Skip to main content
Erschienen in: Journal of Materials Science 17/2019

05.06.2019 | Energy materials

Electrocatalysts for oxygen reduction reaction based on electrospun polyacrylonitrile, styrene–acrylonitrile copolymer and carbon nanotube composite fibres

verfasst von: Marek Mooste, Elo Kibena-Põldsepp, Viktoria Vassiljeva, Maido Merisalu, Mati Kook, Alexey Treshchalov, Vambola Kisand, Mai Uibu, Andres Krumme, Väino Sammelselg, Kaido Tammeveski

Erschienen in: Journal of Materials Science | Ausgabe 17/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, polyacrylonitrile (PAN), styrene–acrylonitrile copolymer (SAN) and multi-walled carbon nanotubes (MWCNTs) composite fibres (PAN/SAN/CNT) were prepared by electrospinning. The electrospun fibres were further pyrolysed (800–1200 °C) in N2 atmosphere with or without prior stabilisation (at 250 °C) in air to produce electrocatalyst materials for oxygen reduction reaction (ORR). The ORR was studied in alkaline solution by linear sweep voltammetry and rotating disc electrode (RDE) method. Scanning electron microscopy images revealed the tubular structure of the pyrolysed PAN/SAN/CNT fibres with visible MWCNTs. According to the X-ray photoelectron spectroscopy results, the prepared catalysts consisted of carbon, oxygen and nitrogen. According to the RDE results, the most active catalyst towards the ORR (the onset and half-wave potential of − 0.13 V and −0.29 V vs SCE in 0.1 M KOH, respectively) was obtained by pyrolysing non-stabilised PAN/SAN/CNT fibres at 1100 °C. The ORR activity of the best performing catalyst is attributed to the nitrogen species, quinone groups and porous tubular structure of the catalyst material.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Liu Q, Zhu JH, Zhang LW, Qiu YJ (2018) Recent advances in energy materials by electrospinning. Renew Sustain Energy Rev 81:1825–1858CrossRef Liu Q, Zhu JH, Zhang LW, Qiu YJ (2018) Recent advances in energy materials by electrospinning. Renew Sustain Energy Rev 81:1825–1858CrossRef
2.
Zurück zum Zitat Sarapuu A, Kibena-Põldsepp E, Borghei M, Tammeveski K (2018) Electrocatalysis of oxygen reduction on heteroatom-doped nanocarbons and transition metal-nitrogen-carbon catalysts for alkaline membrane fuel cells. J Mater Chem A 6:776–804CrossRef Sarapuu A, Kibena-Põldsepp E, Borghei M, Tammeveski K (2018) Electrocatalysis of oxygen reduction on heteroatom-doped nanocarbons and transition metal-nitrogen-carbon catalysts for alkaline membrane fuel cells. J Mater Chem A 6:776–804CrossRef
3.
Zurück zum Zitat Rauf M, Wang JW, Zhang PX, Iqbal W, Qu JL, Li YL (2018) Non-precious nanostructured materials by electrospinning and their applications for oxygen reduction in polymer electrolyte membrane fuel cells. J Power Sources 408:17–27CrossRef Rauf M, Wang JW, Zhang PX, Iqbal W, Qu JL, Li YL (2018) Non-precious nanostructured materials by electrospinning and their applications for oxygen reduction in polymer electrolyte membrane fuel cells. J Power Sources 408:17–27CrossRef
4.
Zurück zum Zitat Miao FJ, Shao CL, Li XH, Lu N, Wang KX, Zhang X, Liu YC (2015) Flexible solid-state supercapacitors based on freestanding electrodes of electrospun polyacrylonitrile@polyaniline core-shell nanofibers. Electrochim Acta 176:293–300CrossRef Miao FJ, Shao CL, Li XH, Lu N, Wang KX, Zhang X, Liu YC (2015) Flexible solid-state supercapacitors based on freestanding electrodes of electrospun polyacrylonitrile@polyaniline core-shell nanofibers. Electrochim Acta 176:293–300CrossRef
5.
Zurück zum Zitat Kim M, Kim Y, Lee KM, Jeong SY, Lee E, Baeck SH, Shim SE (2016) Electrochemical improvement due to alignment of carbon nanofibers fabricated by electrospinning as an electrode for supercapacitor. Carbon 99:607–618CrossRef Kim M, Kim Y, Lee KM, Jeong SY, Lee E, Baeck SH, Shim SE (2016) Electrochemical improvement due to alignment of carbon nanofibers fabricated by electrospinning as an electrode for supercapacitor. Carbon 99:607–618CrossRef
6.
Zurück zum Zitat Ju YW, Choi GR, Jung HR, Lee WJ (2008) Electrochemical properties of electrospun PAN/MWCNT carbon nanofibers electrodes coated with polypyrrole. Electrochim Acta 53:5796–5803CrossRef Ju YW, Choi GR, Jung HR, Lee WJ (2008) Electrochemical properties of electrospun PAN/MWCNT carbon nanofibers electrodes coated with polypyrrole. Electrochim Acta 53:5796–5803CrossRef
7.
Zurück zum Zitat Xue GB, Zhong J, Cheng YL, Wang B (2016) Facile fabrication of cross-linked carbon nanofiber via directly carbonizing electrospun polyacrylonitrile nanofiber as high performance scaffold for supercapacitors. Electrochim Acta 215:29–35CrossRef Xue GB, Zhong J, Cheng YL, Wang B (2016) Facile fabrication of cross-linked carbon nanofiber via directly carbonizing electrospun polyacrylonitrile nanofiber as high performance scaffold for supercapacitors. Electrochim Acta 215:29–35CrossRef
8.
