Skip to main content
Erschienen in: Designs, Codes and Cryptography 3/2022

08.01.2022

Efficient quantum homomorphic encryption scheme with flexible evaluators and its simulation

verfasst von: Jiang Liu, Qin Li, Junyu Quan, Can Wang, Jinjing Shi, Haozhen Situ

Erschienen in: Designs, Codes and Cryptography | Ausgabe 3/2022

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Quantum homomorphic encryption (QHE) allows computation on encrypted data by employing the principles of quantum mechanics. Usually, only one evaluator is chosen to complete such computation and it is easy to get overburdened in network. In addition, users sometimes do not trust only one evalutor. Recently, Chen et al. proposed a very flexible QHE scheme based on the idea of (kn)-threshold quantum state sharing where d evaluators can finish the required operations by cooperating together as long as \( k \le d \le n\). But it can only calculate some of single-qubit unitary operations when \(k\ge 2\) and the quantum capability of each evaluator is a bit demanding. In this paper, we propose an improved flexible QHE scheme which extends the operations that can be computed in the QHE scheme proposed by Chen et al. to involve all single-qubit unitary operations even if \(k \ge 2\) and reduces the quantum capability of at least \(d-1\) evaluators. We also give an example to show the feasibility of the improved scheme and simulate it on the IBM’s cloud quantum computing platform.
Literatur
1.
Zurück zum Zitat Alagic G., Dulek Y., Schaffner C., Speelman F.: Quantum fully homomorphic encryption with verification. Adv. Cryptol. 2017, 438–467 (2017).MathSciNetMATH Alagic G., Dulek Y., Schaffner C., Speelman F.: Quantum fully homomorphic encryption with verification. Adv. Cryptol. 2017, 438–467 (2017).MathSciNetMATH
2.
Zurück zum Zitat Broadbent A., Jeffery S.: Quantum homomorphic encryption for circuits of low T-gate complexity. Adv. Cryptol. 2015, 609–629 (2015). Broadbent A., Jeffery S.: Quantum homomorphic encryption for circuits of low T-gate complexity. Adv. Cryptol. 2015, 609–629 (2015).
3.
Zurück zum Zitat Broadbent A., Schaffner C.: Quantum cryptography beyond quantum key distribution. Des. Codes Cryptogr. 78, 351–382 (2016).MathSciNetCrossRef Broadbent A., Schaffner C.: Quantum cryptography beyond quantum key distribution. Des. Codes Cryptogr. 78, 351–382 (2016).MathSciNetCrossRef
4.
Zurück zum Zitat Chen X.B., Sun Y.R., Xu G., Yang Y.X.: Quantum homomorphic encryption scheme with flexible number of evaluator based on (\(k\), \(n\))-threshold quantum state sharing. Inf. Sci. 501, 172–181 (2019).MathSciNetCrossRef Chen X.B., Sun Y.R., Xu G., Yang Y.X.: Quantum homomorphic encryption scheme with flexible number of evaluator based on (\(k\), \(n\))-threshold quantum state sharing. Inf. Sci. 501, 172–181 (2019).MathSciNetCrossRef
5.
Zurück zum Zitat Chen L., Li Q., Liu C., Peng Y., Yu F.: Efficient mediated semi-quantum key distribution. Physica A 582, 126265 (2021).MathSciNetCrossRef Chen L., Li Q., Liu C., Peng Y., Yu F.: Efficient mediated semi-quantum key distribution. Physica A 582, 126265 (2021).MathSciNetCrossRef
6.
Zurück zum Zitat Dulek Y., Schaffner C., Speelman F.: Quantum homomorphic encryption for polynomial-sized circuits. Adv. Cryptol. 2016, 3–32 (2016).MathSciNetMATH Dulek Y., Schaffner C., Speelman F.: Quantum homomorphic encryption for polynomial-sized circuits. Adv. Cryptol. 2016, 3–32 (2016).MathSciNetMATH
7.
Zurück zum Zitat Fisher K.A.G., Broadbent A., Shalm L.K., Yan Z., Lavoie J., Prevedel R., Jennewein T., Resch K.J.: Quantum computing on encrypted data. Nat. Commun. 5, 3074 (2014).CrossRef Fisher K.A.G., Broadbent A., Shalm L.K., Yan Z., Lavoie J., Prevedel R., Jennewein T., Resch K.J.: Quantum computing on encrypted data. Nat. Commun. 5, 3074 (2014).CrossRef
8.
