Skip to main content
Erschienen in: Journal of Materials Science 7/2017

09.01.2017 | Batteries and Supercapacitors

Electrochemical in situ X-ray probing in lithium-ion and sodium-ion batteries

verfasst von: Guobin Zhang, Tengfei Xiong, Liang He, Mengyu Yan, Kangning Zhao, Xu Xu, Liqiang Mai

Erschienen in: Journal of Materials Science | Ausgabe 7/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In situ X-ray diffraction (XRD), as a widely used tool in probing the structure evolution in electrochemical process as well as the energy storage and capacity fading mechanism, has shown great effects with optimizing and building better batteries. Based on the research progresses of in situ XRD in recent years, we give a review of the development and the utilization of this powerful tool in understanding the complex electrochemical mechanisms. The studies on in situ XRD are divided into three sections based on the reaction mechanisms: alloying, conversion, and intercalation reactions in lithium-ion batteries. The alloying reaction, in which lithium ions insert into Si, Sb, and Ge is firstly reviewed, followed by a discussion about the recent development of in situ XRD on conversion reaction materials (including metal oxides and metal sulfides) and intercalation reaction materials (including cathode materials and some structure-stable anode materials). As for sodium-ion batteries, we divide these researches on structure evolution into two categories: cathode and anode materials. Finally, the future development of in situ XRD is discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Hu X, Zhang W, Liu X, Mei Y, Huang Y (2015) Nanostructured Mo-based electrode materials for electrochemical energy storage. Chem Soc Rev 44:2376–2404. doi:10.1039/c4cs00350k CrossRef Hu X, Zhang W, Liu X, Mei Y, Huang Y (2015) Nanostructured Mo-based electrode materials for electrochemical energy storage. Chem Soc Rev 44:2376–2404. doi:10.​1039/​c4cs00350k CrossRef
3.
Zurück zum Zitat Islam MS, Fisher CA (2014) Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chem Soc Rev 43:185–204. doi:10.1039/c3cs60199d CrossRef Islam MS, Fisher CA (2014) Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chem Soc Rev 43:185–204. doi:10.​1039/​c3cs60199d CrossRef
4.
Zurück zum Zitat Wang ZL, Xu D, Xu JJ, Zhang XB (2014) Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes. Chem Soc Rev 43:7746–7786. doi:10.1039/c3cs60248f CrossRef Wang ZL, Xu D, Xu JJ, Zhang XB (2014) Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes. Chem Soc Rev 43:7746–7786. doi:10.​1039/​c3cs60248f CrossRef
6.
Zurück zum Zitat Tarascon JM, Vaughan G, Chabre Y et al (1999) In situ structural and electrochemical study of Ni1−xCoxO2 metastable oxides prepared by soft chemistry. J Solid State Chem 147:410–420. doi:10.1006/jssc.1999.8465 CrossRef Tarascon JM, Vaughan G, Chabre Y et al (1999) In situ structural and electrochemical study of Ni1−xCoxO2 metastable oxides prepared by soft chemistry. J Solid State Chem 147:410–420. doi:10.​1006/​jssc.​1999.​8465 CrossRef
7.
Zurück zum Zitat Palacín MR, Le Cras F, Seguin L et al (1999) In situ structural study of 4 V-range lithium extraction/insertion in fluorine-substituted LiMn2O4. J Solid State Chem 144:361–377. doi:10.1006/jssc.1999.8166 CrossRef Palacín MR, Le Cras F, Seguin L et al (1999) In situ structural study of 4 V-range lithium extraction/insertion in fluorine-substituted LiMn2O4. J Solid State Chem 144:361–377. doi:10.​1006/​jssc.​1999.​8166 CrossRef
9.
11.
13.
Zurück zum Zitat Yoon W-S, Nam K-W, Jang D et al (2012) The kinetic effect on structural behavior of mixed LiMn2O4–LiNi1/3Co1/3Mn1/3O2 cathode materials studied by in situ time-resolved X-ray diffraction technique. Electrochem Commun 15:74–77. doi:10.1016/j.elecom.2011.11.027 CrossRef Yoon W-S, Nam K-W, Jang D et al (2012) The kinetic effect on structural behavior of mixed LiMn2O4–LiNi1/3Co1/3Mn1/3O2 cathode materials studied by in situ time-resolved X-ray diffraction technique. Electrochem Commun 15:74–77. doi:10.​1016/​j.​elecom.​2011.​11.​027 CrossRef
14.
