Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 10/2020

13.10.2020

Electrochemical Behavior of Cobalt Oxide/Boron-Incorporated Reduced Graphene Oxide Nanocomposite Electrode for Supercapacitor Applications

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 10/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Electrodes from hydrothermally synthesized boron-incorporated reduced graphene oxide (B-rGO), Co3O4, and Co3O4/B-rGO nanocomposites are tested in 2 M KOH and NaOH electrolytes for supercapacitor applications. Structural characterization was done by x-ray diffraction and x-ray photoelectron spectroscopy. Cyclic voltammogram of B-rGO indicates partial electrical double-layer capacitance and pseudocapacitive behaviors. Co3O4, shows two reversible redox peaks, indicating diffusion-controlled (battery-like) process. Interestingly, Co3O4/B-rGO possesses both the pseudocapacitive and diffusion-controlled features. The specific capacitance (Csp) from galvanostatic charge/discharge experiments is higher in all the electrodes in KOH than in NaOH. Co3O4/B-rGO shows the highest Csp of 600 F g−1 (270 C g−1) at 0.1 A g−1 and 454 F g−1 (204 C g−1) at 10 A g−1 in KOH. Co3O4/B-rGO-KOH system retains 87.8% capacitance after 2000 cycles, demonstrating very good cyclic stability. Co3O4/B-rGO-KOH system yields, a remarkable, maximum power density of 2250 W kg−1 with an energy density of 12.77 W h kg−1 at 10 A g−1. The better performance in KOH is attributed to the low hydration sphere radius, high ionic conductivity of K+, low diffusive and charge transfer and electrode resistance, estimated from electrochemical impedance spectroscopy. The electrode–electrolyte combination is crucial for the overall performance as a supercapacitor electrode.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat J. Chmiola, C. Largeot, P.-L. Taberna, P. Simon, and Y. Gogotsi, Monolithic Carbide-Derived Carbon Films for Micro-supercapacitors, Science, 2010, 328(5977), p 480–483CrossRef J. Chmiola, C. Largeot, P.-L. Taberna, P. Simon, and Y. Gogotsi, Monolithic Carbide-Derived Carbon Films for Micro-supercapacitors, Science, 2010, 328(5977), p 480–483CrossRef
2.
Zurück zum Zitat L.L. Zhang and X.S. Zhao, Carbon-Based Materials as Supercapacitor Electrodes, Chem. Soc. Rev., 2009, 38(9), p 2520–2531CrossRef L.L. Zhang and X.S. Zhao, Carbon-Based Materials as Supercapacitor Electrodes, Chem. Soc. Rev., 2009, 38(9), p 2520–2531CrossRef
3.
Zurück zum Zitat R. Ramachandran, C. Zhao, D. Luo, K. Wang, and F. Wang, Synthesis of Copper Benzene-1, 3, 5-Tricarboxylate Metal Organic Frameworks with Mixed Phases as the Electrode Material for Supercapacitor Applications, Appl. Surf. Sci., 2018, 460, p 33–39CrossRef R. Ramachandran, C. Zhao, D. Luo, K. Wang, and F. Wang, Synthesis of Copper Benzene-1, 3, 5-Tricarboxylate Metal Organic Frameworks with Mixed Phases as the Electrode Material for Supercapacitor Applications, Appl. Surf. Sci., 2018, 460, p 33–39CrossRef
4.
Zurück zum Zitat C. Singh and A. Paul, Physisorbed Hydroquinone on Activated Charcoal as a Supercapacitor: An Application of Proton-Coupled Electron Transfer, J. Phys. Chem. C, 2015, 119(21), p 11382–11390CrossRef C. Singh and A. Paul, Physisorbed Hydroquinone on Activated Charcoal as a Supercapacitor: An Application of Proton-Coupled Electron Transfer, J. Phys. Chem. C, 2015, 119(21), p 11382–11390CrossRef
5.
Zurück zum Zitat Q. Ke, Y. Liu, H. Liu, Y. Zhang, Y. Hu, and J. Wang, Surfactant-Modified Chemically Reduced Graphene Oxide for Electrochemical Supercapacitors, RSC Adv., 2014, 4(50), p 26398–26406CrossRef Q. Ke, Y. Liu, H. Liu, Y. Zhang, Y. Hu, and J. Wang, Surfactant-Modified Chemically Reduced Graphene Oxide for Electrochemical Supercapacitors, RSC Adv., 2014, 4(50), p 26398–26406CrossRef
6.
Zurück zum Zitat K. Wang, C. Li, and B. Ji, Preparation of Electrode Based on Plasma Modification and Its Electrochemical Application, J. Mater. Eng. Perform., 2014, 23(2), p 588–592CrossRef K. Wang, C. Li, and B. Ji, Preparation of Electrode Based on Plasma Modification and Its Electrochemical Application, J. Mater. Eng. Perform., 2014, 23(2), p 588–592CrossRef
7.
Zurück zum Zitat O. Pech and S. Maensiri, Effect of Calcining Temperature on Electrospun Carbon Nanofibers for Supercapacitor, J. Mater. Eng. Perform., 2020, 29(4), p 2386–2394CrossRef O. Pech and S. Maensiri, Effect of Calcining Temperature on Electrospun Carbon Nanofibers for Supercapacitor, J. Mater. Eng. Perform., 2020, 29(4), p 2386–2394CrossRef
8.
Zurück zum Zitat A.K. Geim and K.S. Novoselov, The rise of graphene, Nat. Mater., 2007, 6, p 183–191CrossRef A.K. Geim and K.S. Novoselov, The rise of graphene, Nat. Mater., 2007, 6, p 183–191CrossRef
9.
Zurück zum Zitat C. Zhang, Y. Huang, S. Tang, M. Deng, and Y. Du, High-Energy All-Solid-State Symmetric Supercapacitor Based on Ni3S2 Mesoporous Nanosheet-Decorated Three-Dimensional Reduced Graphene Oxide, ACS Energy Lett., 2017, 2(4), p 759–768CrossRef C. Zhang, Y. Huang, S. Tang, M. Deng, and Y. Du, High-Energy All-Solid-State Symmetric Supercapacitor Based on Ni3S2 Mesoporous Nanosheet-Decorated Three-Dimensional Reduced Graphene Oxide, ACS Energy Lett., 2017, 2(4), p 759–768CrossRef
10.
Zurück zum Zitat N.E. Tran, S.G. Lambrakos, and J.J. Lagowski, Analysis of Capacitance Characteristics of C60, C70, and La@C82, J. Mater. Eng. Perform., 2009, 18(1), p 95–101CrossRef N.E. Tran, S.G. Lambrakos, and J.J. Lagowski, Analysis of Capacitance Characteristics of C60, C70, and La@C82, J. Mater. Eng. Perform., 2009, 18(1), p 95–101CrossRef
11.
Zurück zum Zitat H. Pal, S. Bhubna, P. Kumar, R. Mahapatra, and S. Chatterjee, Synthesis of Flexible Graphene/Polymer Composites for Supercapacitor Applications, J. Mater. Eng. Perform., 2018, 27(6), p 2668–2672CrossRef H. Pal, S. Bhubna, P. Kumar, R. Mahapatra, and S. Chatterjee, Synthesis of Flexible Graphene/Polymer Composites for Supercapacitor Applications, J. Mater. Eng. Perform., 2018, 27(6), p 2668–2672CrossRef
12.
