Skip to main content
Erschienen in: Quantum Information Processing 1/2016

01.01.2016

Efficient multi-party quantum key agreement by cluster states

verfasst von: Zhiwei Sun, Jianping Yu, Ping Wang

Erschienen in: Quantum Information Processing | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A quantum key agreement (QKA) protocol by utilizing a four-photon cluster state is proposed in this paper. The proposed QKA protocol extends the two-party QKA protocol with four-qubit cluster state (Shen et al. in Quantum Inf Process 13:2313–2324, 2014) into a multi-party case. The block transmission technique and decoy photons method are used in the presented protocol. Meanwhile, the qubit efficiency of the presented protocol is also improved by using the dense coding method. Security analysis shows that the proposed protocol is secure against both participant and outside attacks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, pp. 175–179 (1984) Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, pp. 175–179 (1984)
5.
Zurück zum Zitat Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000) Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)
7.
Zurück zum Zitat Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of 35th Annual Symposium on the Foundations of Computer Science, pp. 124–134 (1994) Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of 35th Annual Symposium on the Foundations of Computer Science, pp. 124–134 (1994)
9.
Zurück zum Zitat Du, R.G., Sun, Z.W., Wang, B.H., Long, D.Y.: Quantum secret sharing of secure direct communication using one-time pad. Int. J. Theor. Phys. 51, 2727–2736 (2012)MathSciNetCrossRefMATH Du, R.G., Sun, Z.W., Wang, B.H., Long, D.Y.: Quantum secret sharing of secure direct communication using one-time pad. Int. J. Theor. Phys. 51, 2727–2736 (2012)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Sun, Z., Jianping, Y., Wang, P., Lingling, X.: Symmetrically private information retrieval based on blind quantum computing. Phys. Rev. A 91, 052303 (2015)CrossRefADS Sun, Z., Jianping, Y., Wang, P., Lingling, X.: Symmetrically private information retrieval based on blind quantum computing. Phys. Rev. A 91, 052303 (2015)CrossRefADS
11.
Zurück zum Zitat Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)CrossRefADS Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)CrossRefADS
12.
Zurück zum Zitat Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)CrossRefADS Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)CrossRefADS
13.
Zurück zum Zitat Sun, Z.W., Du, R.G., Long, D.Y.: Quantum secure direct communication with quantum identification. Int. J. Quantum Inf. 10, 1250008 (2012)MathSciNetCrossRef Sun, Z.W., Du, R.G., Long, D.Y.: Quantum secure direct communication with quantum identification. Int. J. Quantum Inf. 10, 1250008 (2012)MathSciNetCrossRef
14.
Zurück zum Zitat Sun, Z.W., Du, R.G., Long, D.Y.: Quantum secure direct communication with two-photon four-qubit cluster state. Int. J. Theor. Phys. 51, 1946–1952 (2012)MathSciNetCrossRefMATH Sun, Z.W., Du, R.G., Long, D.Y.: Quantum secure direct communication with two-photon four-qubit cluster state. Int. J. Theor. Phys. 51, 1946–1952 (2012)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Chen, X.B., Xu, G., Niu, X.X., Wen, Q.Y., Yang, Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283, 1561–1565 (2010)CrossRefADS Chen, X.B., Xu, G., Niu, X.X., Wen, Q.Y., Yang, Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283, 1561–1565 (2010)CrossRefADS
16.