Zurück zum Zitat Zhou ZP, Wu XF, Hou HQ (2014) Electrospun carbon nanofibers surface-grown with carbon nanotubes and polyaniline for use as high-performance electrode materials of supercapacitors. RSC Adv 4:23622–23629CrossRef Zhou ZP, Wu XF, Hou HQ (2014) Electrospun carbon nanofibers surface-grown with carbon nanotubes and polyaniline for use as high-performance electrode materials of supercapacitors. RSC Adv 4:23622–23629CrossRef
9.
Zurück zum Zitat Alegre C, Modica E, Di Blasi A, Di Blasi O, Busacca C, Ferraro M, Arico AS, Antonucci V, Baglio V (2018) NiCo-loaded carbon nanofibers obtained by electrospinning: bifunctional behavior as air electrodes. Renew Energy 125:250–259CrossRef Alegre C, Modica E, Di Blasi A, Di Blasi O, Busacca C, Ferraro M, Arico AS, Antonucci V, Baglio V (2018) NiCo-loaded carbon nanofibers obtained by electrospinning: bifunctional behavior as air electrodes. Renew Energy 125:250–259CrossRef
10.
Zurück zum Zitat Surendran S, Shanmugapriya S, Sivanantham A, Shanmugam S, Selvan RK (2018) Electrospun carbon nanofibers encapsulated with NiCoP: a multifunctional electrode for supercapattery and oxygen reduction, oxygen evolution, and hydrogen evolution reactions. Adv Energy Mater 8:1800555CrossRef Surendran S, Shanmugapriya S, Sivanantham A, Shanmugam S, Selvan RK (2018) Electrospun carbon nanofibers encapsulated with NiCoP: a multifunctional electrode for supercapattery and oxygen reduction, oxygen evolution, and hydrogen evolution reactions. Adv Energy Mater 8:1800555CrossRef
11.
Zurück zum Zitat Lee BS, Son SB, Park KM, Lee G, Oh KH, Lee SH, Yu WR (2012) Effect of pores in hollow carbon nanofibers on their negative electrode properties for a lithium rechargeable battery. ACS Appl Mater Interfaces 4:6701–6709 Lee BS, Son SB, Park KM, Lee G, Oh KH, Lee SH, Yu WR (2012) Effect of pores in hollow carbon nanofibers on their negative electrode properties for a lithium rechargeable battery. ACS Appl Mater Interfaces 4:6701–6709
12.
Zurück zum Zitat Guo JY, Liu JQ, Dai HH, Zhou R, Wang TY, Zhang CC, Ding S, Wang HG (2017) Nitrogen doped carbon nanofiber derived from polypyrrole functionalized polyacrylonitrile for applications in lithium-ion batteries and oxygen reduction reaction. J Colloid Interface Sci 507:154–161CrossRef Guo JY, Liu JQ, Dai HH, Zhou R, Wang TY, Zhang CC, Ding S, Wang HG (2017) Nitrogen doped carbon nanofiber derived from polypyrrole functionalized polyacrylonitrile for applications in lithium-ion batteries and oxygen reduction reaction. J Colloid Interface Sci 507:154–161CrossRef
13.
Zurück zum Zitat Ji LW, Yao YF, Toprakci O, Lin Z, Liang YZ, Shi Q, Medford AJ, Millns CR, Zhang XW (2010) Fabrication of carbon nanofiber-driven electrodes from electrospun polyacrylonitrile/polypyrrole bicomponents for high-performance rechargeable lithium-ion batteries. J Power Sources 195:2050–2056CrossRef Ji LW, Yao YF, Toprakci O, Lin Z, Liang YZ, Shi Q, Medford AJ, Millns CR, Zhang XW (2010) Fabrication of carbon nanofiber-driven electrodes from electrospun polyacrylonitrile/polypyrrole bicomponents for high-performance rechargeable lithium-ion batteries. J Power Sources 195:2050–2056CrossRef
14.
Zurück zum Zitat Miao FJ, Shao CL, Li XH, Wang KX, Liu YC (2016) Flexible solid-state supercapacitors based on freestanding nitrogen-doped porous carbon nanofibers derived from electrospun polyacrylonitrile@polyaniline nanofibers. J Mater Chem A 4:4180–4187CrossRef Miao FJ, Shao CL, Li XH, Wang KX, Liu YC (2016) Flexible solid-state supercapacitors based on freestanding nitrogen-doped porous carbon nanofibers derived from electrospun polyacrylonitrile@polyaniline nanofibers. J Mater Chem A 4:4180–4187CrossRef
15.
Zurück zum Zitat Qiu YJ, Yu J, Shi TN, Zhou XS, Bai XD, Huang JY (2011) Nitrogen-doped ultrathin carbon nanofibers derived from electrospinning: large-scale production, unique structure, and application as electrocatalysts for oxygen reduction. J Power Sources 196:9862–9867CrossRef Qiu YJ, Yu J, Shi TN, Zhou XS, Bai XD, Huang JY (2011) Nitrogen-doped ultrathin carbon nanofibers derived from electrospinning: large-scale production, unique structure, and application as electrocatalysts for oxygen reduction. J Power Sources 196:9862–9867CrossRef
16.
Zurück zum Zitat Wang SG, Dai CL, Li JP, Zhao L, Ren ZH, Ren YQ, Qiu YJ, Yu J (2015) The effect of different nitrogen sources on the electrocatalytic properties of nitrogen-doped electrospun carbon nanofibers for the oxygen reduction reaction. Int J Hydrog Energy 40:4673–4682CrossRef Wang SG, Dai CL, Li JP, Zhao L, Ren ZH, Ren YQ, Qiu YJ, Yu J (2015) The effect of different nitrogen sources on the electrocatalytic properties of nitrogen-doped electrospun carbon nanofibers for the oxygen reduction reaction. Int J Hydrog Energy 40:4673–4682CrossRef
17.