Zurück zum Zitat K.P. Gannavarapu, S. Azizighannad, M. Molli, M. Pandey, S. Muthukumar, S. Mitra, and R.B. Dandamudi, Nanoporous Hierarchical Carbon Structures Derived from Fungal Basidiocarps for High Performance Supercapacitors, Energy Storage, 2019, 1(3), p e58CrossRef K.P. Gannavarapu, S. Azizighannad, M. Molli, M. Pandey, S. Muthukumar, S. Mitra, and R.B. Dandamudi, Nanoporous Hierarchical Carbon Structures Derived from Fungal Basidiocarps for High Performance Supercapacitors, Energy Storage, 2019, 1(3), p e58CrossRef
13.
Zurück zum Zitat G. Wang, L. Zhang, and J. Zhang, A Review of Electrode Materials for Electrochemical Supercapacitors, Chem. Soc. Rev., 2012, 41(2), p 797–828CrossRef G. Wang, L. Zhang, and J. Zhang, A Review of Electrode Materials for Electrochemical Supercapacitors, Chem. Soc. Rev., 2012, 41(2), p 797–828CrossRef
14.
Zurück zum Zitat Y. Wang, Y. Song, and Y. Xia, Electrochemical Capacitors: Mechanism, Materials, Systems, Characterization and Applications, Chem. Soc. Rev., 2016, 45(21), p 5925–5950CrossRef Y. Wang, Y. Song, and Y. Xia, Electrochemical Capacitors: Mechanism, Materials, Systems, Characterization and Applications, Chem. Soc. Rev., 2016, 45(21), p 5925–5950CrossRef
15.
Zurück zum Zitat Z. Wen, X. Wang, S. Mao, Z. Bo, H. Kim, S. Cui, G. Lu, X. Feng, and J. Chen, Crumpled Nitrogen-Doped Graphene Nanosheets with Ultrahigh Pore Volume for High-Performance Supercapacitor, Adv. Mater., 2012, 24(41), p 5610–5616CrossRef Z. Wen, X. Wang, S. Mao, Z. Bo, H. Kim, S. Cui, G. Lu, X. Feng, and J. Chen, Crumpled Nitrogen-Doped Graphene Nanosheets with Ultrahigh Pore Volume for High-Performance Supercapacitor, Adv. Mater., 2012, 24(41), p 5610–5616CrossRef
16.
Zurück zum Zitat J. Han, L.L. Zhang, S. Lee, J. Oh, K.-S. Lee, J.R. Potts, J. Ji, X. Zhao, R.S. Ruoff, and S. Park, Generation of B-Doped Graphene Nanoplatelets Using a Solution Process and Their Supercapacitor Applications, ACS Nano, 2013, 7(1), p 19–26CrossRef J. Han, L.L. Zhang, S. Lee, J. Oh, K.-S. Lee, J.R. Potts, J. Ji, X. Zhao, R.S. Ruoff, and S. Park, Generation of B-Doped Graphene Nanoplatelets Using a Solution Process and Their Supercapacitor Applications, ACS Nano, 2013, 7(1), p 19–26CrossRef
17.
Zurück zum Zitat S. Li, Z. Wang, H. Jiang, L. Zhang, J. Ren, M. Zheng, L. Dong, and L. Sun, Plasma-Induced Highly Efficient Synthesis of Boron Doped Reduced Graphene Oxide for Supercapacitors, Chem. Commun., 2016, 52(73), p 10988–10991CrossRef S. Li, Z. Wang, H. Jiang, L. Zhang, J. Ren, M. Zheng, L. Dong, and L. Sun, Plasma-Induced Highly Efficient Synthesis of Boron Doped Reduced Graphene Oxide for Supercapacitors, Chem. Commun., 2016, 52(73), p 10988–10991CrossRef
18.
Zurück zum Zitat X.A. Chen, X. Chen, X. Xu, Z. Yang, Z. Liu, L. Zhang, X. Xu, Y. Chen, and S. Huang, Sulfur-Doped Porous Reduced Graphene Oxide Hollow Nanosphere Frameworks as Metal-Free Electrocatalysts for Oxygen Reduction Reaction and as Supercapacitor Electrode Materials, Nanoscale, 2014, 6(22), p 13740–13747CrossRef X.A. Chen, X. Chen, X. Xu, Z. Yang, Z. Liu, L. Zhang, X. Xu, Y. Chen, and S. Huang, Sulfur-Doped Porous Reduced Graphene Oxide Hollow Nanosphere Frameworks as Metal-Free Electrocatalysts for Oxygen Reduction Reaction and as Supercapacitor Electrode Materials, Nanoscale, 2014, 6(22), p 13740–13747CrossRef
19.
Zurück zum Zitat Y. Wen, B. Wang, C. Huang, L. Wang, and D. Hulicova-Jurcakova, Synthesis of Phosphorus-Doped Graphene and its Wide Potential Window in Aqueous Supercapacitors, Chem. Eur. J., 2015, 21(1), p 80–85CrossRef Y. Wen, B. Wang, C. Huang, L. Wang, and D. Hulicova-Jurcakova, Synthesis of Phosphorus-Doped Graphene and its Wide Potential Window in Aqueous Supercapacitors, Chem. Eur. J., 2015, 21(1), p 80–85CrossRef
20.
Zurück zum Zitat R.N. Muthu and S.S.V. Tatiparti, Electrode and Symmetric Supercapacitor Device Performance of Boron-Incorporated Reduced Graphene Oxide Synthesized By Electrochemical Exfoliation, Energy Storage, 2020, 2(4), p e134CrossRef R.N. Muthu and S.S.V. Tatiparti, Electrode and Symmetric Supercapacitor Device Performance of Boron-Incorporated Reduced Graphene Oxide Synthesized By Electrochemical Exfoliation, Energy Storage, 2020, 2(4), p e134CrossRef
21.
Zurück zum Zitat K. Subramani, S. Kowsik, and M. Sathish, Facile and Scalable Ultra-fine Cobalt Oxide/Reduced Graphene Oxide Nanocomposites for High Energy Asymmetric Supercapacitors, ChemistrySelect, 2016, 1(13), p 3455–3467CrossRef K. Subramani, S. Kowsik, and M. Sathish, Facile and Scalable Ultra-fine Cobalt Oxide/Reduced Graphene Oxide Nanocomposites for High Energy Asymmetric Supercapacitors, ChemistrySelect, 2016, 1(13), p 3455–3467CrossRef
22.
Zurück zum Zitat G.-S. Jang, S. Ameen, M.S. Akhtar, E. Kim, and H.-S. Shin, Electrochemical Investigations of Hydrothermally Synthesized Porous Cobalt Oxide (Co3O4) Nanorods: Supercapacitor Application, ChemistrySelect, 2017, 2(28), p 8941–8949CrossRef G.-S. Jang, S. Ameen, M.S. Akhtar, E. Kim, and H.-S. Shin, Electrochemical Investigations of Hydrothermally Synthesized Porous Cobalt Oxide (Co3O4) Nanorods: Supercapacitor Application, ChemistrySelect, 2017, 2(28), p 8941–8949CrossRef
23.