Zurück zum Zitat Sun, Z.W., Long, D.Y.: Quantum private comparison protocol based on cluster states. Int. J. Theor. Phys. 52, 212–218 (2013)MathSciNetCrossRefMATH Sun, Z.W., Long, D.Y.: Quantum private comparison protocol based on cluster states. Int. J. Theor. Phys. 52, 212–218 (2013)MathSciNetCrossRefMATH
17.
Zurück zum Zitat Sun, Z.W., Yu, J.P., Wang, P., Xu, L.L., Wu, C.H.: Quantum private comparison with a malicious third party. Quantum Inf. Process 14(6), 2125–2133 (2015)CrossRefADS Sun, Z.W., Yu, J.P., Wang, P., Xu, L.L., Wu, C.H.: Quantum private comparison with a malicious third party. Quantum Inf. Process 14(6), 2125–2133 (2015)CrossRefADS
18.
Zurück zum Zitat Aharon, N., Vaidman, L.: Quantum advantages in classically defined tasks. Phys. Rev. A 77, 052310 (2008)CrossRefADS Aharon, N., Vaidman, L.: Quantum advantages in classically defined tasks. Phys. Rev. A 77, 052310 (2008)CrossRefADS
19.
Zurück zum Zitat Gao, F., Fang, W., Wen, Q.Y.: Minimum best success probability by classical strategies for quantum pseudo-telepathy. Sci. China Phys. Mech. Astron. 57(7), 1244–1249 (2014)CrossRefADS Gao, F., Fang, W., Wen, Q.Y.: Minimum best success probability by classical strategies for quantum pseudo-telepathy. Sci. China Phys. Mech. Astron. 57(7), 1244–1249 (2014)CrossRefADS
20.
Zurück zum Zitat Zheng, C., Long, G.F.: Quantum secure direct dialogue using Einstein–Podolsky–Rosen pairs. Sci. China Phys. Mech. Astron. 57(7), 1238–1243 (2014)CrossRefADS Zheng, C., Long, G.F.: Quantum secure direct dialogue using Einstein–Podolsky–Rosen pairs. Sci. China Phys. Mech. Astron. 57(7), 1238–1243 (2014)CrossRefADS
21.
Zurück zum Zitat Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40(18), 1149 (2004)CrossRef Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40(18), 1149 (2004)CrossRef
22.
Zurück zum Zitat Tsai, C., Hwang, T.: On quantum key agreement protocol, Technical Report, C-S-I-E, NCKU, Taiwan, ROC (2009) Tsai, C., Hwang, T.: On quantum key agreement protocol, Technical Report, C-S-I-E, NCKU, Taiwan, ROC (2009)
23.
Zurück zum Zitat Chong, S.K., Tsai, C.W., Hwang, T.: Improvement on quantum key agreement protocol with maximally entangled states. Int. J. Theor. Phys. 50(6), 1793–1802 (2011)MathSciNetCrossRefMATH Chong, S.K., Tsai, C.W., Hwang, T.: Improvement on quantum key agreement protocol with maximally entangled states. Int. J. Theor. Phys. 50(6), 1793–1802 (2011)MathSciNetCrossRefMATH
24.
Zurück zum Zitat Chong, S.K., Hwang, T.: Quantum key agreement protocol based on BB84. Opt. Commun. 283(6), 1192–1195 (2010)CrossRefADS Chong, S.K., Hwang, T.: Quantum key agreement protocol based on BB84. Opt. Commun. 283(6), 1192–1195 (2010)CrossRefADS
25.
Zurück zum Zitat Huang, W., Wen, Q.Y., Liu, B., Gao, F., Sun, Y.: Quantum key agreement with EPR pairs and single particle measurements. Quantum Inf. Process. 13(3), 649–663 (2014)MathSciNetCrossRefMATH Huang, W., Wen, Q.Y., Liu, B., Gao, F., Sun, Y.: Quantum key agreement with EPR pairs and single particle measurements. Quantum Inf. Process. 13(3), 649–663 (2014)MathSciNetCrossRefMATH
26.
27.
Zurück zum Zitat Shi, R.H., Zhong, H.: Multi-party quantum key agreement with bell states and bell measurements. Quantum Inf. Process. 12(2), 921–932 (2013)MathSciNetCrossRefADSMATH Shi, R.H., Zhong, H.: Multi-party quantum key agreement with bell states and bell measurements. Quantum Inf. Process. 12(2), 921–932 (2013)MathSciNetCrossRefADSMATH
28.