Zurück zum Zitat Yan XX, Liu KX, Wang T, You Y, Liu JG, Wang P, Pan XQ, Wang GF, Luo J, Zhu J (2017) Atomic interpretation of high activity on transition metal and nitrogen-doped carbon nanofibers for catalyzing oxygen reduction. J Mater Chem A 5:3336–3345CrossRef Yan XX, Liu KX, Wang T, You Y, Liu JG, Wang P, Pan XQ, Wang GF, Luo J, Zhu J (2017) Atomic interpretation of high activity on transition metal and nitrogen-doped carbon nanofibers for catalyzing oxygen reduction. J Mater Chem A 5:3336–3345CrossRef
18.
Zurück zum Zitat Liu Q, Cao S, Qiu Y (2017) Effect of carbonization temperature on bimetallic FeCo-N/C nanofiber electrocatalysts for oxygen reduction reaction in sulfuric acid solution. Int J Hydrog Energy 42:29274–29282CrossRef Liu Q, Cao S, Qiu Y (2017) Effect of carbonization temperature on bimetallic FeCo-N/C nanofiber electrocatalysts for oxygen reduction reaction in sulfuric acid solution. Int J Hydrog Energy 42:29274–29282CrossRef
19.
Zurück zum Zitat Shang CQ, Li MC, Wang ZY, Wu SF, Lu ZG (2016) Electrospun nitrogen-doped carbon nanofibers encapsulating cobalt nanoparticles as efficient oxygen reduction reaction catalysts. ChemElectroChem 3:1437–1445CrossRef Shang CQ, Li MC, Wang ZY, Wu SF, Lu ZG (2016) Electrospun nitrogen-doped carbon nanofibers encapsulating cobalt nanoparticles as efficient oxygen reduction reaction catalysts. ChemElectroChem 3:1437–1445CrossRef
20.
Zurück zum Zitat Liu C, Wang J, Li JS, Liu JZ, Wang CH, Sun XY, Shen JY, Han WQ, Wang LJ (2017) Electrospun ZIF-based hierarchical carbon fiber as an efficient electrocatalyst for the oxygen reduction reaction. J Mater Chem A 5:1211–1220CrossRef Liu C, Wang J, Li JS, Liu JZ, Wang CH, Sun XY, Shen JY, Han WQ, Wang LJ (2017) Electrospun ZIF-based hierarchical carbon fiber as an efficient electrocatalyst for the oxygen reduction reaction. J Mater Chem A 5:1211–1220CrossRef
21.
Zurück zum Zitat Qiu YJ, Yu J, Wu WH, Yin J, Bai XD (2013) Fe-N/C nanofiber electrocatalysts with improved activity and stability for oxygen reduction in alkaline and acid solutions. J Solid State Electrochem 17:565–573CrossRef Qiu YJ, Yu J, Wu WH, Yin J, Bai XD (2013) Fe-N/C nanofiber electrocatalysts with improved activity and stability for oxygen reduction in alkaline and acid solutions. J Solid State Electrochem 17:565–573CrossRef
22.
Zurück zum Zitat Guo JX, Niu QJ, Yuan YC, Maitlo I, Nie J, Ma GP (2017) Electrospun core-shell nanofibers derived Fe-S/N doped carbon material for oxygen reduction reaction. Appl Surf Sci 416:118–123CrossRef Guo JX, Niu QJ, Yuan YC, Maitlo I, Nie J, Ma GP (2017) Electrospun core-shell nanofibers derived Fe-S/N doped carbon material for oxygen reduction reaction. Appl Surf Sci 416:118–123CrossRef
23.
Zurück zum Zitat Park J-H, Ju Y-W, Park S-H, Jung H-R, Yang K-S, Lee W-J (2009) Effects of electrospun polyacrylonitrile-based carbon nanofibers as catalyst support in PEMFC. J Appl Electrochem 39:1229–1236CrossRef Park J-H, Ju Y-W, Park S-H, Jung H-R, Yang K-S, Lee W-J (2009) Effects of electrospun polyacrylonitrile-based carbon nanofibers as catalyst support in PEMFC. J Appl Electrochem 39:1229–1236CrossRef
24.
Zurück zum Zitat Li M, Zhao S, Han G, Yang B (2009) Electrospinning-derived carbon fibrous mats improving the performance of commercial Pt/C for methanol oxidation. J Power Sources 191:351–356CrossRef Li M, Zhao S, Han G, Yang B (2009) Electrospinning-derived carbon fibrous mats improving the performance of commercial Pt/C for methanol oxidation. J Power Sources 191:351–356CrossRef
25.
Zurück zum Zitat Guo QH, Zhao D, Liu SW, Chen SL, Hanif M, Hou HQ (2014) Free-standing nitrogen-doped carbon nanotubes at electrospun carbon nanofibers composite as an efficient electrocatalyst for oxygen reduction. Electrochim Acta 138:318–324CrossRef Guo QH, Zhao D, Liu SW, Chen SL, Hanif M, Hou HQ (2014) Free-standing nitrogen-doped carbon nanotubes at electrospun carbon nanofibers composite as an efficient electrocatalyst for oxygen reduction. Electrochim Acta 138:318–324CrossRef
26.
