennard-Jones Clusters, J. Phys. Chem., 1987, 91(19), p 4950–4963.CrossRef
49.
Zurück zum Zitat T. Uehara et al., A Molecular Dynamics Study on the Effects of Lattice Defects on the Phase Transformation from BCC to FCC Structures, Mater. Sci. Appl, 2019, 10(08), p 543. T. Uehara et al., A Molecular Dynamics Study on the Effects of Lattice Defects on the Phase Transformation from BCC to FCC Structures, Mater. Sci. Appl, 2019, 10(08), p 543.
50.
Zurück zum Zitat B. Azizi, S. Rezaee, M.J. Hadianfard, and K.H. Dehnou, A Comprehensive Study on the Mechanical Properties and Failure Mechanisms of Graphyne Nanotubes (GNTs) in Different Phases, Comput. Mater. Sci., 2020, 182, p 109794.CrossRef B. Azizi, S. Rezaee, M.J. Hadianfard, and K.H. Dehnou, A Comprehensive Study on the Mechanical Properties and Failure Mechanisms of Graphyne Nanotubes (GNTs) in Different Phases, Comput. Mater. Sci., 2020, 182, p 109794.CrossRef
51.
Zurück zum Zitat M. Chen, H. Zhan, Y. Zhu, H. Wu, and Y. Gu, Mechanical Properties of Penta-Graphene Nanotubes, J. Phys. Chem. C, 2017, 121(17), p 9642–9647.CrossRef M. Chen, H. Zhan, Y. Zhu, H. Wu, and Y. Gu, Mechanical Properties of Penta-Graphene Nanotubes, J. Phys. Chem. C, 2017, 121(17), p 9642–9647.CrossRef
52.
Zurück zum Zitat Y. Gao, C.J. Ruestes, and H.M. Urbassek, Nanoindentation and Nanoscratching of Iron: Atomistic Simulation of Dislocation Generation and Reactions, Comput. Mater. Sci., 2014, 90, p 232–240.CrossRef Y. Gao, C.J. Ruestes, and H.M. Urbassek, Nanoindentation and Nanoscratching of Iron: Atomistic Simulation of Dislocation Generation and Reactions, Comput. Mater. Sci., 2014, 90, p 232–240.CrossRef
53.
Zurück zum Zitat S. Mahajan, Accommodation at Deformation Twins in Bcc Crystals, Metall. Trans. A, 1981, 12(3), p 379–386.CrossRef S. Mahajan, Accommodation at Deformation Twins in Bcc Crystals, Metall. Trans. A, 1981, 12(3), p 379–386.CrossRef
54.
Zurück zum Zitat H.W. Paxton, Experimental Verification of the Twin System in Alpha-Iron, Acta Metall., 1953, 1(2), p 141–143.CrossRef H.W. Paxton, Experimental Verification of the Twin System in Alpha-Iron, Acta Metall., 1953, 1(2), p 141–143.CrossRef
Metadaten
Titel
Effects of Various Cross Sections on Elastoplastic Behavior of Fe Nanowires under Tension/Compression
verfasst von
Sajad Mousavi Nejad Souq
Faramarz Ashenai Ghasemi
Mir Masoud Seyyed Fakhrabadi
Publikationsdatum
27.06.2022
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 1/2023
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-07091-x

Weitere Artikel der Ausgabe 1/2023

Journal of Materials Engineering and Performance 1/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.