Zurück zum Zitat Xie Y, Wang H, Xu G et al (2016) In operando XRD and TXM study on the metastable structure change of NaNi1/3Fe1/3Mn1/3O2 under electrochemical sodium-ion intercalation. Adv Energy Mater. doi:10.1002/aenm.201601306 Xie Y, Wang H, Xu G et al (2016) In operando XRD and TXM study on the metastable structure change of NaNi1/3Fe1/3Mn1/3O2 under electrochemical sodium-ion intercalation. Adv Energy Mater. doi:10.​1002/​aenm.​201601306
17.
21.
Zurück zum Zitat Hatchard TD, Dahn JR (2004) In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J Electrochem Soc 151:A838–A842. doi:10.1149/1.1739217 CrossRef Hatchard TD, Dahn JR (2004) In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J Electrochem Soc 151:A838–A842. doi:10.​1149/​1.​1739217 CrossRef
22.
24.
Zurück zum Zitat Misra S, Liu N, Nelson J, Hong SS, Cui Y, Toney MF (2012) In situ X-ray diffraction studies of (de)lithiation mechanism in silicon nanowire anodes. ACS Nano 6:5465–5473. doi:10.1021/nn301339g CrossRef Misra S, Liu N, Nelson J, Hong SS, Cui Y, Toney MF (2012) In situ X-ray diffraction studies of (de)lithiation mechanism in silicon nanowire anodes. ACS Nano 6:5465–5473. doi:10.​1021/​nn301339g CrossRef
25.
Zurück zum Zitat Baggetto L, Ganesh P, Sun CN, Meisner RA, Zawodzinski TA, Veith GM (2013) Intrinsic thermodynamic and kinetic properties of Sb electrodes for Li-ion and Na-ion batteries: experiment and theory. J Mater Chem A 1:7985–7994. doi:10.1039/c3ta11568b CrossRef Baggetto L, Ganesh P, Sun CN, Meisner RA, Zawodzinski TA, Veith GM (2013) Intrinsic thermodynamic and kinetic properties of Sb electrodes for Li-ion and Na-ion batteries: experiment and theory. J Mater Chem A 1:7985–7994. doi:10.​1039/​c3ta11568b CrossRef
26.
Zurück zum Zitat Kim SW, Seo DH, Ma XH, Ceder G, Kang K (2012) Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater 2:710–721. doi:10.1002/aenm.201200026 CrossRef Kim SW, Seo DH, Ma XH, Ceder G, Kang K (2012) Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater 2:710–721. doi:10.​1002/​aenm.​201200026 CrossRef
27.
28.
29.
30.
Zurück zum Zitat Liu XH, Huang S, Picraux ST, Li J, Zhu T, Huang JY (2011) Reversible nanopore formation in Ge nanowires during lithiation-delithiation cycling: an in situ transmission electron microscopy study. Nano Lett 11:3991–3997. doi:10.1021/nl2024118 CrossRef Liu XH, Huang S, Picraux ST, Li J, Zhu T, Huang JY (2011) Reversible nanopore formation in Ge nanowires during lithiation-delithiation cycling: an in situ transmission electron microscopy study. Nano Lett 11:3991–3997. doi:10.​1021/​nl2024118 CrossRef
31.
32.
Zurück zum Zitat Baggetto L, Notten PHL (2009) Lithium-ion (de)insertion reaction of germanium thin-film electrodes: an electrochemical and in situ XRD study. J Electrochem Soc 156:A169–A175. doi:10.1149/1.3055984 CrossRef Baggetto L, Notten PHL (2009) Lithium-ion (de)insertion reaction of germanium thin-film electrodes: an electrochemical and in situ XRD study. J Electrochem Soc 156:A169–A175. doi:10.​1149/​1.​3055984 CrossRef
33.
Zurück zum Zitat Arico AS, Bruce P, Scrosati B, Tarascon JM, van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377. doi:10.1038/nmat1368 CrossRef Arico AS, Bruce P, Scrosati B, Tarascon JM, van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377. doi:10.​1038/​nmat1368 CrossRef
34.
Zurück zum Zitat Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243–3262. doi:10.1039/c1ee01598b CrossRef Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243–3262. doi:10.​1039/​c1ee01598b CrossRef
35.