Zurück zum Zitat Mei RG, Xi JJ, Ma L, An L, Wang F, Sun HY, Luo ZK, Wu QX (2017) Multi-scaled porous Fe-N/C nanofibrous catalysts for the cathode electrodes of direct methanol fuel cells. J Electrochem Soc 164:F1556–F1565CrossRef Mei RG, Xi JJ, Ma L, An L, Wang F, Sun HY, Luo ZK, Wu QX (2017) Multi-scaled porous Fe-N/C nanofibrous catalysts for the cathode electrodes of direct methanol fuel cells. J Electrochem Soc 164:F1556–F1565CrossRef
27.
Zurück zum Zitat McClure JP, Jiang RZ, Chu D, Fedkiw PS (2014) Oxygen electroreduction on Fe- or Co-containing carbon fibers. Carbon 79:457–469CrossRef McClure JP, Jiang RZ, Chu D, Fedkiw PS (2014) Oxygen electroreduction on Fe- or Co-containing carbon fibers. Carbon 79:457–469CrossRef
28.
Zurück zum Zitat Uhm S, Jeong B, Lee J (2011) A facile route for preparation of non-noble CNF cathode catalysts in alkaline ethanol fuel cells. Electrochim Acta 56:9186–9190CrossRef Uhm S, Jeong B, Lee J (2011) A facile route for preparation of non-noble CNF cathode catalysts in alkaline ethanol fuel cells. Electrochim Acta 56:9186–9190CrossRef
29.
Zurück zum Zitat McClure JP, Devine CK, Jiang RZ, Chu D, Cuomo JJ, Parsons GN, Fedkiw PS (2013) Oxygen electroreduction on Ti- and Fe-containing carbon fibers. J Electrochem Soc 160:F769–F778CrossRef McClure JP, Devine CK, Jiang RZ, Chu D, Cuomo JJ, Parsons GN, Fedkiw PS (2013) Oxygen electroreduction on Ti- and Fe-containing carbon fibers. J Electrochem Soc 160:F769–F778CrossRef
30.
Zurück zum Zitat Kim M, Nam DH, Park HY, Kwon C, Eom K, Yoo S, Jang J, Kim HJ, Cho E, Kwon H (2015) Cobalt-carbon nanofibers as an efficient support-free catalyst for oxygen reduction reaction with a systematic study of active site formation. J Mater Chem A 3:14284–14290CrossRef Kim M, Nam DH, Park HY, Kwon C, Eom K, Yoo S, Jang J, Kim HJ, Cho E, Kwon H (2015) Cobalt-carbon nanofibers as an efficient support-free catalyst for oxygen reduction reaction with a systematic study of active site formation. J Mater Chem A 3:14284–14290CrossRef
31.
Zurück zum Zitat Yin J, Qiu YJ, Yu J (2013) Onion-like graphitic nanoshell structured Fe-N/C nanofibers derived from electrospinning for oxygen reduction reaction in acid media. Electrochem Commun 30:1–4CrossRef Yin J, Qiu YJ, Yu J (2013) Onion-like graphitic nanoshell structured Fe-N/C nanofibers derived from electrospinning for oxygen reduction reaction in acid media. Electrochem Commun 30:1–4CrossRef
32.
Zurück zum Zitat Kim IT, Song MJ, Shin S, Shin MW (2018) Co- and defect-rich carbon nanofiber films as a highly efficient electrocatalyst for oxygen reduction. Appl Surf Sci 435:1159–1167CrossRef Kim IT, Song MJ, Shin S, Shin MW (2018) Co- and defect-rich carbon nanofiber films as a highly efficient electrocatalyst for oxygen reduction. Appl Surf Sci 435:1159–1167CrossRef
33.
Zurück zum Zitat Yin J, Qiu YJ, Yu J (2013) Porous nitrogen-doped carbon nanofibers as highly efficient metal-free electrocatalyst for oxygen reduction reaction. J Electroanal Chem 702:56–59CrossRef Yin J, Qiu YJ, Yu J (2013) Porous nitrogen-doped carbon nanofibers as highly efficient metal-free electrocatalyst for oxygen reduction reaction. J Electroanal Chem 702:56–59CrossRef
34.
Zurück zum Zitat Liu D, Zhang XP, Sun ZC, You TY (2013) Free-standing nitrogen-doped carbon nanofiber films as highly efficient electrocatalysts for oxygen reduction. Nanoscale 5:9528–9531CrossRef Liu D, Zhang XP, Sun ZC, You TY (2013) Free-standing nitrogen-doped carbon nanofiber films as highly efficient electrocatalysts for oxygen reduction. Nanoscale 5:9528–9531CrossRef
35.
Zurück zum Zitat Qiu YJ, Yin J, Hou HW, Yu J, Zuo XB (2013) Preparation of nitrogen-doped carbon submicrotubes by coaxial electrospinning and their electrocatalytic activity for oxygen reduction reaction in acid media. Electrochim Acta 96:225–229CrossRef Qiu YJ, Yin J, Hou HW, Yu J, Zuo XB (2013) Preparation of nitrogen-doped carbon submicrotubes by coaxial electrospinning and their electrocatalytic activity for oxygen reduction reaction in acid media. Electrochim Acta 96:225–229CrossRef
36.
Zurück zum Zitat Zamani P, Higgins D, Hassan F, Jiang GP, Wu J, Abureden S, Chen ZW (2014) Electrospun iron-polyaniline-polyacrylonitrile derived nanofibers as non-precious oxygen reduction reaction catalysts for PEM fuel cells. Electrochim Acta 139:111–116CrossRef Zamani P, Higgins D, Hassan F, Jiang GP, Wu J, Abureden S, Chen ZW (2014) Electrospun iron-polyaniline-polyacrylonitrile derived nanofibers as non-precious oxygen reduction reaction catalysts for PEM fuel cells. Electrochim Acta 139:111–116CrossRef
37.