Zurück zum Zitat X. Wang, H. Xia, X. Wang, J. Gao, B. Shi, and Y. Fang, Facile Synthesis Ultrathin Mesoporous Co3O4 Nanosheets for High-Energy Asymmetric Supercapacitor, J. Alloys Compd., 2016, 686, p 969–975CrossRef X. Wang, H. Xia, X. Wang, J. Gao, B. Shi, and Y. Fang, Facile Synthesis Ultrathin Mesoporous Co3O4 Nanosheets for High-Energy Asymmetric Supercapacitor, J. Alloys Compd., 2016, 686, p 969–975CrossRef
24.
Zurück zum Zitat C.V. Niveditha, R. Aswini, M.J. Jabeen Fatima, R. Ramanarayan, N. Pullanjiyot, and S. Swaminathan, Feather Like Highly Active Co3O4 Electrode for Supercapacitor Application: A Potentiodynamic Approach, Mater. Res. Express, 2018, 5(6), p 065501CrossRef C.V. Niveditha, R. Aswini, M.J. Jabeen Fatima, R. Ramanarayan, N. Pullanjiyot, and S. Swaminathan, Feather Like Highly Active Co3O4 Electrode for Supercapacitor Application: A Potentiodynamic Approach, Mater. Res. Express, 2018, 5(6), p 065501CrossRef
25.
Zurück zum Zitat S. Vijayakumar, S. Nagamuthu, and G. Muralidharan, Supercapacitor Studies on NiO Nanoflakes Synthesized Through a Microwave Route, ACS Appl. Mater. Interfaces., 2013, 5(6), p 2188–2196CrossRef S. Vijayakumar, S. Nagamuthu, and G. Muralidharan, Supercapacitor Studies on NiO Nanoflakes Synthesized Through a Microwave Route, ACS Appl. Mater. Interfaces., 2013, 5(6), p 2188–2196CrossRef
26.
Zurück zum Zitat L. Zang, J. Zhu, and Y. Xia, Facile Synthesis of Porous NiO Nanofibers for High-Performance Supercapacitors, J. Mater. Eng. Perform., 2014, 23(2), p 679–683CrossRef L. Zang, J. Zhu, and Y. Xia, Facile Synthesis of Porous NiO Nanofibers for High-Performance Supercapacitors, J. Mater. Eng. Perform., 2014, 23(2), p 679–683CrossRef
27.
Zurück zum Zitat T. Li, H. Yu, L. Zhi, W. Zhang, L. Dang, Z. Liu, and Z. Lei, Facile Electrochemical Fabrication of Porous Fe2O3 Nanosheets for Flexible Asymmetric Supercapacitors, J. Phys. Chem. C, 2017, 121(35), p 18982–18991CrossRef T. Li, H. Yu, L. Zhi, W. Zhang, L. Dang, Z. Liu, and Z. Lei, Facile Electrochemical Fabrication of Porous Fe2O3 Nanosheets for Flexible Asymmetric Supercapacitors, J. Phys. Chem. C, 2017, 121(35), p 18982–18991CrossRef
28.
Zurück zum Zitat L. Huang, D. Chen, Y. Ding, S. Feng, Z.L. Wang, and M. Liu, Nickel–Cobalt Hydroxide Nanosheets Coated on NiCo2O4 Nanowires Grown on Carbon Fiber Paper for High-Performance Pseudocapacitors, Nano Lett., 2013, 13(7), p 3135–3139CrossRef L. Huang, D. Chen, Y. Ding, S. Feng, Z.L. Wang, and M. Liu, Nickel–Cobalt Hydroxide Nanosheets Coated on NiCo2O4 Nanowires Grown on Carbon Fiber Paper for High-Performance Pseudocapacitors, Nano Lett., 2013, 13(7), p 3135–3139CrossRef
29.
Zurück zum Zitat F. Qiu, L. Suo, W. Xiao, Z. He, Q. Du, and J. Chen, Few-Layer Graphene Functionalized by Carbon Nanotubes and MnO2 Nanoparticles for High-Performance Supercapacitors, J. Mater. Eng. Perform., 2019, 28(7), p 4095–4101CrossRef F. Qiu, L. Suo, W. Xiao, Z. He, Q. Du, and J. Chen, Few-Layer Graphene Functionalized by Carbon Nanotubes and MnO2 Nanoparticles for High-Performance Supercapacitors, J. Mater. Eng. Perform., 2019, 28(7), p 4095–4101CrossRef
30.
Zurück zum Zitat V. Subramanian, S.C. Hall, P.H. Smith, and B. Rambabu, Mesoporous Anhydrous RuO2 as a Supercapacitor Electrode Material, Solid State Ion, 2004, 175(1), p 511–515CrossRef V. Subramanian, S.C. Hall, P.H. Smith, and B. Rambabu, Mesoporous Anhydrous RuO2 as a Supercapacitor Electrode Material, Solid State Ion, 2004, 175(1), p 511–515CrossRef
31.
Zurück zum Zitat B. Xu, L. Pan, and Q. Zhu, Synthesis of Co3S4 Nanosheets and Their Superior Supercapacitor Property, J. Mater. Eng. Perform., 2016, 25(3), p 1117–1121CrossRef B. Xu, L. Pan, and Q. Zhu, Synthesis of Co3S4 Nanosheets and Their Superior Supercapacitor Property, J. Mater. Eng. Perform., 2016, 25(3), p 1117–1121CrossRef
32.
Zurück zum Zitat J. Hu, M. Noked, E. Gillette, F. Han, Z. Gui, C. Wang, and S.B. Lee, Dual-Template Synthesis of Ordered Mesoporous Carbon/Fe2O3 Nanowires: High Porosity and Structural Stability for Supercapacitors, J. Mater. Chem. A, 2015, 3(43), p 21501–21510CrossRef J. Hu, M. Noked, E. Gillette, F. Han, Z. Gui, C. Wang, and S.B. Lee, Dual-Template Synthesis of Ordered Mesoporous Carbon/Fe2O3 Nanowires: High Porosity and Structural Stability for Supercapacitors, J. Mater. Chem. A, 2015, 3(43), p 21501–21510CrossRef
33.
Zurück zum Zitat M. Li, G. Sun, P. Yin, C. Ruan, and K. Ai, Controlling the Formation of Rodlike V2O5 Nanocrystals on Reduced Graphene Oxide for High-Performance Supercapacitors, ACS Appl. Mater. Interfaces., 2013, 5(21), p 11462–11470CrossRef M. Li, G. Sun, P. Yin, C. Ruan, and K. Ai, Controlling the Formation of Rodlike V2O5 Nanocrystals on Reduced Graphene Oxide for High-Performance Supercapacitors, ACS Appl. Mater. Interfaces., 2013, 5(21), p 11462–11470CrossRef
34.
Zurück zum Zitat S. Abouali, M. Akbari Garakani, B. Zhang, Z.-L. Xu, E. Kamali Heidari, J.-Q. Huang, J. Huang, and J.-K. Kim, Electrospun Carbon Nanofibers with in Situ Encapsulated Co3O4 Nanoparticles as Electrodes for High-Performance Supercapacitors, ACS Appl. Mater. Interfaces, 2015, 7(24), p 13503–13511CrossRef S. Abouali, M. Akbari Garakani, B. Zhang, Z.-L. Xu, E. Kamali Heidari, J.-Q. Huang, J. Huang, and J.-K. Kim, Electrospun Carbon Nanofibers with in Situ Encapsulated Co3O4 Nanoparticles as Electrodes for High-Performance Supercapacitors, ACS Appl. Mater. Interfaces, 2015, 7(24), p 13503–13511CrossRef
35.