Zurück zum Zitat Liu, B., Gao, F., Huang, W., Wen, Q.Y.: Multiparty quantum key agreement with single particles. Quantum Inf. Process. 12(4), 1797–1805 (2013)MathSciNetCrossRefADSMATH Liu, B., Gao, F., Huang, W., Wen, Q.Y.: Multiparty quantum key agreement with single particles. Quantum Inf. Process. 12(4), 1797–1805 (2013)MathSciNetCrossRefADSMATH
29.
Zurück zum Zitat Sun, Z., Wang, B., Li, Q., Long, D.: Improvements on multiparty quantum key agreement with single particles. Quantum Inf. Process. 12, 3411 (2013)MathSciNetCrossRefADSMATH Sun, Z., Wang, B., Li, Q., Long, D.: Improvements on multiparty quantum key agreement with single particles. Quantum Inf. Process. 12, 3411 (2013)MathSciNetCrossRefADSMATH
30.
Zurück zum Zitat Yin, X.R., Ma, W.P., Liu, W.Y.: Three-party quantum key agreement with two-photon entanglement. Int. J. Theor. Phys. 52, 3915–3921 (2013)MathSciNetCrossRefMATH Yin, X.R., Ma, W.P., Liu, W.Y.: Three-party quantum key agreement with two-photon entanglement. Int. J. Theor. Phys. 52, 3915–3921 (2013)MathSciNetCrossRefMATH
31.
Zurück zum Zitat Chitra, S., Nasir, A., Anirban, P.: Protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf. Process. 13, 2391–2405 (2014)MathSciNetCrossRefMATH Chitra, S., Nasir, A., Anirban, P.: Protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf. Process. 13, 2391–2405 (2014)MathSciNetCrossRefMATH
32.
Zurück zum Zitat Xu, G.-B., Wen, Q.-Y., Gao, F., Qin, S.-J.: Novel multiparty quantum key agreement protocol with GHZ states. Quantum Inf. Process. 13, 2587–2594 (2014)MathSciNetCrossRefADSMATH Xu, G.-B., Wen, Q.-Y., Gao, F., Qin, S.-J.: Novel multiparty quantum key agreement protocol with GHZ states. Quantum Inf. Process. 13, 2587–2594 (2014)MathSciNetCrossRefADSMATH
33.
Zurück zum Zitat Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86(5), 910 (2001)CrossRefADS Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86(5), 910 (2001)CrossRefADS
34.
Zurück zum Zitat Hein, M., Dür, W., Briegel, H.J.: Entanglement properties of multipartite entangled states under the influence of decoherence. Phys. Rev. A 71, 032350 (2005)CrossRefADS Hein, M., Dür, W., Briegel, H.J.: Entanglement properties of multipartite entangled states under the influence of decoherence. Phys. Rev. A 71, 032350 (2005)CrossRefADS
35.
Zurück zum Zitat Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001)CrossRefADS Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001)CrossRefADS
36.
Zurück zum Zitat Cao, Y., Li, H., Long, G.L.: Entanglement of linear cluster states in terms of averaged entropies. Chin. Sci. Bull. 58(1), 48–52 (2013)CrossRef Cao, Y., Li, H., Long, G.L.: Entanglement of linear cluster states in terms of averaged entropies. Chin. Sci. Bull. 58(1), 48–52 (2013)CrossRef
37.
Zurück zum Zitat Su, X.L., Jia, X.J., Xie, C.D., et al.: Preparation of multipartite entangled states used for quantum information networks. Sci. China Phys. Mech. Astron. 57(7), 1210–1217 (2014)CrossRefADS Su, X.L., Jia, X.J., Xie, C.D., et al.: Preparation of multipartite entangled states used for quantum information networks. Sci. China Phys. Mech. Astron. 57(7), 1210–1217 (2014)CrossRefADS
38.
Zurück zum Zitat Heilmann, R., Gräfe, M., et al.: A novel integrated quantum circuit for high-order W-state generation and its highly precise characterization. Sci. Bull. 60(1), 96–100 (2015)CrossRef Heilmann, R., Gräfe, M., et al.: A novel integrated quantum circuit for high-order W-state generation and its highly precise characterization. Sci. Bull. 60(1), 96–100 (2015)CrossRef
39.