Zurück zum Zitat Deng Z, Yi Q, Li G, Chen Y, Yang X, Nie H (2018) NiCo-doped C-N nano-composites for cathodic catalysts of Zn-air batteries in neutral media. Electrochim Acta 279:1–9CrossRef Deng Z, Yi Q, Li G, Chen Y, Yang X, Nie H (2018) NiCo-doped C-N nano-composites for cathodic catalysts of Zn-air batteries in neutral media. Electrochim Acta 279:1–9CrossRef
38.
Zurück zum Zitat Sibul R, Kibena-Põldsepp E, Ratso S, Kook M, Käärik M, Merisalu M, Paiste P, Leis J, Sammelselg V, Tammeveski K (2018) Nitrogen-doped carbon-based electrocatalysts synthesised by ball-milling. Electrochem Commun 93:39–43CrossRef Sibul R, Kibena-Põldsepp E, Ratso S, Kook M, Käärik M, Merisalu M, Paiste P, Leis J, Sammelselg V, Tammeveski K (2018) Nitrogen-doped carbon-based electrocatalysts synthesised by ball-milling. Electrochem Commun 93:39–43CrossRef
39.
Zurück zum Zitat Ratso S, Kruusenberg I, Käärik M, Kook M, Saar R, Pärs M, Leis J, Tammeveski K (2017) Highly efficient nitrogen-doped carbide-derived carbon materials for oxygen reduction reaction in alkaline media. Carbon 113:159–169CrossRef Ratso S, Kruusenberg I, Käärik M, Kook M, Saar R, Pärs M, Leis J, Tammeveski K (2017) Highly efficient nitrogen-doped carbide-derived carbon materials for oxygen reduction reaction in alkaline media. Carbon 113:159–169CrossRef
40.
Zurück zum Zitat Ratso S, Kruusenberg I, Joost U, Saar R, Tammeveski K (2016) Enhanced oxygen reduction reaction activity of nitrogen-doped graphene/multi-walled carbon nanotube catalysts in alkaline media. Int J Hydrog Energy 41:22510–22519CrossRef Ratso S, Kruusenberg I, Joost U, Saar R, Tammeveski K (2016) Enhanced oxygen reduction reaction activity of nitrogen-doped graphene/multi-walled carbon nanotube catalysts in alkaline media. Int J Hydrog Energy 41:22510–22519CrossRef
41.
Zurück zum Zitat Kruusenberg I, Ratso S, Vikkisk M, Kanninen P, Kallio T, Kannan AM, Tammeveski K (2015) Highly active nitrogen-doped nanocarbon electrocatalysts for alkaline direct methanol fuel cell. J Power Sources 281:94–102CrossRef Kruusenberg I, Ratso S, Vikkisk M, Kanninen P, Kallio T, Kannan AM, Tammeveski K (2015) Highly active nitrogen-doped nanocarbon electrocatalysts for alkaline direct methanol fuel cell. J Power Sources 281:94–102CrossRef
42.
Zurück zum Zitat Vikkisk M, Kruusenberg I, Ratso S, Joost U, Shulga E, Kink I, Rauwel P, Tammeveski K (2015) Enhanced electrocatalytic activity of nitrogen-doped multi-walled carbon nanotubes towards the oxygen reduction reaction in alkaline media. RSC Adv 5:59495–59505CrossRef Vikkisk M, Kruusenberg I, Ratso S, Joost U, Shulga E, Kink I, Rauwel P, Tammeveski K (2015) Enhanced electrocatalytic activity of nitrogen-doped multi-walled carbon nanotubes towards the oxygen reduction reaction in alkaline media. RSC Adv 5:59495–59505CrossRef
43.
Zurück zum Zitat Masa J, Zhao A, Xia W, Muhler M, Schuhmann W (2014) Metal-free catalysts for oxygen reduction in alkaline electrolytes: influence of the presence of Co, Fe, Mn and Ni inclusions. Electrochim Acta 128:271–278CrossRef Masa J, Zhao A, Xia W, Muhler M, Schuhmann W (2014) Metal-free catalysts for oxygen reduction in alkaline electrolytes: influence of the presence of Co, Fe, Mn and Ni inclusions. Electrochim Acta 128:271–278CrossRef
44.
Zurück zum Zitat Yin J, Qiu YJ, Yu J, Zhou XS, Wu WH (2013) Enhancement of electrocatalytic activity for oxygen reduction reaction in alkaline and acid media from electrospun nitrogen-doped carbon nanofibers by surface modification. RSC Adv 3:15655–15663CrossRef Yin J, Qiu YJ, Yu J, Zhou XS, Wu WH (2013) Enhancement of electrocatalytic activity for oxygen reduction reaction in alkaline and acid media from electrospun nitrogen-doped carbon nanofibers by surface modification. RSC Adv 3:15655–15663CrossRef
45.
Zurück zum Zitat Mooste M, Kibena-Põldsepp E, Matisen L, Merisalu M, Kook M, Kisand V, Vassiljeva V, Krumme A, Sammelselg V, Tammeveski K (2018) Oxygen reduction on catalysts prepared by pyrolysis of electrospun styrene-acrylonitrile copolymer and multi-walled carbon nanotube composite fibres. Catal Lett 148:1815–1826CrossRef Mooste M, Kibena-Põldsepp E, Matisen L, Merisalu M, Kook M, Kisand V, Vassiljeva V, Krumme A, Sammelselg V, Tammeveski K (2018) Oxygen reduction on catalysts prepared by pyrolysis of electrospun styrene-acrylonitrile copolymer and multi-walled carbon nanotube composite fibres. Catal Lett 148:1815–1826CrossRef
46.