Zurück zum Zitat S. Yang, Y. Liu, Y. Hao, X. Yang, W.A. Goddard, III, X.L. Zhang, and B. Cao, Cao, Oxygen-Vacancy Abundant Ultrafine Co3O4/Graphene Composites for High-Rate Supercapacitor Electrodes, Adv. Sci., 2018, 5(4), p 1700659CrossRef S. Yang, Y. Liu, Y. Hao, X. Yang, W.A. Goddard, III, X.L. Zhang, and B. Cao, Cao, Oxygen-Vacancy Abundant Ultrafine Co3O4/Graphene Composites for High-Rate Supercapacitor Electrodes, Adv. Sci., 2018, 5(4), p 1700659CrossRef
36.
Zurück zum Zitat S. Jana, N. Singh, A.S. Bhattacharyya, and G.P. Singh, Synthesis of Self-Assembled rGO-Co3O4 Nanoparticles in Nanorods Structure for Supercapacitor Application, J. Mater. Eng. Perform., 2018, 27(6), p 2741–2746CrossRef S. Jana, N. Singh, A.S. Bhattacharyya, and G.P. Singh, Synthesis of Self-Assembled rGO-Co3O4 Nanoparticles in Nanorods Structure for Supercapacitor Application, J. Mater. Eng. Perform., 2018, 27(6), p 2741–2746CrossRef
37.
Zurück zum Zitat J. Chen, N. Chen, X. Feng, and W. Hou, Preparation of Shape-Controlled Graphene/Co3O4 Composites for Supercapacitors, J. Mater. Eng. Perform., 2016, 25(9), p 3845–3851CrossRef J. Chen, N. Chen, X. Feng, and W. Hou, Preparation of Shape-Controlled Graphene/Co3O4 Composites for Supercapacitors, J. Mater. Eng. Perform., 2016, 25(9), p 3845–3851CrossRef
38.
Zurück zum Zitat Q. Guan, J. Cheng, B. Wang, W. Ni, G. Gu, X. Li, L. Huang, G. Yang, and F. Nie, Needle-like Co3O4 Anchored on the Graphene with Enhanced Electrochemical Performance for Aqueous Supercapacitors, ACS Appl. Mater. Interfaces, 2014, 6(10), p 7626–7632CrossRef Q. Guan, J. Cheng, B. Wang, W. Ni, G. Gu, X. Li, L. Huang, G. Yang, and F. Nie, Needle-like Co3O4 Anchored on the Graphene with Enhanced Electrochemical Performance for Aqueous Supercapacitors, ACS Appl. Mater. Interfaces, 2014, 6(10), p 7626–7632CrossRef
39.
Zurück zum Zitat G. He, J. Li, H. Chen, J. Shi, X. Sun, S. Chen, and X. Wang, Hydrothermal Preparation of Co3O4@graphene Nanocomposite for Supercapacitor with Enhanced Capacitive Performance, Mater. Lett., 2012, 82, p 61–63CrossRef G. He, J. Li, H. Chen, J. Shi, X. Sun, S. Chen, and X. Wang, Hydrothermal Preparation of Co3O4@graphene Nanocomposite for Supercapacitor with Enhanced Capacitive Performance, Mater. Lett., 2012, 82, p 61–63CrossRef
40.
Zurück zum Zitat L. Ma, H. Zhou, X. Shen, Q. Chen, G. Zhu, and Z. Ji, Facile Synthesis of Co3O4 Porous Nanosheets/Reduced Graphene Oxide Composites and Their Excellent Supercapacitor Performance, RSC Adv., 2014, 4(95), p 53180–53187CrossRef L. Ma, H. Zhou, X. Shen, Q. Chen, G. Zhu, and Z. Ji, Facile Synthesis of Co3O4 Porous Nanosheets/Reduced Graphene Oxide Composites and Their Excellent Supercapacitor Performance, RSC Adv., 2014, 4(95), p 53180–53187CrossRef
41.
Zurück zum Zitat L.-J. Xie, J.-F. Wu, C.-M. Chen, C.-M. Zhang, L. Wan, J.-L. Wang, Q.-Q. Kong, C.-X. Lv, K.-X. Li, and G.-H. Sun, A Novel Asymmetric Supercapacitor with an Activated Carbon Cathode and a Reduced Graphene Oxide–Cobalt Oxide Nanocomposite Anode, J. Power Sources, 2013, 242, p 148–156CrossRef L.-J. Xie, J.-F. Wu, C.-M. Chen, C.-M. Zhang, L. Wan, J.-L. Wang, Q.-Q. Kong, C.-X. Lv, K.-X. Li, and G.-H. Sun, A Novel Asymmetric Supercapacitor with an Activated Carbon Cathode and a Reduced Graphene Oxide–Cobalt Oxide Nanocomposite Anode, J. Power Sources, 2013, 242, p 148–156CrossRef
42.
Zurück zum Zitat W. Xuan, R. Ramachandran, C. Zhao, and F. Wang, Influence of Synthesis Temperature on Cobalt Metal–Organic Framework (Co-MOF) Formation and Its Electrochemical Performance Towards Supercapacitor Electrodes, J. Solid State Electrochem., 2018, 22(12), p 3873–3881CrossRef W. Xuan, R. Ramachandran, C. Zhao, and F. Wang, Influence of Synthesis Temperature on Cobalt Metal–Organic Framework (Co-MOF) Formation and Its Electrochemical Performance Towards Supercapacitor Electrodes, J. Solid State Electrochem., 2018, 22(12), p 3873–3881CrossRef
43.
Zurück zum Zitat R. Ramachandran, C. Zhao, D. Luo, K. Wang, and F. Wang, Morphology-Dependent Electrochemical Properties of Cobalt-Based Metal Organic Frameworks for Supercapacitor Electrode Materials, Electrochim. Acta, 2018, 267, p 170–180CrossRef R. Ramachandran, C. Zhao, D. Luo, K. Wang, and F. Wang, Morphology-Dependent Electrochemical Properties of Cobalt-Based Metal Organic Frameworks for Supercapacitor Electrode Materials, Electrochim. Acta, 2018, 267, p 170–180CrossRef
44.
Zurück zum Zitat W. Xuan, R. Ramachandran, C. Zhao, F. Wang In Synthesis of Hollow Nano-Structured Cobalt Metal–Organic Framework for Supercapacitor Electrodes, 2018 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO), 13–17 Aug. 2018; 2018; pp. 42–46 W. Xuan, R. Ramachandran, C. Zhao, F. Wang In Synthesis of Hollow Nano-Structured Cobalt MetalOrganic Framework for Supercapacitor Electrodes, 2018 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO), 13–17 Aug. 2018; 2018; pp. 42–46
45.