Zurück zum Zitat Fitzsimons J.F., Kashefi E.: Unconditionally verifiable blind quantum computation. Phys. Rev. A 96, 12303 (2017).CrossRef Fitzsimons J.F., Kashefi E.: Unconditionally verifiable blind quantum computation. Phys. Rev. A 96, 12303 (2017).CrossRef
9.
10.
Zurück zum Zitat Kong X.Q., Li Q., Wu C.H., Yu F., He J.J., Sun Z.Y.: Multiple-server flexible blind quantum computation in networks. Int. J .Theor. Phys. 55, 3001–3007 (2016).CrossRef Kong X.Q., Li Q., Wu C.H., Yu F., He J.J., Sun Z.Y.: Multiple-server flexible blind quantum computation in networks. Int. J .Theor. Phys. 55, 3001–3007 (2016).CrossRef
11.
Zurück zum Zitat Lai C.Y., Chung K.M.: On statistically-secure quantum homomorphic encryption. Quantum Inf. Comput. 18, 785–794 (2017).MathSciNet Lai C.Y., Chung K.M.: On statistically-secure quantum homomorphic encryption. Quantum Inf. Comput. 18, 785–794 (2017).MathSciNet
12.
Zurück zum Zitat Lai C.Y., Chung K.M.: Quantum encryption and generalized Shannon impossibility. Des. Codes Cryptogr. 87, 1961–1972 (2019).MathSciNetCrossRef Lai C.Y., Chung K.M.: Quantum encryption and generalized Shannon impossibility. Des. Codes Cryptogr. 87, 1961–1972 (2019).MathSciNetCrossRef
13.
Zurück zum Zitat Li Q., Chan W.H., Wu C.H., Wen Z.H.: Triple-server blind quantum computation using entanglement swapping. Phys. Rev. A 89, 040302 (2014).CrossRef Li Q., Chan W.H., Wu C.H., Wen Z.H.: Triple-server blind quantum computation using entanglement swapping. Phys. Rev. A 89, 040302 (2014).CrossRef
14.
Zurück zum Zitat Liang M.: Symmetric quantum fully homomorphic encryption with perfect security. Quantum Inf. Process. 12, 3675–3687 (2013).MathSciNetCrossRef Liang M.: Symmetric quantum fully homomorphic encryption with perfect security. Quantum Inf. Process. 12, 3675–3687 (2013).MathSciNetCrossRef
15.
Zurück zum Zitat Liang M.: Quantum fully homomorphic encryption scheme based on universal quantum circuit. Quantum Inf. Process. 14, 2749–2759 (2015).MathSciNetCrossRef Liang M.: Quantum fully homomorphic encryption scheme based on universal quantum circuit. Quantum Inf. Process. 14, 2749–2759 (2015).MathSciNetCrossRef
16.
Zurück zum Zitat Mahadev U.: Classical homomorphic encryption for quantum circuits. In IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pp. 332–338 (2018). Mahadev U.: Classical homomorphic encryption for quantum circuits. In IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pp. 332–338 (2018).
17.
Zurück zum Zitat Marshall K., Jacobsen C.S., Schäfermeier C., Gehring T., Weedbrook C., Andersen U.L.: Continuous-variable quantum computing on encrypted data. Nat. Commun. 7, 13795 (2016).CrossRef Marshall K., Jacobsen C.S., Schäfermeier C., Gehring T., Weedbrook C., Andersen U.L.: Continuous-variable quantum computing on encrypted data. Nat. Commun. 7, 13795 (2016).CrossRef
18.
Zurück zum Zitat Moreno M.G.M., Brito S., Nery R.V., Chaves R.: Device-independent secret sharing and a stronger form of Bell nonlocality. Phys. Rev. A 101, 52339 (2020).MathSciNetCrossRef Moreno M.G.M., Brito S., Nery R.V., Chaves R.: Device-independent secret sharing and a stronger form of Bell nonlocality. Phys. Rev. A 101, 52339 (2020).MathSciNetCrossRef
19.
Zurück zum Zitat Nielsen M., Chuang I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2011).MATH Nielsen M., Chuang I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2011).MATH
20.
Zurück zum Zitat Oliveira M., Nape I., Pinnell J., TabeBordbar N., Forbes A.: Experimental high-dimensional quantum secret sharing with spin-orbit-structured photons. Phys. Rev. A 101, 42303 (2020).CrossRef Oliveira M., Nape I., Pinnell J., TabeBordbar N., Forbes A.: Experimental high-dimensional quantum secret sharing with spin-orbit-structured photons. Phys. Rev. A 101, 42303 (2020).CrossRef
21.