Zurück zum Zitat Ratso S, Kruusenberg I, Vikkisk M, Joost U, Shulga E, Kink I, Kallio T, Tammeveski K (2014) Highly active nitrogen-doped few-layer graphene/carbon nanotube composite electrocatalyst for oxygen reduction reaction in alkaline media. Carbon 73:361–370CrossRef Ratso S, Kruusenberg I, Vikkisk M, Joost U, Shulga E, Kink I, Kallio T, Tammeveski K (2014) Highly active nitrogen-doped few-layer graphene/carbon nanotube composite electrocatalyst for oxygen reduction reaction in alkaline media. Carbon 73:361–370CrossRef
47.
Zurück zum Zitat Zhou CF, Liu T, Wang T, Kumar S (2006) PAN/SAN/SWNT ternary composite: pore size control and electrochemical supercapacitor behavior. Polymer 47:5831–5837CrossRef Zhou CF, Liu T, Wang T, Kumar S (2006) PAN/SAN/SWNT ternary composite: pore size control and electrochemical supercapacitor behavior. Polymer 47:5831–5837CrossRef
48.
Zurück zum Zitat Rahaman MSA, Ismail AF, Mustafa A (2007) A review of heat treatment on polyacrylonitrile fiber. Polym Degrad Stab 92:1421–1432CrossRef Rahaman MSA, Ismail AF, Mustafa A (2007) A review of heat treatment on polyacrylonitrile fiber. Polym Degrad Stab 92:1421–1432CrossRef
49.
Zurück zum Zitat Kabir S, Artyushkova K, Serov A, Kiefer B, Atanassov P (2016) Binding energy shifts for nitrogen-containing graphene-based electrocatalysts - experiments and DFT calculations. Surf Interface Anal 48:293–300CrossRef Kabir S, Artyushkova K, Serov A, Kiefer B, Atanassov P (2016) Binding energy shifts for nitrogen-containing graphene-based electrocatalysts - experiments and DFT calculations. Surf Interface Anal 48:293–300CrossRef
50.
Zurück zum Zitat Igarashi S, Kambe H (1964) Thermogravimetric analysis of styrene-acrylonitrile copolymer. Macromol Chem Phys 79:180–188CrossRef Igarashi S, Kambe H (1964) Thermogravimetric analysis of styrene-acrylonitrile copolymer. Macromol Chem Phys 79:180–188CrossRef
51.
Zurück zum Zitat Zhang BA, Kang FY, Tarascon JM, Kim JK (2016) Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage. Prog Mater Sci 76:319–380CrossRef Zhang BA, Kang FY, Tarascon JM, Kim JK (2016) Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage. Prog Mater Sci 76:319–380CrossRef
52.
Zurück zum Zitat Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61:14095–14107CrossRef Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61:14095–14107CrossRef
53.
Zurück zum Zitat Wang T (2007) Electrospun carbon nanofibers for electrochemical capacitor electrodes. Georgia Institute of Technology, Atlanta, PhD Thesis Wang T (2007) Electrospun carbon nanofibers for electrochemical capacitor electrodes. Georgia Institute of Technology, Atlanta, PhD Thesis
54.
Zurück zum Zitat Liu KX, Kattel S, Mao V, Wang GF (2016) Electrochemical and computational study of oxygen reduction reaction on nonprecious transition metal/nitrogen doped carbon nanofibers in acid medium. J Phys Chem C 120:1586–1596CrossRef Liu KX, Kattel S, Mao V, Wang GF (2016) Electrochemical and computational study of oxygen reduction reaction on nonprecious transition metal/nitrogen doped carbon nanofibers in acid medium. J Phys Chem C 120:1586–1596CrossRef
55.
Zurück zum Zitat Pels JR, Kapteijn F, Moulijn JA, Zhu Q, Thomas KM (1995) Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon 33:1641–1653CrossRef Pels JR, Kapteijn F, Moulijn JA, Zhu Q, Thomas KM (1995) Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon 33:1641–1653CrossRef
56.
Zurück zum Zitat Ramirez-Perez AC, Quilez-Bermejo J, Sieben JM, Morallon E, Cazorla-Amoros D (2018) Effect of nitrogen-functional groups on the ORR activity of activated carbon fiber-polypyrrole-based electrodes. Electrocatalysis 9:697–705CrossRef Ramirez-Perez AC, Quilez-Bermejo J, Sieben JM, Morallon E, Cazorla-Amoros D (2018) Effect of nitrogen-functional groups on the ORR activity of activated carbon fiber-polypyrrole-based electrodes. Electrocatalysis 9:697–705CrossRef
57.
Zurück zum Zitat Sarapuu A, Samolberg L, Kreek K, Koel M, Matisen L, Tammeveski K (2015) Cobalt- and iron-containing nitrogen-doped carbon aerogels as non-precious metal catalysts for electrochemical reduction of oxygen. J Electroanal Chem 746:9–17CrossRef Sarapuu A, Samolberg L, Kreek K, Koel M, Matisen L, Tammeveski K (2015) Cobalt- and iron-containing nitrogen-doped carbon aerogels as non-precious metal catalysts for electrochemical reduction of oxygen. J Electroanal Chem 746:9–17CrossRef
58.