Zurück zum Zitat R. Ramachandran, K. Rajavel, W. Xuan, D. Lin, and F. Wang, Influence of Ti3C2Tx (MXene) Intercalation Pseudocapacitance on Electrochemical Performance of Co-MOF Binder-Free Electrode, Ceram. Int., 2018, 44(12), p 14425–14431CrossRef R. Ramachandran, K. Rajavel, W. Xuan, D. Lin, and F. Wang, Influence of Ti3C2Tx (MXene) Intercalation Pseudocapacitance on Electrochemical Performance of Co-MOF Binder-Free Electrode, Ceram. Int., 2018, 44(12), p 14425–14431CrossRef
46.
Zurück zum Zitat Ü. Alver and A. Tanrıverdi, Boron Doped ZnO Embedded into Reduced Graphene Oxide for Electrochemical Supercapacitors, Appl. Surf. Sci., 2016, 378, p 368–374CrossRef Ü. Alver and A. Tanrıverdi, Boron Doped ZnO Embedded into Reduced Graphene Oxide for Electrochemical Supercapacitors, Appl. Surf. Sci., 2016, 378, p 368–374CrossRef
47.
Zurück zum Zitat X. Chi, L. Chang, D. Xie, J. Zhang, and G. Du, Hydrothermal Preparation of Co3O4/Graphene Composite as Anode Material for Lithium-Ion Batteries, Mater. Lett., 2013, 106, p 178–181CrossRef X. Chi, L. Chang, D. Xie, J. Zhang, and G. Du, Hydrothermal Preparation of Co3O4/Graphene Composite as Anode Material for Lithium-Ion Batteries, Mater. Lett., 2013, 106, p 178–181CrossRef
48.
Zurück zum Zitat M. Endo, C. Kim, T. Karaki, T. Tamaki, Y. Nishimura, M.J. Matthews, S.D.M. Brown, and M.S. Dresselhaus, Structural Analysis of the B-Doped Mesophase Pitch-Based Graphite Fibers by Raman Spectroscopy, Phys. Rev. B, 1998, 58(14), p 8991–8996CrossRef M. Endo, C. Kim, T. Karaki, T. Tamaki, Y. Nishimura, M.J. Matthews, S.D.M. Brown, and M.S. Dresselhaus, Structural Analysis of the B-Doped Mesophase Pitch-Based Graphite Fibers by Raman Spectroscopy, Phys. Rev. B, 1998, 58(14), p 8991–8996CrossRef
49.
Zurück zum Zitat R. Naresh Muthu, S. Rajashabala, and R. Kannan, Hexagonal Boron Nitride (h-BN) Nanoparticles Decorated Multi-Walled Carbon Nanotubes (MWCNT) for Hydrogen Storage, Renew. Energy, 2016, 85, p 387–394CrossRef R. Naresh Muthu, S. Rajashabala, and R. Kannan, Hexagonal Boron Nitride (h-BN) Nanoparticles Decorated Multi-Walled Carbon Nanotubes (MWCNT) for Hydrogen Storage, Renew. Energy, 2016, 85, p 387–394CrossRef
50.
Zurück zum Zitat J. Li, Z. Li, F. Ning, L. Zhou, R. Zhang, M. Shao, and M. Wei, Ultrathin Mesoporous Co3O4 Nanosheet Arrays for High-Performance Lithium-Ion Batteries, ACS Omega, 2018, 3(2), p 1675–1683CrossRef J. Li, Z. Li, F. Ning, L. Zhou, R. Zhang, M. Shao, and M. Wei, Ultrathin Mesoporous Co3O4 Nanosheet Arrays for High-Performance Lithium-Ion Batteries, ACS Omega, 2018, 3(2), p 1675–1683CrossRef
51.
Zurück zum Zitat L. Xu, Q. Jiang, Z. Xiao, X. Li, J. Huo, S. Wang, and L. Dai, Plasma-Engraved Co3O4 Nanosheets with Oxygen Vacancies and High Surface Area for the Oxygen Evolution Reaction, Angew. Chem. Int. Ed., 2016, 55(17), p 5277–5281CrossRef L. Xu, Q. Jiang, Z. Xiao, X. Li, J. Huo, S. Wang, and L. Dai, Plasma-Engraved Co3O4 Nanosheets with Oxygen Vacancies and High Surface Area for the Oxygen Evolution Reaction, Angew. Chem. Int. Ed., 2016, 55(17), p 5277–5281CrossRef
52.
Zurück zum Zitat A.N. Naveen and S. Selladurai, Tailoring Structural, Optical and Magnetic Properties of Spinel Type Cobalt Oxide (Co3O4) by Manganese Doping, Physica B Condens. Matter, 2015, 457, p 251–262CrossRef A.N. Naveen and S. Selladurai, Tailoring Structural, Optical and Magnetic Properties of Spinel Type Cobalt Oxide (Co3O4) by Manganese Doping, Physica B Condens. Matter, 2015, 457, p 251–262CrossRef
53.
Zurück zum Zitat Y. Song, D.-Y. Feng, T.-Y. Liu, Y. Li, and X.-X. Liu, Controlled Partial-Exfoliation of Graphite Foil and Integration with MnO2 Nanosheets for Electrochemical Capacitors, Nanoscale, 2015, 7(8), p 3581–3587CrossRef Y. Song, D.-Y. Feng, T.-Y. Liu, Y. Li, and X.-X. Liu, Controlled Partial-Exfoliation of Graphite Foil and Integration with MnO2 Nanosheets for Electrochemical Capacitors, Nanoscale, 2015, 7(8), p 3581–3587CrossRef
54.
Zurück zum Zitat W. Cheng, X. Liu, N. Li, J. Han, S. Li, and S. Yu, Boron-Doped Graphene as a Metal-Free Catalyst for Gas-Phase Oxidation of Benzyl Alcohol to Benzaldehyde, RSC Adv., 2018, 8(20), p 11222–11229CrossRef W. Cheng, X. Liu, N. Li, J. Han, S. Li, and S. Yu, Boron-Doped Graphene as a Metal-Free Catalyst for Gas-Phase Oxidation of Benzyl Alcohol to Benzaldehyde, RSC Adv., 2018, 8(20), p 11222–11229CrossRef
55.
Zurück zum Zitat M. Zhang, Y. Wang, D. Pan, Y. Li, Z. Yan, and J. Xie, Nitrogen-Doped 3D Graphene/MWNTs Nanoframework-Embedded Co3O4 for High Electrochemical Performance Supercapacitors, ACS Sustain. Chem. Eng., 2017, 5(6), p 5099–5107CrossRef M. Zhang, Y. Wang, D. Pan, Y. Li, Z. Yan, and J. Xie, Nitrogen-Doped 3D Graphene/MWNTs Nanoframework-Embedded Co3O4 for High Electrochemical Performance Supercapacitors, ACS Sustain. Chem. Eng., 2017, 5(6), p 5099–5107CrossRef
56.
Zurück zum Zitat X. Tian, X. Sun, Z. Jiang, Z.-J. Jiang, X. Hao, D. Shao, and T. Maiyalagan, Exploration of the Active Center Structure of Nitrogen-Doped Graphene for Control over the Growth of Co3O4 for a High-Performance Supercapacitor, ACS Appl. Energy Mater., 2018, 1(1), p 143–153CrossRef X. Tian, X. Sun, Z. Jiang, Z.-J. Jiang, X. Hao, D. Shao, and T. Maiyalagan, Exploration of the Active Center Structure of Nitrogen-Doped Graphene for Control over the Growth of Co3O4 for a High-Performance Supercapacitor, ACS Appl. Energy Mater., 2018, 1(1), p 143–153CrossRef
57.