Zurück zum Zitat Wei W, Yang S, Zhou H, Lieberwirth I, Feng X, Mullen K (2013) 3D graphene foams cross-linked with pre-encapsulated Fe3O4 nanospheres for enhanced lithium storage. Adv Mater 25:2909–2914. doi:10.1002/adma.201300445 CrossRef Wei W, Yang S, Zhou H, Lieberwirth I, Feng X, Mullen K (2013) 3D graphene foams cross-linked with pre-encapsulated Fe3O4 nanospheres for enhanced lithium storage. Adv Mater 25:2909–2914. doi:10.​1002/​adma.​201300445 CrossRef
36.
Zurück zum Zitat Li L, Kovalchuk A, Fei HL et al (2015) Enhanced cycling stability of lithium-ion batteries using graphene-wrapped Fe3O4-graphene nanoribbons as anode materials. Adv Energy Mater 5:1500171. doi:10.1002/Aenm.201500171 CrossRef Li L, Kovalchuk A, Fei HL et al (2015) Enhanced cycling stability of lithium-ion batteries using graphene-wrapped Fe3O4-graphene nanoribbons as anode materials. Adv Energy Mater 5:1500171. doi:10.​1002/​Aenm.​201500171 CrossRef
37.
Zurück zum Zitat An Q, Lv F, Liu Q et al (2014) Amorphous vanadium oxide matrixes supporting hierarchical porous Fe3O4/graphene nanowires as a high-rate lithium storage anode. Nano Lett 14:6250–6256. doi:10.1021/nl5025694 CrossRef An Q, Lv F, Liu Q et al (2014) Amorphous vanadium oxide matrixes supporting hierarchical porous Fe3O4/graphene nanowires as a high-rate lithium storage anode. Nano Lett 14:6250–6256. doi:10.​1021/​nl5025694 CrossRef
40.
Zurück zum Zitat Gregorczyk KE, Kozen AC, Chen X et al (2015) Fabrication of 3D core-shell multiwalled carbon nanotube@RuO2 lithium-ion battery electrodes through a RuO2 atomic layer deposition process. ACS Nano 9:464–473. doi:10.1021/nn505644q CrossRef Gregorczyk KE, Kozen AC, Chen X et al (2015) Fabrication of 3D core-shell multiwalled carbon nanotube@RuO2 lithium-ion battery electrodes through a RuO2 atomic layer deposition process. ACS Nano 9:464–473. doi:10.​1021/​nn505644q CrossRef
41.
Zurück zum Zitat Kim Y, Muhammad S, Kim H et al (2015) Probing the additional capacity and reaction mechanism of the RuO2 anode in lithium rechargeable batteries. Chemsuschem 8:2378–2384. doi:10.1002/cssc.201403488 CrossRef Kim Y, Muhammad S, Kim H et al (2015) Probing the additional capacity and reaction mechanism of the RuO2 anode in lithium rechargeable batteries. Chemsuschem 8:2378–2384. doi:10.​1002/​cssc.​201403488 CrossRef
42.
44.
Zurück zum Zitat Wu F, Yu C, Liu W, Wang T, Feng J, Xiong S (2015) Large-scale synthesis of Co2V2O7 hexagonal microplatelets under ambient conditions for highly reversible lithium storage. J Mater Chem A 3:16728–16736. doi:10.1039/c5ta03106k CrossRef Wu F, Yu C, Liu W, Wang T, Feng J, Xiong S (2015) Large-scale synthesis of Co2V2O7 hexagonal microplatelets under ambient conditions for highly reversible lithium storage. J Mater Chem A 3:16728–16736. doi:10.​1039/​c5ta03106k CrossRef
45.
Zurück zum Zitat Luo Y, Xu X, Zhang Y et al (2016) Graphene oxide templated growth and superior lithium storage performance of novel hierarchical Co2V2O7 nanosheets. ACS Appl Mater Interfaces 8:2812–2818. doi:10.1021/acsami.5b11510 CrossRef Luo Y, Xu X, Zhang Y et al (2016) Graphene oxide templated growth and superior lithium storage performance of novel hierarchical Co2V2O7 nanosheets. ACS Appl Mater Interfaces 8:2812–2818. doi:10.​1021/​acsami.​5b11510 CrossRef
46.
Zurück zum Zitat Wu ZS, Ren W, Wen L et al (2010) Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4:3187–3194. doi:10.1021/nn100740x CrossRef Wu ZS, Ren W, Wen L et al (2010) Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4:3187–3194. doi:10.​1021/​nn100740x CrossRef
47.