Zurück zum Zitat White CM, Banks R, Hamerton I, Watts JF (2016) Characterisation of commercially CVD grown multi-walled carbon nanotubes for paint applications. Prog Org Coat 90:44–53CrossRef White CM, Banks R, Hamerton I, Watts JF (2016) Characterisation of commercially CVD grown multi-walled carbon nanotubes for paint applications. Prog Org Coat 90:44–53CrossRef
59.
Zurück zum Zitat Canuto de Almeida e Silva T, Mooste M, Kibena-Põldsepp E, Matisen L, Merisalu M, Kook M, Sammelselg V, Tammeveski K, Wilhelm M, Rezwan K (2019) Polymer-derived Co/Ni–SiOC(N) ceramic electrocatalysts for oxygen reduction reaction in fuel cells. Catal Sci Technol 9:854–866CrossRef Canuto de Almeida e Silva T, Mooste M, Kibena-Põldsepp E, Matisen L, Merisalu M, Kook M, Sammelselg V, Tammeveski K, Wilhelm M, Rezwan K (2019) Polymer-derived Co/Ni–SiOC(N) ceramic electrocatalysts for oxygen reduction reaction in fuel cells. Catal Sci Technol 9:854–866CrossRef
60.
Zurück zum Zitat Beguin F, Szostak K, Lota G, Frackowiak E (2005) A self-supporting electrode for supercapacitors prepared by one-step pyrolysis of carbon nanotube/polyacrylonitrile blends. Adv Mater 17:2380–2384CrossRef Beguin F, Szostak K, Lota G, Frackowiak E (2005) A self-supporting electrode for supercapacitors prepared by one-step pyrolysis of carbon nanotube/polyacrylonitrile blends. Adv Mater 17:2380–2384CrossRef
61.
Zurück zum Zitat Jagannathan S, Liu T, Kumar S (2010) Pore size control and electrochemical capacitor behavior of chemically activated polyacrylonitrile—carbon nanotube composite films. Compos Sci Technol 70:593–598CrossRef Jagannathan S, Liu T, Kumar S (2010) Pore size control and electrochemical capacitor behavior of chemically activated polyacrylonitrile—carbon nanotube composite films. Compos Sci Technol 70:593–598CrossRef
62.
Zurück zum Zitat Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York
63.
Zurück zum Zitat Davis RE, Horvath GL, Tobias CW (1967) The solubility and diffusion coefficient of oxygen in potassium hydroxide solutions. Electrochim Acta 12:287–297CrossRef Davis RE, Horvath GL, Tobias CW (1967) The solubility and diffusion coefficient of oxygen in potassium hydroxide solutions. Electrochim Acta 12:287–297CrossRef
64.
Zurück zum Zitat Lide DR (2001) CRC handbook of chemistry and physics, 82nd edn. CRC Press, Boca Raton Lide DR (2001) CRC handbook of chemistry and physics, 82nd edn. CRC Press, Boca Raton
65.
Zurück zum Zitat Chlistunoff J, Sansinena JM (2016) On the use of Nafion® in electrochemical studies of carbon supported oxygen reduction catalysts in aqueous media. J Electroanal Chem 780:134–146CrossRef Chlistunoff J, Sansinena JM (2016) On the use of Nafion® in electrochemical studies of carbon supported oxygen reduction catalysts in aqueous media. J Electroanal Chem 780:134–146CrossRef
66.
Zurück zum Zitat Daems N, Breugelmans T, Vankelecom IFJ, Pescarmona PP (2018) Influence of the composition and preparation of the rotating disk electrode on the performance of mesoporous electrocatalysts in the alkaline oxygen reduction reaction. ChemElectroChem 5:119–128CrossRef Daems N, Breugelmans T, Vankelecom IFJ, Pescarmona PP (2018) Influence of the composition and preparation of the rotating disk electrode on the performance of mesoporous electrocatalysts in the alkaline oxygen reduction reaction. ChemElectroChem 5:119–128CrossRef
67.
Zurück zum Zitat Lilloja J, Kibena-Põldsepp E, Merisalu M, Rauwel P, Matisen L, Niilisk A, Cardoso E, Maia G, Sammelselg V, Tammeveski K (2016) An oxygen reduction study of graphene-based nanomaterials of different origin. Catalysts 6:108CrossRef Lilloja J, Kibena-Põldsepp E, Merisalu M, Rauwel P, Matisen L, Niilisk A, Cardoso E, Maia G, Sammelselg V, Tammeveski K (2016) An oxygen reduction study of graphene-based nanomaterials of different origin. Catalysts 6:108CrossRef
68.
Zurück zum Zitat Mooste M, Kibena-Põldsepp E, Matisen L, Tammeveski K (2017) Oxygen reduction on anthraquinone diazonium compound derivatised multi-walled carbon nanotube and graphene based electrodes. Electroanalysis 29:548–558CrossRef Mooste M, Kibena-Põldsepp E, Matisen L, Tammeveski K (2017) Oxygen reduction on anthraquinone diazonium compound derivatised multi-walled carbon nanotube and graphene based electrodes. Electroanalysis 29:548–558CrossRef
69.
Zurück zum Zitat Mooste M, Kibena-Põldsepp E, Ossonon BD, Bélanger D, Tammeveski K (2018) Oxygen reduction on graphene sheets functionalised by anthraquinone diazonium compound during electrochemical exfoliation of graphite. Electrochim Acta 267:246–254CrossRef Mooste M, Kibena-Põldsepp E, Ossonon BD, Bélanger D, Tammeveski K (2018) Oxygen reduction on graphene sheets functionalised by anthraquinone diazonium compound during electrochemical exfoliation of graphite. Electrochim Acta 267:246–254CrossRef
70.