Zurück zum Zitat J. Wang, J. Polleux, J. Lim, and B. Dunn, Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO2 (Anatase) Nanoparticles, J. Phys. Chem. C, 2007, 111(40), p 14925–14931CrossRef J. Wang, J. Polleux, J. Lim, and B. Dunn, Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO2 (Anatase) Nanoparticles, J. Phys. Chem. C, 2007, 111(40), p 14925–14931CrossRef
58.
Zurück zum Zitat Y. Jiang and J. Liu, Definitions of Pseudocapacitive Materials: A Brief Review, Energy Environ. Mater., 2019, 2(1), p 30–37CrossRef Y. Jiang and J. Liu, Definitions of Pseudocapacitive Materials: A Brief Review, Energy Environ. Mater., 2019, 2(1), p 30–37CrossRef
59.
Zurück zum Zitat N. Elgrishi, K.J. Rountree, B.D. McCarthy, E.S. Rountree, T.T. Eisenhart, and J.L. Dempsey, A Practical Beginner’s Guide to Cyclic Voltammetry, J. Chem. Educ., 2018, 95(2), p 197–206CrossRef N. Elgrishi, K.J. Rountree, B.D. McCarthy, E.S. Rountree, T.T. Eisenhart, and J.L. Dempsey, A Practical Beginner’s Guide to Cyclic Voltammetry, J. Chem. Educ., 2018, 95(2), p 197–206CrossRef
60.
Zurück zum Zitat S. Liu, S.C. Lee, U.M. Patil, C. Ray, K.V. Sankar, K. Zhang, A. Kundu, S. Kang, J.H. Park, and S. Chan Jun, Controllable Sulfuration Engineered NiO Nanosheets with Enhanced Capacitance for High Rate Supercapacitors, J. Mater. Chem. A, 2017, 5(9), p 4543–4549CrossRef S. Liu, S.C. Lee, U.M. Patil, C. Ray, K.V. Sankar, K. Zhang, A. Kundu, S. Kang, J.H. Park, and S. Chan Jun, Controllable Sulfuration Engineered NiO Nanosheets with Enhanced Capacitance for High Rate Supercapacitors, J. Mater. Chem. A, 2017, 5(9), p 4543–4549CrossRef
61.
Zurück zum Zitat Z. Xiao, L. Fan, B. Xu, S. Zhang, W. Kang, Z. Kang, H. Lin, X. Liu, S. Zhang, and D. Sun, Green Fabrication of Ultrathin Co3O4 Nanosheets from Metal–Organic Framework for Robust High-Rate Supercapacitors, ACS Appl. Mater. Interfaces., 2017, 9(48), p 41827–41836CrossRef Z. Xiao, L. Fan, B. Xu, S. Zhang, W. Kang, Z. Kang, H. Lin, X. Liu, S. Zhang, and D. Sun, Green Fabrication of Ultrathin Co3O4 Nanosheets from Metal–Organic Framework for Robust High-Rate Supercapacitors, ACS Appl. Mater. Interfaces., 2017, 9(48), p 41827–41836CrossRef
62.
Zurück zum Zitat T.V. Nguyen, L.T. Son, V.V. Thuy, V.D. Thao, M. Hatsukano, K. Higashimine, S. Maenosono, S.-E. Chun, and T.V. Thu, Facile Synthesis of Mn-Doped NiCo2O4 Nanoparticles with Enhanced Electrochemical Performance for a Battery-Type Supercapacitor Electrode, Dalton Trans., 2020, 49(20), p 6718–6729CrossRef T.V. Nguyen, L.T. Son, V.V. Thuy, V.D. Thao, M. Hatsukano, K. Higashimine, S. Maenosono, S.-E. Chun, and T.V. Thu, Facile Synthesis of Mn-Doped NiCo2O4 Nanoparticles with Enhanced Electrochemical Performance for a Battery-Type Supercapacitor Electrode, Dalton Trans., 2020, 49(20), p 6718–6729CrossRef
63.
Zurück zum Zitat T. Wang, L.-X. Wang, D.-L. Wu, W. Xia, and D.-Z. Jia, Interaction between Nitrogen and Sulfur in Co-Doped Graphene and Synergetic Effect in Supercapacitor, Sci. Rep., 2015, 5, p 9591CrossRef T. Wang, L.-X. Wang, D.-L. Wu, W. Xia, and D.-Z. Jia, Interaction between Nitrogen and Sulfur in Co-Doped Graphene and Synergetic Effect in Supercapacitor, Sci. Rep., 2015, 5, p 9591CrossRef
64.
Zurück zum Zitat D. Jain, J. Kanungo, and S.K. Tripathi, Performance Enhancement Approach for Supercapacitor by Using Mango Kernels Derived Activated Carbon Electrode with p-Hydroxyaniline based Redox Additive Electrolyte, Mater. Chem. Phys., 2019, 229, p 66–77CrossRef D. Jain, J. Kanungo, and S.K. Tripathi, Performance Enhancement Approach for Supercapacitor by Using Mango Kernels Derived Activated Carbon Electrode with p-Hydroxyaniline based Redox Additive Electrolyte, Mater. Chem. Phys., 2019, 229, p 66–77CrossRef
65.
Zurück zum Zitat W. Zhou, J. Liu, T. Chen, K.S. Tan, X. Jia, Z. Luo, C. Cong, H. Yang, C.M. Li, and T. Yu, Fabrication of Co3O4-Reduced Graphene Oxide Scrolls for High-Performance Supercapacitor Electrodes, Phys. Chem. Chem. Phys., 2011, 13(32), p 14462–14465CrossRef W. Zhou, J. Liu, T. Chen, K.S. Tan, X. Jia, Z. Luo, C. Cong, H. Yang, C.M. Li, and T. Yu, Fabrication of Co3O4-Reduced Graphene Oxide Scrolls for High-Performance Supercapacitor Electrodes, Phys. Chem. Chem. Phys., 2011, 13(32), p 14462–14465CrossRef
66.
Zurück zum Zitat R. Manikandan, C.J. Raj, M. Rajesh, B.C. Kim, J.Y. Sim, and K.H. Yu, Electrochemical Behaviour of Lithium, Sodium and Potassium Ion Electrolytes in a Na0.33V2O5 Symmetric Pseudocapacitor with High Performance and High Cyclic Stability, ChemElectroChem, 2018, 5(1), p 101–111CrossRef R. Manikandan, C.J. Raj, M. Rajesh, B.C. Kim, J.Y. Sim, and K.H. Yu, Electrochemical Behaviour of Lithium, Sodium and Potassium Ion Electrolytes in a Na0.33V2O5 Symmetric Pseudocapacitor with High Performance and High Cyclic Stability, ChemElectroChem, 2018, 5(1), p 101–111CrossRef
67.