Zurück zum Zitat Peng C, Chen B, Qin Y et al (2012) Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity. ACS Nano 6:1074–1081. doi:10.1021/nn202888d CrossRef Peng C, Chen B, Qin Y et al (2012) Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity. ACS Nano 6:1074–1081. doi:10.​1021/​nn202888d CrossRef
48.
Zurück zum Zitat Yang G, Cui H, Yang G, Wang C (2014) Self-assembly of Co3V2O8 multilayered nanosheets: controllable synthesis, excellent Li-storage properties, and investigation of electrochemical mechanism. ACS Nano 8:4474–4487. doi:10.1021/nn406449u CrossRef Yang G, Cui H, Yang G, Wang C (2014) Self-assembly of Co3V2O8 multilayered nanosheets: controllable synthesis, excellent Li-storage properties, and investigation of electrochemical mechanism. ACS Nano 8:4474–4487. doi:10.​1021/​nn406449u CrossRef
49.
Zurück zum Zitat Apostolova RD, Kolomoyets OV, Shembel’ EM (2011) Optimization of iron sulfides usage in electrolytic composites with graphites for lithium-ion batteries. Surf Eng Appl Electrochem 47:465–470. doi:10.3103/s1068375511050036 CrossRef Apostolova RD, Kolomoyets OV, Shembel’ EM (2011) Optimization of iron sulfides usage in electrolytic composites with graphites for lithium-ion batteries. Surf Eng Appl Electrochem 47:465–470. doi:10.​3103/​s106837551105003​6 CrossRef
50.
Zurück zum Zitat Balogun MS, Qiu W, Jian J et al (2015) Vanadium nitride nanowire supported SnS2 nanosheets with high reversible capacity as anode material for lithium ion batteries. ACS Appl Mater Interfaces 7:23205–23215. doi:10.1021/acsami.5b07044 CrossRef Balogun MS, Qiu W, Jian J et al (2015) Vanadium nitride nanowire supported SnS2 nanosheets with high reversible capacity as anode material for lithium ion batteries. ACS Appl Mater Interfaces 7:23205–23215. doi:10.​1021/​acsami.​5b07044 CrossRef
55.
Zurück zum Zitat Song T, Han H, Choi H et al (2015) TiO2 nanotube branched tree on a carbon nanofiber nanostructure as an anode for high energy and power lithium ion batteries. Nano Res 7:491–501. doi:10.1007/s12274-014-0415-1 CrossRef Song T, Han H, Choi H et al (2015) TiO2 nanotube branched tree on a carbon nanofiber nanostructure as an anode for high energy and power lithium ion batteries. Nano Res 7:491–501. doi:10.​1007/​s12274-014-0415-1 CrossRef
56.
Zurück zum Zitat Qiu J, Li S, Gray E et al (2014) Hydrogenation synthesis of blue TiO2 for high-performance lithium-ion batteries. J Phys Chem C 118:8824–8830. doi:10.1021/jp501819p CrossRef Qiu J, Li S, Gray E et al (2014) Hydrogenation synthesis of blue TiO2 for high-performance lithium-ion batteries. J Phys Chem C 118:8824–8830. doi:10.​1021/​jp501819p CrossRef
57.
Zurück zum Zitat Wagemaker M, Borghols WJ, Mulder FM (2007) Large impact of particle size on insertion reactions. A case for anatase LixTiO2. J Am Chem Soc 129:4323–4327. doi:10.1021/ja067733p CrossRef Wagemaker M, Borghols WJ, Mulder FM (2007) Large impact of particle size on insertion reactions. A case for anatase LixTiO2. J Am Chem Soc 129:4323–4327. doi:10.​1021/​ja067733p CrossRef
58.
Zurück zum Zitat Shen K, Chen H, Klaver F, Mulder FM, Wagemaker M (2014) Impact of particle size on the non-equilibrium phase transition of lithium-inserted anatase TiO2. Chem Mater 26:1608–1615. doi:10.1021/cm4037346 CrossRef Shen K, Chen H, Klaver F, Mulder FM, Wagemaker M (2014) Impact of particle size on the non-equilibrium phase transition of lithium-inserted anatase TiO2. Chem Mater 26:1608–1615. doi:10.​1021/​cm4037346 CrossRef
60.
61.
