Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 1/2018

16.01.2018 | RESEARCH PAPER

Efficient size and shape optimization of truss structures subject to stress and local buckling constraints using sequential linear programming

verfasst von: Jonas Schwarz, Tian Chen, Kristina Shea, Tino Stanković

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The advance in digital fabrication technologies and additive manufacturing allows for the fabrication of complex truss structure designs but at the same time posing challenging structural optimization problems to capitalize on this new design freedom. In response to this, an iterative approach in which Sequential Linear Programming (SLP) is used to simultaneously solve a size and shape optimization sub-problem subject to local stress and Euler buckling constraints is proposed in this work. To accomplish this, a first order Taylor expansion for the nodal movement and the buckling constraint is derived to conform to the SLP problem formulation. At each iteration a post-processing step is initiated to map a design vector to the exact buckling constraint boundary in order to facilitate the overall efficiency. The method is verified against an exact non-linear optimization problem formulation on a range of benchmark examples obtained from the literature. The results show that the proposed method produces optimized designs that are either close or identical to the solutions obtained by the non-linear problem formulation while significantly decreasing the computational time. This enables more efficient size and shape optimization of truss structures considering practical engineering constraints.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Precentage based on layout optima
 
Literatur
Zurück zum Zitat Achtziger W (1997) Topology optimization of discrete structures. In: Topology optimization in structural mechanics. Springer, pp 57–100 Achtziger W (1997) Topology optimization of discrete structures. In: Topology optimization in structural mechanics. Springer, pp 57–100
Zurück zum Zitat Achtziger W (1999a) Local stability of trusses in the context of topology optimization Part I: exact modelling. Structural Optimization 17(4):235–246 Achtziger W (1999a) Local stability of trusses in the context of topology optimization Part I: exact modelling. Structural Optimization 17(4):235–246
Zurück zum Zitat Achtziger W (1999b) Local stability of trusses in the context of topology optimization Part II: a numerical approach. Structural Optimization 17(4):247–258 Achtziger W (1999b) Local stability of trusses in the context of topology optimization Part II: a numerical approach. Structural Optimization 17(4):247–258
Zurück zum Zitat Achtziger W, Bendsøe M, Ben-Tal A, Zowe J (1992) Equivalent displacement based formulations for maximum strength truss topology design. IMPACT of Computing in Science and Engineering 4(4):315–345MathSciNetCrossRefMATH Achtziger W, Bendsøe M, Ben-Tal A, Zowe J (1992) Equivalent displacement based formulations for maximum strength truss topology design. IMPACT of Computing in Science and Engineering 4(4):315–345MathSciNetCrossRefMATH
Zurück zum Zitat Ben-Tal A, Kočvara M, Zowe J (1993) Two nonsmooth approaches to simultaneous geometry and topology design of trusses. In: Topology design of structures. Springer, pp 31–42 Ben-Tal A, Kočvara M, Zowe J (1993) Two nonsmooth approaches to simultaneous geometry and topology design of trusses. In: Topology design of structures. Springer, pp 31–42
Zurück zum Zitat Bendsøe MP, Ben-Tal A, Zowe J (1994) Optimization methods for truss geometry and topology design. Structural Optimization 7(3): 141–159CrossRef Bendsøe MP, Ben-Tal A, Zowe J (1994) Optimization methods for truss geometry and topology design. Structural Optimization 7(3): 141–159CrossRef
Zurück zum Zitat Chang PS, Rosen DW (2013) The size matching and scaling method: a synthesis method for the design of mesoscale cellular structures. Int J Comput Integr Manuf 26(10):907–927CrossRef Chang PS, Rosen DW (2013) The size matching and scaling method: a synthesis method for the design of mesoscale cellular structures. Int J Comput Integr Manuf 26(10):907–927CrossRef
Zurück zum Zitat Dorn WS (1964) Automatic design of optimal structures. Journal de mecanique 3:25–52 Dorn WS (1964) Automatic design of optimal structures. Journal de mecanique 3:25–52
Zurück zum Zitat Fleron P (1964) Minimum weight of trusses. Bygningsstatiske Meddelelser 35(3):81 Fleron P (1964) Minimum weight of trusses. Bygningsstatiske Meddelelser 35(3):81