Zurück zum Zitat Ouyang Y., Tan S.H., Zhao L., Fitzsimons J.F.: Computing on quantum shared secrets. Phys. Rev. A 96, 052333 (2017).CrossRef Ouyang Y., Tan S.H., Zhao L., Fitzsimons J.F.: Computing on quantum shared secrets. Phys. Rev. A 96, 052333 (2017).CrossRef
22.
Zurück zum Zitat Ouyang Y., Tan S.H., Fitzsimons J.F.: Quantum homomorphic encryption from quantum codes. Phys. Rev. A 98, 42334 (2018).CrossRef Ouyang Y., Tan S.H., Fitzsimons J.F.: Quantum homomorphic encryption from quantum codes. Phys. Rev. A 98, 42334 (2018).CrossRef
23.
Zurück zum Zitat Pati A.K., Agrawal P.: Special issue on quantum information theory. Quantum Inf. Process. 11, 637–638 (2012).MathSciNetCrossRef Pati A.K., Agrawal P.: Special issue on quantum information theory. Quantum Inf. Process. 11, 637–638 (2012).MathSciNetCrossRef
24.
Zurück zum Zitat Senthoor K., Sarvepalli P.K.: Communication efficient quantum secret sharing. Phys. Rev. A 100, 52313 (2019).CrossRef Senthoor K., Sarvepalli P.K.: Communication efficient quantum secret sharing. Phys. Rev. A 100, 52313 (2019).CrossRef
25.
Zurück zum Zitat Tan S.H., Kettlewell J.A., Ouyang Y., Chen L., Fitzsimons J.F.: A quantum approach to homomorphic encryption. Sci. Rep. 6, 33467 (2016).CrossRef Tan S.H., Kettlewell J.A., Ouyang Y., Chen L., Fitzsimons J.F.: A quantum approach to homomorphic encryption. Sci. Rep. 6, 33467 (2016).CrossRef
26.
Zurück zum Zitat Wang Y., She K., Luo Q., Yang F., Zhao C.: Symmetric ternary quantum homomorphic encryption schemes based on the ternary quantum one-time pad. ArXiv preprint arXiv:1505.02854 (2015). Wang Y., She K., Luo Q., Yang F., Zhao C.: Symmetric ternary quantum homomorphic encryption schemes based on the ternary quantum one-time pad. ArXiv preprint arXiv:​1505.​02854 (2015).
27.
Zurück zum Zitat Wojciech, K., Stephanie, W.: Towards large-scale quantum networks. In Proceedings of the Sixth Annual ACM International Conference on Nanoscale Computing and Communication, pp. 1–7 (2019). Wojciech, K., Stephanie, W.: Towards large-scale quantum networks. In Proceedings of the Sixth Annual ACM International Conference on Nanoscale Computing and Communication, pp. 1–7 (2019).
28.
Zurück zum Zitat Xu G., Xiao K., Li Z.P., Niu X.X., Ryan M.: Controlled secure direct communication protocol via the three-qubit partially entangled set of states. CMC-Comput. Mater. Contin. 58, 809–827 (2019).CrossRef Xu G., Xiao K., Li Z.P., Niu X.X., Ryan M.: Controlled secure direct communication protocol via the three-qubit partially entangled set of states. CMC-Comput. Mater. Contin. 58, 809–827 (2019).CrossRef
29.
Zurück zum Zitat Yu L., Pérez-Delgado C.A., Fitzsimons J.F.: Limitations on information-theoretically-secure quantum homomorphic encryption. Phys. Rev. A 90, 050303 (2014).CrossRef Yu L., Pérez-Delgado C.A., Fitzsimons J.F.: Limitations on information-theoretically-secure quantum homomorphic encryption. Phys. Rev. A 90, 050303 (2014).CrossRef
30.
Zurück zum Zitat Zhang J.W., Chen X.B., Xu G., Yang Y.X.: Universal quantum circuit evaluation on encrypted data using probabilistic quantum homomorphic encryption scheme. Chin. Phys. B 30, 70309–070309 (2021).CrossRef Zhang J.W., Chen X.B., Xu G., Yang Y.X.: Universal quantum circuit evaluation on encrypted data using probabilistic quantum homomorphic encryption scheme. Chin. Phys. B 30, 70309–070309 (2021).CrossRef
Metadaten
Titel
Efficient quantum homomorphic encryption scheme with flexible evaluators and its simulation
verfasst von
Jiang Liu
Qin Li
Junyu Quan
Can Wang
Jinjing Shi
Haozhen Situ
Publikationsdatum
08.01.2022
Verlag
Springer US
Erschienen in
Designs, Codes and Cryptography / Ausgabe 3/2022
Print ISSN: 0925-1022
Elektronische ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-021-00993-2

Weitere Artikel der Ausgabe 3/2022

Designs, Codes and Cryptography 3/2022 Zur Ausgabe

Premium Partner