Zurück zum Zitat Li QD, Wei QL, Sheng JZ et al (2015) Mesoporous Li3VO4/C submicron-ellipsoids supported on reduced graphene oxide as practical anode for high-power lithium-ion batteries. Adv Sci 2:1500284. doi:10.1002/advs.201500284 CrossRef Li QD, Wei QL, Sheng JZ et al (2015) Mesoporous Li3VO4/C submicron-ellipsoids supported on reduced graphene oxide as practical anode for high-power lithium-ion batteries. Adv Sci 2:1500284. doi:10.​1002/​advs.​201500284 CrossRef
62.
Zurück zum Zitat Zhou LL, Shen SY, Peng XX et al (2016) New insights into the structure changes and interface properties of Li3VO4 anode for lithium-ion batteries during the initial cycle by in situ techniques. ACS Appl Mater Interfaces 8:23739–23745. doi:10.1021/acsami.6b07811 CrossRef Zhou LL, Shen SY, Peng XX et al (2016) New insights into the structure changes and interface properties of Li3VO4 anode for lithium-ion batteries during the initial cycle by in situ techniques. ACS Appl Mater Interfaces 8:23739–23745. doi:10.​1021/​acsami.​6b07811 CrossRef
63.
64.
Zurück zum Zitat Li L, Nan C, Lu J, Peng Q, Li Y (2012) alpha-MnO2 nanotubes: high surface area and enhanced lithium battery properties. Chem Commun (Camb) 48:6945–6947. doi:10.1039/c2cc32306k CrossRef Li L, Nan C, Lu J, Peng Q, Li Y (2012) alpha-MnO2 nanotubes: high surface area and enhanced lithium battery properties. Chem Commun (Camb) 48:6945–6947. doi:10.​1039/​c2cc32306k CrossRef
65.
Zurück zum Zitat Yuan Y, Nie A, Odegard GM et al (2015) Asynchronous crystal cell expansion during lithiation of K+-stabilized alpha-MnO2. Nano Lett 15:2998–3007. doi:10.1021/nl5048913 CrossRef Yuan Y, Nie A, Odegard GM et al (2015) Asynchronous crystal cell expansion during lithiation of K+-stabilized alpha-MnO2. Nano Lett 15:2998–3007. doi:10.​1021/​nl5048913 CrossRef
66.
Zurück zum Zitat Chen WM, Qie L, Shao QG, Yuan LX, Zhang WX, Huang YH (2012) Controllable synthesis of hollow bipyramid beta-MnO2 and its high electrochemical performance for lithium storage. ACS Appl Mater Interfaces 4:3047–3053. doi:10.1021/am300410z CrossRef Chen WM, Qie L, Shao QG, Yuan LX, Zhang WX, Huang YH (2012) Controllable synthesis of hollow bipyramid beta-MnO2 and its high electrochemical performance for lithium storage. ACS Appl Mater Interfaces 4:3047–3053. doi:10.​1021/​am300410z CrossRef
68.
Zurück zum Zitat Pang WK, Peterson VK, Sharma N, Zhang C, Guo Z (2014) Evidence of solid-solution reaction upon lithium insertion into cryptomelane K0.25Mn2O4 material. J Phys Chem C 118:3976–3983. doi:10.1021/jp411687n CrossRef Pang WK, Peterson VK, Sharma N, Zhang C, Guo Z (2014) Evidence of solid-solution reaction upon lithium insertion into cryptomelane K0.25Mn2O4 material. J Phys Chem C 118:3976–3983. doi:10.​1021/​jp411687n CrossRef
69.
Zurück zum Zitat Brezesinski T, Wang J, Tolbert SH, Dunn B (2010) Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat Mater 9:146–151. doi:10.1038/nmat2612 CrossRef Brezesinski T, Wang J, Tolbert SH, Dunn B (2010) Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat Mater 9:146–151. doi:10.​1038/​nmat2612 CrossRef
71.
Zurück zum Zitat Zhou L, Yang L, Yuan P, Zou J, Wu Y, Yu C (2010) α-MoO3 nanobelts: a high performance cathode material for lithium ion batteries. J Phys Chem C 114:21868–21872. doi:10.1021/jp108778v CrossRef Zhou L, Yang L, Yuan P, Zou J, Wu Y, Yu C (2010) α-MoO3 nanobelts: a high performance cathode material for lithium ion batteries. J Phys Chem C 114:21868–21872. doi:10.​1021/​jp108778v CrossRef
73.
76.
Zurück zum Zitat An Q, Wei Q, Zhang P et al (2015) Three-dimensional interconnected vanadium pentoxide nanonetwork cathode for high-rate long-life lithium batteries. Small 11:2654–2660. doi:10.1002/smll.201403358 CrossRef An Q, Wei Q, Zhang P et al (2015) Three-dimensional interconnected vanadium pentoxide nanonetwork cathode for high-rate long-life lithium batteries. Small 11:2654–2660. doi:10.​1002/​smll.​201403358 CrossRef
77.