Zurück zum Zitat Freund R (2004) Truss design and convex optimization. MIT Course notes, Massachusetts Institute of Technology Freund R (2004) Truss design and convex optimization. MIT Course notes, Massachusetts Institute of Technology
Zurück zum Zitat Gilbert M, Tyas A (2003) Layout optimization of large–scale pin–jointed frames. Eng Comput 20(8):1044–1064CrossRefMATH Gilbert M, Tyas A (2003) Layout optimization of large–scale pin–jointed frames. Eng Comput 20(8):1044–1064CrossRefMATH
Zurück zum Zitat Grant M, Boyd S (2008) Graph implementations for nonsmooth convex programs. In: Blondel V, Boyd S, Kimura H (eds) Recent advances in learning and control, lecture notes in control and information sciences. Springer, pp 95-110 Grant M, Boyd S (2008) Graph implementations for nonsmooth convex programs. In: Blondel V, Boyd S, Kimura H (eds) Recent advances in learning and control, lecture notes in control and information sciences. Springer, pp 95-110
Zurück zum Zitat Haftka RT, Gürdal Z (2012) Elements of structural optimization, vol 11. Springer Science & Business Media Haftka RT, Gürdal Z (2012) Elements of structural optimization, vol 11. Springer Science & Business Media
Zurück zum Zitat Hansen S, Vanderplaats G (1990) Approximation method for configuration optimization of trusses. AIAA journal 28(1):161–168CrossRef Hansen S, Vanderplaats G (1990) Approximation method for configuration optimization of trusses. AIAA journal 28(1):161–168CrossRef
Zurück zum Zitat He L, Gilbert M (2015) Rationalization of trusses generated via layout optimization. Struct Multidiscip Optim 52(4):677–694MathSciNetCrossRef He L, Gilbert M (2015) Rationalization of trusses generated via layout optimization. Struct Multidiscip Optim 52(4):677–694MathSciNetCrossRef
Zurück zum Zitat Hemp W (1974) Michell framework for uniform load between fixed supports. Eng Optim 1(1):61–69CrossRef Hemp W (1974) Michell framework for uniform load between fixed supports. Eng Optim 1(1):61–69CrossRef
Zurück zum Zitat Kočvara M (2002) On the modelling and solving of the truss design problem with global stability constraints. Struct Multidiscip Optim 23(3):189–203CrossRef Kočvara M (2002) On the modelling and solving of the truss design problem with global stability constraints. Struct Multidiscip Optim 23(3):189–203CrossRef
Zurück zum Zitat Kocvara M, Zowe J (1995) How to optimize mechanical structures simultaneously with respect to topology and geometry. In: Olhoff N, Rozvany GIN (eds) Proceedings of the first world congress of structural and multidisciplinary optimization, vol 23, pp 135–140 Kocvara M, Zowe J (1995) How to optimize mechanical structures simultaneously with respect to topology and geometry. In: Olhoff N, Rozvany GIN (eds) Proceedings of the first world congress of structural and multidisciplinary optimization, vol 23, pp 135–140
Zurück zum Zitat Kocvara M, Zowe J (1996) How mathematics can help in design of mechanical structures. Pitman Research Notes in Mathematics Series 11:76–93MATH Kocvara M, Zowe J (1996) How mathematics can help in design of mechanical structures. Pitman Research Notes in Mathematics Series 11:76–93MATH
Zurück zum Zitat Lamberti L, Pappalettere C (2000) Comparison of the numerical efficiency of different sequential linear programming based algorithms for structural optimisation problems. Comput Struct 76(6):713–728CrossRef Lamberti L, Pappalettere C (2000) Comparison of the numerical efficiency of different sequential linear programming based algorithms for structural optimisation problems. Comput Struct 76(6):713–728CrossRef
Zurück zum Zitat Lamberti L, Pappalettere C (2003a) Move limits definition in structural optimization with sequential linear programming. part i: optimization algorithm. Comput Struct 81(4):197–213 Lamberti L, Pappalettere C (2003a) Move limits definition in structural optimization with sequential linear programming. part i: optimization algorithm. Comput Struct 81(4):197–213
Zurück zum Zitat Lamberti L, Pappalettere C (2003b) Move limits definition in structural optimization with sequential linear programming. part ii: numerical examples. Comput Struct 81(4):215–238 Lamberti L, Pappalettere C (2003b) Move limits definition in structural optimization with sequential linear programming. part ii: numerical examples. Comput Struct 81(4):215–238
Zurück zum Zitat Lewiński T, Zhou M, Rozvany G (1994) Extended exact solutions for least-weight truss layouts—part i: cantilever with a horizontal axis of symmetry. Int J Mech Sci 36(5):375–398CrossRefMATH Lewiński T, Zhou M, Rozvany G (1994) Extended exact solutions for least-weight truss layouts—part i: cantilever with a horizontal axis of symmetry. Int J Mech Sci 36(5):375–398CrossRefMATH