Zurück zum Zitat M. Jing, Y. Yang, Y. Zhu, H. Hou, Z. Wu, and X. Ji, An Asymmetric Ultracapacitors Utilizing α-Co(OH)2/Co3O4 Flakes Assisted by Electrochemically Alternating Voltage, Electrochim. Acta, 2014, 141, p 234–240CrossRef M. Jing, Y. Yang, Y. Zhu, H. Hou, Z. Wu, and X. Ji, An Asymmetric Ultracapacitors Utilizing α-Co(OH)2/Co3O4 Flakes Assisted by Electrochemically Alternating Voltage, Electrochim. Acta, 2014, 141, p 234–240CrossRef
68.
Zurück zum Zitat K.V. Sankar and R. Kalai Selvan, Improved Electrochemical Performances of Reduced Graphene Oxide Based Supercapacitor Using Redox Additive Electrolyte, Carbon, 2015, 90, p 260–273CrossRef K.V. Sankar and R. Kalai Selvan, Improved Electrochemical Performances of Reduced Graphene Oxide Based Supercapacitor Using Redox Additive Electrolyte, Carbon, 2015, 90, p 260–273CrossRef
69.
Zurück zum Zitat D.K. Kampouris, X. Ji, E.P. Randviir, and C.E. Banks, A New Approach for the Improved Interpretation of Capacitance Measurements for Materials Utilised in Energy Storage, RSC Adv., 2015, 5(17), p 12782–12791CrossRef D.K. Kampouris, X. Ji, E.P. Randviir, and C.E. Banks, A New Approach for the Improved Interpretation of Capacitance Measurements for Materials Utilised in Energy Storage, RSC Adv., 2015, 5(17), p 12782–12791CrossRef
70.
Zurück zum Zitat C. Zheng, M. Yoshio, L. Qi, and H. Wang, A 4 V-Electrochemical Capacitor Using Electrode and Electrolyte Materials Free of Metals, J. Power Sources, 2014, 260, p 19–26CrossRef C. Zheng, M. Yoshio, L. Qi, and H. Wang, A 4 V-Electrochemical Capacitor Using Electrode and Electrolyte Materials Free of Metals, J. Power Sources, 2014, 260, p 19–26CrossRef
71.
Zurück zum Zitat C. Xiang, M. Li, M. Zhi, A. Manivannan, and N. Wu, A Reduced Graphene Oxide/Co3O4 Composite for Supercapacitor Electrode, J. Power Sources, 2013, 226, p 65–70CrossRef C. Xiang, M. Li, M. Zhi, A. Manivannan, and N. Wu, A Reduced Graphene Oxide/Co3O4 Composite for Supercapacitor Electrode, J. Power Sources, 2013, 226, p 65–70CrossRef
72.
Zurück zum Zitat G.K. Veerasubramani, K. Krishnamoorthy, P. Pazhamalai, and S.J. Kim, Enhanced Electrochemical Performances of Graphene Based Solid-State Flexible Cable Type Supercapacitor Using Redox Mediated Polymer Gel Electrolyte, Carbon, 2016, 105, p 638–648CrossRef G.K. Veerasubramani, K. Krishnamoorthy, P. Pazhamalai, and S.J. Kim, Enhanced Electrochemical Performances of Graphene Based Solid-State Flexible Cable Type Supercapacitor Using Redox Mediated Polymer Gel Electrolyte, Carbon, 2016, 105, p 638–648CrossRef
73.
Zurück zum Zitat M.D. Levi, S. Sigalov, G. Salitra, R. Elazari, and D. Aurbach, Assessing the Solvation Numbers of Electrolytic Ions Confined in Carbon Nanopores under Dynamic Charging Conditions, J. Phys. Chem. Lett, 2011, 2(2), p 120–124CrossRef M.D. Levi, S. Sigalov, G. Salitra, R. Elazari, and D. Aurbach, Assessing the Solvation Numbers of Electrolytic Ions Confined in Carbon Nanopores under Dynamic Charging Conditions, J. Phys. Chem. Lett, 2011, 2(2), p 120–124CrossRef
74.
Zurück zum Zitat R. Kumar, H.-J. Kim, S. Park, A. Srivastava, and I.-K. Oh, Graphene-Wrapped and Cobalt Oxide-Intercalated Hybrid for Extremely Durable Super-Capacitor with Ultrahigh Energy and Power Densities, Carbon, 2014, 79, p 192–202CrossRef R. Kumar, H.-J. Kim, S. Park, A. Srivastava, and I.-K. Oh, Graphene-Wrapped and Cobalt Oxide-Intercalated Hybrid for Extremely Durable Super-Capacitor with Ultrahigh Energy and Power Densities, Carbon, 2014, 79, p 192–202CrossRef
75.
Zurück zum Zitat R. Wang, Q. Li, L. Cheng, H. Li, B. Wang, X.S. Zhao, and P. Guo, Electrochemical Properties of Manganese Ferrite-Based Supercapacitors in Aqueous Electrolyte: The Effect of Ionic Radius, Colloids Surf. A Physicochem. Eng. Asp., 2014, 457, p 94–99CrossRef R. Wang, Q. Li, L. Cheng, H. Li, B. Wang, X.S. Zhao, and P. Guo, Electrochemical Properties of Manganese Ferrite-Based Supercapacitors in Aqueous Electrolyte: The Effect of Ionic Radius, Colloids Surf. A Physicochem. Eng. Asp., 2014, 457, p 94–99CrossRef
76.
Zurück zum Zitat K.V. Sankar, D. Kalpana, and R.K. Selvan, Electrochemical Properties of Microwave-Assisted Reflux-Synthesized Mn3O4 Nanoparticles in Different Electrolytes for Supercapacitor Applications, J. Appl. Electrochem., 2012, 42(7), p 463–470CrossRef K.V. Sankar, D. Kalpana, and R.K. Selvan, Electrochemical Properties of Microwave-Assisted Reflux-Synthesized Mn3O4 Nanoparticles in Different Electrolytes for Supercapacitor Applications, J. Appl. Electrochem., 2012, 42(7), p 463–470CrossRef
77.
Zurück zum Zitat Q. Qu, P. Zhang, B. Wang, Y. Chen, S. Tian, Y. Wu, and R. Holze, Electrochemical Performance of MnO2 Nanorods in Neutral Aqueous Electrolytes as a Cathode for Asymmetric Supercapacitors, J. Phys. Chem. C, 2009, 113(31), p 14020–14027CrossRef Q. Qu, P. Zhang, B. Wang, Y. Chen, S. Tian, Y. Wu, and R. Holze, Electrochemical Performance of MnO2 Nanorods in Neutral Aqueous Electrolytes as a Cathode for Asymmetric Supercapacitors, J. Phys. Chem. C, 2009, 113(31), p 14020–14027CrossRef
78.
Zurück zum Zitat X. Zhang, X. Wang, L. Jiang, H. Wu, C. Wu, and J. Su, Effect of Aqueous Electrolytes on the Electrochemical Behaviors of Supercapacitors Based on Hierarchically Porous Carbons, J. Power Sources, 2012, 216, p 290–296CrossRef X. Zhang, X. Wang, L. Jiang, H. Wu, C. Wu, and J. Su, Effect of Aqueous Electrolytes on the Electrochemical Behaviors of Supercapacitors Based on Hierarchically Porous Carbons, J. Power Sources, 2012, 216, p 290–296CrossRef
79.