Zurück zum Zitat Sarapuu A, Helstein K, Vaik K, Schiffrin DJ, Tammeveski K (2010) Electrocatalysis of oxygen reduction by quinones adsorbed on highly oriented pyrolytic graphite electrodes. Electrochim Acta 55:6376–6382CrossRef Sarapuu A, Helstein K, Vaik K, Schiffrin DJ, Tammeveski K (2010) Electrocatalysis of oxygen reduction by quinones adsorbed on highly oriented pyrolytic graphite electrodes. Electrochim Acta 55:6376–6382CrossRef
71.
Zurück zum Zitat Kibena E, Marandi M, Sammelselg V, Tammeveski K, Jensen BBE, Mortensen AB, Lillethorup M, Kongsfelt M, Pedersen SU, Daasbjerg K (2014) Electrochemical behaviour of HOPG and CVD-grown graphene electrodes modified with thick anthraquinone films by diazonium reduction. Electroanalysis 26:2619–2630CrossRef Kibena E, Marandi M, Sammelselg V, Tammeveski K, Jensen BBE, Mortensen AB, Lillethorup M, Kongsfelt M, Pedersen SU, Daasbjerg K (2014) Electrochemical behaviour of HOPG and CVD-grown graphene electrodes modified with thick anthraquinone films by diazonium reduction. Electroanalysis 26:2619–2630CrossRef
72.
Zurück zum Zitat Vikkisk M, Kruusenberg I, Joost U, Shulga E, Tammeveski K (2013) Electrocatalysis of oxygen reduction on nitrogen-containing multi-walled carbon nanotube modified glassy carbon electrodes. Electrochim Acta 87:709–716CrossRef Vikkisk M, Kruusenberg I, Joost U, Shulga E, Tammeveski K (2013) Electrocatalysis of oxygen reduction on nitrogen-containing multi-walled carbon nanotube modified glassy carbon electrodes. Electrochim Acta 87:709–716CrossRef
73.
Zurück zum Zitat Mooste M, Kibena E, Sarapuu A, Matisen L, Tammeveski K (2013) Oxygen reduction on thick anthraquinone films electrografted to glassy carbon. J Electroanal Chem 702:8–14CrossRef Mooste M, Kibena E, Sarapuu A, Matisen L, Tammeveski K (2013) Oxygen reduction on thick anthraquinone films electrografted to glassy carbon. J Electroanal Chem 702:8–14CrossRef
74.
Zurück zum Zitat Liu Q, Cao S, Fu Y, Guo Y, Qiu Y (2018) Trimetallic FeCoNi-N/C nanofibers with high electrocatalytic activity for oxygen reduction reaction in sulfuric acid solution. J Electroanal Chem 813:52–57CrossRef Liu Q, Cao S, Fu Y, Guo Y, Qiu Y (2018) Trimetallic FeCoNi-N/C nanofibers with high electrocatalytic activity for oxygen reduction reaction in sulfuric acid solution. J Electroanal Chem 813:52–57CrossRef
75.
Zurück zum Zitat Gong Z, Zhang GQ, Wang S (2013) Electrochemical reduction of oxygen on anthraquinone/carbon nanotubes nanohybrid modified glassy carbon electrode in neutral medium. J Chem 2013:756307CrossRef Gong Z, Zhang GQ, Wang S (2013) Electrochemical reduction of oxygen on anthraquinone/carbon nanotubes nanohybrid modified glassy carbon electrode in neutral medium. J Chem 2013:756307CrossRef
76.
Zurück zum Zitat Türk K-K, Kruusenberg I, Mondal J, Rauwel P, Kozlova J, Matisen L, Sammelselg V, Tammeveski K (2015) Oxygen electroreduction on MN4-macrocycle modified graphene/multi-walled carbon nanotube composites. J Electroanal Chem 756:69–76CrossRef Türk K-K, Kruusenberg I, Mondal J, Rauwel P, Kozlova J, Matisen L, Sammelselg V, Tammeveski K (2015) Oxygen electroreduction on MN4-macrocycle modified graphene/multi-walled carbon nanotube composites. J Electroanal Chem 756:69–76CrossRef
77.
Zurück zum Zitat Wang L, Wong CHA, Kherzi B, Webster RD, Pumera M (2015) So-called “metal-free” oxygen reduction at graphene nanoribbons is in fact metal driven. ChemCatChem 7:1650–1654CrossRef Wang L, Wong CHA, Kherzi B, Webster RD, Pumera M (2015) So-called “metal-free” oxygen reduction at graphene nanoribbons is in fact metal driven. ChemCatChem 7:1650–1654CrossRef
78.
Zurück zum Zitat Tammeveski K, Yu JS, Chen ZW (2018) Non-precious-metal oxygen reduction reaction electrocatalysis. ChemElectroChem 5:1743–1744CrossRef Tammeveski K, Yu JS, Chen ZW (2018) Non-precious-metal oxygen reduction reaction electrocatalysis. ChemElectroChem 5:1743–1744CrossRef
Metadaten
Titel
Electrocatalysts for oxygen reduction reaction based on electrospun polyacrylonitrile, styrene–acrylonitrile copolymer and carbon nanotube composite fibres
verfasst von
Marek Mooste
Elo Kibena-Põldsepp
Viktoria Vassiljeva
Maido Merisalu
Mati Kook
Alexey Treshchalov
Vambola Kisand
Mai Uibu
Andres Krumme
Väino Sammelselg
Kaido Tammeveski
Publikationsdatum
05.06.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 17/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03725-z

Weitere Artikel der Ausgabe 17/2019

Journal of Materials Science 17/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.