Zurück zum Zitat Ren W, Zheng Z, Luo Y et al (2015) An electrospun hierarchical LiV3O8 nanowire-in-network for high-rate and long-life lithium batteries. J Mater Chem A 3:19850–19856. doi:10.1039/c5ta04643b CrossRef Ren W, Zheng Z, Luo Y et al (2015) An electrospun hierarchical LiV3O8 nanowire-in-network for high-rate and long-life lithium batteries. J Mater Chem A 3:19850–19856. doi:10.​1039/​c5ta04643b CrossRef
79.
81.
Zurück zum Zitat Meng JS, Liu Z, Niu CJ et al (2016) A synergistic effect between layer surface configurations and K ions of potassium vanadate nanowires for enhanced energy storage performance. J Mater Chem A 4:4893–4899. doi:10.1039/c6ta00556j CrossRef Meng JS, Liu Z, Niu CJ et al (2016) A synergistic effect between layer surface configurations and K ions of potassium vanadate nanowires for enhanced energy storage performance. J Mater Chem A 4:4893–4899. doi:10.​1039/​c6ta00556j CrossRef
82.
83.
85.
Zurück zum Zitat Chung KY, Kim KB (2002) Investigation of structural fatigue in spinel electrodes using in situ laser probe beam deflection technique. J Electrochem Soc 149:A79–A85. doi:10.1149/1.1426396 CrossRef Chung KY, Kim KB (2002) Investigation of structural fatigue in spinel electrodes using in situ laser probe beam deflection technique. J Electrochem Soc 149:A79–A85. doi:10.​1149/​1.​1426396 CrossRef
86.
Zurück zum Zitat Chung KY, Lee HS, Yoon W-S, McBreen J, Yang X-Q (2006) Studies of LiMn2O4 capacity fading at elevated temperature using in situ synchrotron x-ray diffraction. J Electrochem Soc 153:A774–A780. doi:10.1149/1.2172565 CrossRef Chung KY, Lee HS, Yoon W-S, McBreen J, Yang X-Q (2006) Studies of LiMn2O4 capacity fading at elevated temperature using in situ synchrotron x-ray diffraction. J Electrochem Soc 153:A774–A780. doi:10.​1149/​1.​2172565 CrossRef
87.
Zurück zum Zitat Hirayama M, Ido H, Kim K et al (2010) Dynamic structural changes at LiMn2O4/electrolyte interface during lithium battery reaction. J Am Chem Soc 132:15268–15276. doi:10.1021/ja105389t CrossRef Hirayama M, Ido H, Kim K et al (2010) Dynamic structural changes at LiMn2O4/electrolyte interface during lithium battery reaction. J Am Chem Soc 132:15268–15276. doi:10.​1021/​ja105389t CrossRef
89.
Zurück zum Zitat Roberts MR, Madsen A, Nicklin C et al (2014) Direct observation of active material concentration gradients and crystallinity breakdown in LiFePO4 electrodes during charge/discharge cycling of lithium batteries. J Phys Chem C 118:6548–6557. doi:10.1021/jp411152s CrossRef Roberts MR, Madsen A, Nicklin C et al (2014) Direct observation of active material concentration gradients and crystallinity breakdown in LiFePO4 electrodes during charge/discharge cycling of lithium batteries. J Phys Chem C 118:6548–6557. doi:10.​1021/​jp411152s CrossRef
90.
91.
Zurück zum Zitat Gibot P, Casas-Cabanas M, Laffont L et al (2008) Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4. Nat Mater 7:741–747. doi:10.1038/nmat2245 CrossRef Gibot P, Casas-Cabanas M, Laffont L et al (2008) Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4. Nat Mater 7:741–747. doi:10.​1038/​nmat2245 CrossRef
92.
Zurück zum Zitat Delacourt C, Poizot P, Tarascon JM, Masquelier C (2005) The existence of a temperature-driven solid solution in LixFePO4 for 0 ≤ x ≤ 1. Nat Mater 4:254–260. doi:10.1038/nmat1335 CrossRef Delacourt C, Poizot P, Tarascon JM, Masquelier C (2005) The existence of a temperature-driven solid solution in LixFePO4 for 0 ≤ x ≤ 1. Nat Mater 4:254–260. doi:10.​1038/​nmat1335 CrossRef
94.