Zurück zum Zitat Majid K, Tang X (1984) Optimum design of pin–jointed space structures with variable shape. Struct Eng 62:31–37 Majid K, Tang X (1984) Optimum design of pin–jointed space structures with variable shape. Struct Eng 62:31–37
Zurück zum Zitat Nesterov Y, Nemirovskii A (1994) Interior-point polynomial algorithms in convex programming. SIAM, PhiladelphiaCrossRefMATH Nesterov Y, Nemirovskii A (1994) Interior-point polynomial algorithms in convex programming. SIAM, PhiladelphiaCrossRefMATH
Zurück zum Zitat Pedersen NL, Nielsen AK (2003) Optimization of practical trusses with constraints on eigenfrequencies, displacements, stresses, and buckling. Struct Multidiscip Optim 25(5):436–445CrossRef Pedersen NL, Nielsen AK (2003) Optimization of practical trusses with constraints on eigenfrequencies, displacements, stresses, and buckling. Struct Multidiscip Optim 25(5):436–445CrossRef
Zurück zum Zitat Rosen DW (2016) A review of synthesis methods for additive manufacturing. Virtual and Physical Prototyping 11(4):305–317CrossRef Rosen DW (2016) A review of synthesis methods for additive manufacturing. Virtual and Physical Prototyping 11(4):305–317CrossRef
Zurück zum Zitat Schittkowski K, Zillober C, Zotemantel R (1994) Numerical comparison of nonlinear programming algorithms for structural optimization. Structural Optimization 7(1):1–19CrossRef Schittkowski K, Zillober C, Zotemantel R (1994) Numerical comparison of nonlinear programming algorithms for structural optimization. Structural Optimization 7(1):1–19CrossRef
Zurück zum Zitat Schmit L (1960) Structural design by systematic synthesis. In: Procee– dings of 2nd asce conference electronic computation. ASCE, New York Schmit L (1960) Structural design by systematic synthesis. In: Procee– dings of 2nd asce conference electronic computation. ASCE, New York
Zurück zum Zitat Smith CJ, Gilbert M, Todd I, Derguti F (2016) Application of layout optimization to the design of additively manufactured metallic components. Struct Multidiscip Optim 54(5):1297–1313MathSciNetCrossRef Smith CJ, Gilbert M, Todd I, Derguti F (2016) Application of layout optimization to the design of additively manufactured metallic components. Struct Multidiscip Optim 54(5):1297–1313MathSciNetCrossRef
Zurück zum Zitat Sokół T, Rozvany G (2013) On the adaptive ground structure approach for multi-load truss topology optimization. In: Tenth world congress on structural and multidisciplinary optimization, pp 19–24 Sokół T, Rozvany G (2013) On the adaptive ground structure approach for multi-load truss topology optimization. In: Tenth world congress on structural and multidisciplinary optimization, pp 19–24
Zurück zum Zitat Topping B (1983) Shape optimization of skeletal structures: a review. J Struct Eng 109(8):1933–1951CrossRef Topping B (1983) Shape optimization of skeletal structures: a review. J Struct Eng 109(8):1933–1951CrossRef
Zurück zum Zitat Tyas A, Gilbert M, Pritchard T (2006) Practical plastic layout optimization of trusses incorporating stability considerations. Comput Struct 84(3–4):115–126CrossRef Tyas A, Gilbert M, Pritchard T (2006) Practical plastic layout optimization of trusses incorporating stability considerations. Comput Struct 84(3–4):115–126CrossRef
Zurück zum Zitat Vanderplaats G, Kodiyalam S, Long M (1990) A two-level approximation method for stress constraints in structural optimization. In: Thirtieth structures, structural dynamics and materials conference, p 1218 Vanderplaats G, Kodiyalam S, Long M (1990) A two-level approximation method for stress constraints in structural optimization. In: Thirtieth structures, structural dynamics and materials conference, p 1218
Zurück zum Zitat Wächter A, Biegler LT (2006) On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math Program 106(1):25–57MathSciNetCrossRefMATH Wächter A, Biegler LT (2006) On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math Program 106(1):25–57MathSciNetCrossRefMATH
Metadaten
Titel
Efficient size and shape optimization of truss structures subject to stress and local buckling constraints using sequential linear programming
verfasst von
Jonas Schwarz
Tian Chen
Kristina Shea
Tino Stanković
Publikationsdatum
16.01.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 1/2018
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-017-1885-z

Weitere Artikel der Ausgabe 1/2018

Structural and Multidisciplinary Optimization 1/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.