Zurück zum Zitat A. Numan, N. Duraisamy, F. Saiha Omar, Y.K. Mahipal, K. Ramesh, and S. Ramesh, Enhanced Electrochemical Performance of Cobalt Oxide Nanocube Intercalated Reduced Graphene Oxide for Supercapacitor Application, RSC Adv., 2016, 6(41), p 34894–34902CrossRef A. Numan, N. Duraisamy, F. Saiha Omar, Y.K. Mahipal, K. Ramesh, and S. Ramesh, Enhanced Electrochemical Performance of Cobalt Oxide Nanocube Intercalated Reduced Graphene Oxide for Supercapacitor Application, RSC Adv., 2016, 6(41), p 34894–34902CrossRef
80.
Zurück zum Zitat T.T. Nguyen, V.H. Nguyen, R.K. Deivasigamani, D. Kharismadewi, Y. Iwai, and J.-J. Shim, Facile Synthesis of Cobalt Oxide/Reduced Graphene Oxide Composites for Electrochemical Capacitor and Sensor Applications, Solid State Sci., 2016, 53, p 71–77CrossRef T.T. Nguyen, V.H. Nguyen, R.K. Deivasigamani, D. Kharismadewi, Y. Iwai, and J.-J. Shim, Facile Synthesis of Cobalt Oxide/Reduced Graphene Oxide Composites for Electrochemical Capacitor and Sensor Applications, Solid State Sci., 2016, 53, p 71–77CrossRef
81.
Zurück zum Zitat Z. Song, Y. Zhang, W. Liu, S. Zhang, G. Liu, H. Chen, and J. Qiu, Hydrothermal Synthesis and Electrochemical Performance of Co3O4/Reduced Graphene Oxide Nanosheet Composites for Supercapacitors, Electrochim. Acta, 2013, 112, p 120–126CrossRef Z. Song, Y. Zhang, W. Liu, S. Zhang, G. Liu, H. Chen, and J. Qiu, Hydrothermal Synthesis and Electrochemical Performance of Co3O4/Reduced Graphene Oxide Nanosheet Composites for Supercapacitors, Electrochim. Acta, 2013, 112, p 120–126CrossRef
82.
Zurück zum Zitat H. Wang, Y. Shi, Z. Li, W. Zhang, and S. Yao, Synthesis and Electrochemical Performance of Co3O4/Graphene, Chem. Res. Chin. Univ., 2014, 30(4), p 650–655CrossRef H. Wang, Y. Shi, Z. Li, W. Zhang, and S. Yao, Synthesis and Electrochemical Performance of Co3O4/Graphene, Chem. Res. Chin. Univ., 2014, 30(4), p 650–655CrossRef
83.
Zurück zum Zitat F. Du, X. Zuo, Q. Yang, G. Li, Z. Ding, M. Wu, Y. Ma, S. Jin, and K. Zhu, Facile Hydrothermal Reduction Synthesis of Porous Co3O4 nanosheets@RGO Nanocomposite and Applied as a Supercapacitor Electrode with Enhanced Specific Capacitance and Excellent Cycle Stability, Electrochim. Acta, 2016, 222, p 976–982CrossRef F. Du, X. Zuo, Q. Yang, G. Li, Z. Ding, M. Wu, Y. Ma, S. Jin, and K. Zhu, Facile Hydrothermal Reduction Synthesis of Porous Co3O4 nanosheets@RGO Nanocomposite and Applied as a Supercapacitor Electrode with Enhanced Specific Capacitance and Excellent Cycle Stability, Electrochim. Acta, 2016, 222, p 976–982CrossRef
84.
Zurück zum Zitat Y. Zou, I.A. Kinloch, and R.A.W. Dryfe, Mesoporous Vertical Co3O4 Nanosheet Arrays on Nitrogen-Doped Graphene Foam with Enhanced Charge-Storage Performance, ACS Appl. Mater. Interfaces, 2015, 7(41), p 22831–22838CrossRef Y. Zou, I.A. Kinloch, and R.A.W. Dryfe, Mesoporous Vertical Co3O4 Nanosheet Arrays on Nitrogen-Doped Graphene Foam with Enhanced Charge-Storage Performance, ACS Appl. Mater. Interfaces, 2015, 7(41), p 22831–22838CrossRef
85.
Zurück zum Zitat Y. Wang, R. Ma, L. Liu, Z. Xu, and F. Li, A Facile One-Pot Method for Co3O4/Graphene Composite as Efficient Electrode Materials for Supercapacitors, Nano, 2017, 12(08), p 1750102CrossRef Y. Wang, R. Ma, L. Liu, Z. Xu, and F. Li, A Facile One-Pot Method for Co3O4/Graphene Composite as Efficient Electrode Materials for Supercapacitors, Nano, 2017, 12(08), p 1750102CrossRef
86.
Zurück zum Zitat H.-W. Wang, Z.-A. Hu, Y.-Q. Chang, Y.-L. Chen, Z.-Y. Zhang, Y.-Y. Yang, and H.-Y. Wu, Preparation of Reduced Graphene Oxide/Cobalt Oxide Composites and Their Enhanced Capacitive Behaviors by Homogeneous Incorporation of Reduced Graphene Oxide Sheets in Cobalt Oxide Matrix, Mater. Chem. Phys., 2011, 130(1), p 672–679CrossRef H.-W. Wang, Z.-A. Hu, Y.-Q. Chang, Y.-L. Chen, Z.-Y. Zhang, Y.-Y. Yang, and H.-Y. Wu, Preparation of Reduced Graphene Oxide/Cobalt Oxide Composites and Their Enhanced Capacitive Behaviors by Homogeneous Incorporation of Reduced Graphene Oxide Sheets in Cobalt Oxide Matrix, Mater. Chem. Phys., 2011, 130(1), p 672–679CrossRef
87.
Zurück zum Zitat S. Huang, Y. Jin, and M. Jia, Preparation of Graphene/Co3O4 Composites by Hydrothermal Method and Their Electrochemical Properties, Electrochim. Acta, 2013, 95, p 139–145CrossRef S. Huang, Y. Jin, and M. Jia, Preparation of Graphene/Co3O4 Composites by Hydrothermal Method and Their Electrochemical Properties, Electrochim. Acta, 2013, 95, p 139–145CrossRef
88.
Zurück zum Zitat Q. Li, X. Hu, Q. Yang, Z. Yan, L. Kang, Z. Lei, Z. Yang, and Z. Liu, Electrocapacitive Performance of Graphene/Co3O4 Hybrid Material Prepared by a Nanosheet Assembly Route, Electrochim. Acta, 2014, 119, p 184–191CrossRef Q. Li, X. Hu, Q. Yang, Z. Yan, L. Kang, Z. Lei, Z. Yang, and Z. Liu, Electrocapacitive Performance of Graphene/Co3O4 Hybrid Material Prepared by a Nanosheet Assembly Route, Electrochim. Acta, 2014, 119, p 184–191CrossRef
Metadaten
Titel
Electrochemical Behavior of Cobalt Oxide/Boron-Incorporated Reduced Graphene Oxide Nanocomposite Electrode for Supercapacitor Applications
Publikationsdatum
13.10.2020
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 10/2020
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-05176-z

Weitere Artikel der Ausgabe 10/2020

Journal of Materials Engineering and Performance 10/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.