Zurück zum Zitat Chen J, Graetz J (2011) Study of antisite defects in hydrothermally prepared LiFePO4 by in situ X-ray diffraction. ACS Appl Mater Interfaces 3:1380–1384. doi:10.1021/am200141a CrossRef Chen J, Graetz J (2011) Study of antisite defects in hydrothermally prepared LiFePO4 by in situ X-ray diffraction. ACS Appl Mater Interfaces 3:1380–1384. doi:10.​1021/​am200141a CrossRef
95.
99.
Zurück zum Zitat Xu YH, Zhu YJ, Liu YH, Wang CS (2013) Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and lithium-ion batteries. Adv Energy Mater 3:128–133. doi:10.1002/aenm.201200346 CrossRef Xu YH, Zhu YJ, Liu YH, Wang CS (2013) Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and lithium-ion batteries. Adv Energy Mater 3:128–133. doi:10.​1002/​aenm.​201200346 CrossRef
101.
Zurück zum Zitat Yang D, Zheng Z, Liu H et al (2008) Layered titanate nanofibers as efficient adsorbents for removal of toxic radioactive and heavy metal ions from water. J Phys Chem C 112:16275–16280. doi:10.1021/jp803826g CrossRef Yang D, Zheng Z, Liu H et al (2008) Layered titanate nanofibers as efficient adsorbents for removal of toxic radioactive and heavy metal ions from water. J Phys Chem C 112:16275–16280. doi:10.​1021/​jp803826g CrossRef
102.
Zurück zum Zitat Izawa H, Kikkawa S, Koizumi M (1982) Ion exchange and dehydration of layered [sodium and potassium] titanates, Na2Ti3O7 and K2Ti4O9. J Phys Chem 86:5023–5026. doi:10.1021/j100222a036 CrossRef Izawa H, Kikkawa S, Koizumi M (1982) Ion exchange and dehydration of layered [sodium and potassium] titanates, Na2Ti3O7 and K2Ti4O9. J Phys Chem 86:5023–5026. doi:10.​1021/​j100222a036 CrossRef
103.
Zurück zum Zitat Senguttuvan P, Rousse G, Seznec V, Tarascon JM, Palacin MR (2011) Na2Ti3O7: lowest voltage ever reported oxide insertion electrode for sodium ion batteries. Chem Mater 23:4109–4111. doi:10.1021/cm202076g CrossRef Senguttuvan P, Rousse G, Seznec V, Tarascon JM, Palacin MR (2011) Na2Ti3O7: lowest voltage ever reported oxide insertion electrode for sodium ion batteries. Chem Mater 23:4109–4111. doi:10.​1021/​cm202076g CrossRef
106.
Zurück zum Zitat Masquelier C, Croguennec L (2013) Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. Chem Rev 113:6552–6591. doi:10.1021/cr3001862 CrossRef Masquelier C, Croguennec L (2013) Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. Chem Rev 113:6552–6591. doi:10.​1021/​cr3001862 CrossRef
108.
Zurück zum Zitat Wu C, Kopold P, Ding YL, van Aken PA, Maier J, Yu Y (2015) Synthesizing porous NaTi2(PO4)3 nanoparticles embedded in 3D graphene networks for high-rate and long cycle-life sodium electrodes. ACS Nano 9:6610–6618. doi:10.1021/acsnano.5b02787 CrossRef Wu C, Kopold P, Ding YL, van Aken PA, Maier J, Yu Y (2015) Synthesizing porous NaTi2(PO4)3 nanoparticles embedded in 3D graphene networks for high-rate and long cycle-life sodium electrodes. ACS Nano 9:6610–6618. doi:10.​1021/​acsnano.​5b02787 CrossRef
109.
Zurück zum Zitat Jiang Y, Shi J, Wang M, Zeng L, Gu L, Yu Y (2016) Highly reversible and ultrafast sodium storage in NaTi2(PO4)3 nanoparticles embedded in nanocarbon networks. ACS Appl Mater Interfaces 8:689–695. doi:10.1021/acsami.5b09811 CrossRef Jiang Y, Shi J, Wang M, Zeng L, Gu L, Yu Y (2016) Highly reversible and ultrafast sodium storage in NaTi2(PO4)3 nanoparticles embedded in nanocarbon networks. ACS Appl Mater Interfaces 8:689–695. doi:10.​1021/​acsami.​5b09811 CrossRef
111.