Zurück zum Zitat Song, S.Y., Wang, S., Xu, G.F., Long, G.L.: Entanglement generation with coherent states using cross-Kerr nonlinearity. JOSA B 30(9), 2393–2400 (2013)CrossRefADS Song, S.Y., Wang, S., Xu, G.F., Long, G.L.: Entanglement generation with coherent states using cross-Kerr nonlinearity. JOSA B 30(9), 2393–2400 (2013)CrossRefADS
40.
Zurück zum Zitat Chang, Y., Xu, C., Zhang, S., Yan, L.: (2014): Controlled quantum secure direct communication and authentication protocol based on five-particle cluster state and quantum one-time pad. Chin. Sci. Bull. 59(21), 2541–2546 (2014)CrossRef Chang, Y., Xu, C., Zhang, S., Yan, L.: (2014): Controlled quantum secure direct communication and authentication protocol based on five-particle cluster state and quantum one-time pad. Chin. Sci. Bull. 59(21), 2541–2546 (2014)CrossRef
41.
Zurück zum Zitat Li, J., Jin, H.F., Jing, B.: Improved eavesdropping detection strategy based on four-particle cluster state in quantum direct communication protocol. Chin. Sci. Bull. 57(34), 4434–4441 (2012)CrossRef Li, J., Jin, H.F., Jing, B.: Improved eavesdropping detection strategy based on four-particle cluster state in quantum direct communication protocol. Chin. Sci. Bull. 57(34), 4434–4441 (2012)CrossRef
42.
Zurück zum Zitat Yang, Y.G., Xia, J., Jia, X., Zhang, H.: Undeniable quantum state sharing with a five-atom cluster state in cavity QED. Sci. China Phys. Mech. Astron. 55(12), 2439–2444 (2012)MathSciNetCrossRefADS Yang, Y.G., Xia, J., Jia, X., Zhang, H.: Undeniable quantum state sharing with a five-atom cluster state in cavity QED. Sci. China Phys. Mech. Astron. 55(12), 2439–2444 (2012)MathSciNetCrossRefADS
43.
Zurück zum Zitat Li, C.Y., Zhou, H.Y., Wang, Y., Deng, F.G.: Secure quantum key distribution network with Bell states and local unitary operations. Chin. Phys. Lett. 22, 1049 (2005)CrossRefADS Li, C.Y., Zhou, H.Y., Wang, Y., Deng, F.G.: Secure quantum key distribution network with Bell states and local unitary operations. Chin. Phys. Lett. 22, 1049 (2005)CrossRefADS
44.
Zurück zum Zitat Deng, F.G., Long, G.L., Wang, Y., Xiao, L.: Increasing the efficiencies of the random-choice-based quantum communication protocols with delayed measurement. Chin. Phys. Lett. 21, 2097 (2004)CrossRefADS Deng, F.G., Long, G.L., Wang, Y., Xiao, L.: Increasing the efficiencies of the random-choice-based quantum communication protocols with delayed measurement. Chin. Phys. Lett. 21, 2097 (2004)CrossRefADS
45.
Zurück zum Zitat Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)CrossRefADS Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)CrossRefADS
46.
Zurück zum Zitat Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, 054302 (2006)CrossRefADS Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, 054302 (2006)CrossRefADS
47.
Zurück zum Zitat Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351, 23–25 (2006)CrossRefADSMATH Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351, 23–25 (2006)CrossRefADSMATH
49.
Zurück zum Zitat Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5633–5638 (2000)CrossRefADS Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5633–5638 (2000)CrossRefADS
Metadaten
Titel
Efficient multi-party quantum key agreement by cluster states
verfasst von
Zhiwei Sun
Jianping Yu
Ping Wang
Publikationsdatum
01.01.2016
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 1/2016
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-015-1155-1

Weitere Artikel der Ausgabe 1/2016

Quantum Information Processing 1/2016 Zur Ausgabe

Neuer Inhalt