Zurück zum Zitat Chhowalla M, Shin HS, Eda G, Li LJ, Loh KP, Zhang H (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5:263–275. doi:10.1038/nchem.1589 CrossRef Chhowalla M, Shin HS, Eda G, Li LJ, Loh KP, Zhang H (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5:263–275. doi:10.​1038/​nchem.​1589 CrossRef
112.
Zurück zum Zitat Bloise AC, Donoso JP, Magon CJ et al (2002) NMR study of lithium dynamics and molecular motions in a diethylamine-molybdenum disulfide intercalation compound. J Phys Chem B 106:11698–11707. doi:10.1021/jp012839m CrossRef Bloise AC, Donoso JP, Magon CJ et al (2002) NMR study of lithium dynamics and molecular motions in a diethylamine-molybdenum disulfide intercalation compound. J Phys Chem B 106:11698–11707. doi:10.​1021/​jp012839m CrossRef
113.
Zurück zum Zitat Wang X, Shen X, Wang Z, Yu R, Chen L (2014) Atomic-scale clarification of structural transition of MoS2 upon sodium intercalation. ACS Nano 8:11394–11400. doi:10.1021/nn505501v CrossRef Wang X, Shen X, Wang Z, Yu R, Chen L (2014) Atomic-scale clarification of structural transition of MoS2 upon sodium intercalation. ACS Nano 8:11394–11400. doi:10.​1021/​nn505501v CrossRef
116.
118.
Zurück zum Zitat Kim H, Kim DJ, Seo D-H et al (2012) Ab initio study of the sodium intercalation and intermediate phases in Na0.44MnO2 for sodium-ion battery. Chem Mater 24:1205–1211. doi:10.1021/cm300065y CrossRef Kim H, Kim DJ, Seo D-H et al (2012) Ab initio study of the sodium intercalation and intermediate phases in Na0.44MnO2 for sodium-ion battery. Chem Mater 24:1205–1211. doi:10.​1021/​cm300065y CrossRef
119.
Zurück zum Zitat Sauvage F, Laffont L, Tarascon JM, Baudrin E (2007) Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2. Inorg Chem 46:3289–3294. doi:10.1021/ic0700250 CrossRef Sauvage F, Laffont L, Tarascon JM, Baudrin E (2007) Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2. Inorg Chem 46:3289–3294. doi:10.​1021/​ic0700250 CrossRef
121.
Zurück zum Zitat Xu Y, Wei Q, Xu C et al (2016) Layer-by-layer Na3V2(PO4)3 embedded in reduced graphene oxide as superior rate and ultralong-life sodium-ion battery cathode. Adv Energy Mater 6:1600389. doi:10.1002/aenm.201600389 CrossRef Xu Y, Wei Q, Xu C et al (2016) Layer-by-layer Na3V2(PO4)3 embedded in reduced graphene oxide as superior rate and ultralong-life sodium-ion battery cathode. Adv Energy Mater 6:1600389. doi:10.​1002/​aenm.​201600389 CrossRef
122.
Zurück zum Zitat Jian Z, Han W, Lu X et al (2013) Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries. Adv Energy Mater 3:156–160. doi:10.1002/aenm.201200558 CrossRef Jian Z, Han W, Lu X et al (2013) Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries. Adv Energy Mater 3:156–160. doi:10.​1002/​aenm.​201200558 CrossRef
123.
Zurück zum Zitat Wang XP, Niu CJ, Meng JS et al (2015) Novel K3V2(PO4)(3)/C bundled nanowires as superior sodium-ion battery electrode with ultrahigh cycling stability. Adv Energy Mater 5:1500716. doi:10.1002/aenm.201500716 CrossRef Wang XP, Niu CJ, Meng JS et al (2015) Novel K3V2(PO4)(3)/C bundled nanowires as superior sodium-ion battery electrode with ultrahigh cycling stability. Adv Energy Mater 5:1500716. doi:10.​1002/​aenm.​201500716 CrossRef
124.
Zurück zum Zitat Zhu Y-E, Qi X, Chen X et al (2016) A P2-Na0.67Co0.5Mn0.5O2 cathode material with excellent rate capability and cycling stability for sodium ion batteries. J Mater Chem A 4:11103–11109. doi:10.1039/c6ta02845d CrossRef Zhu Y-E, Qi X, Chen X et al (2016) A P2-Na0.67Co0.5Mn0.5O2 cathode material with excellent rate capability and cycling stability for sodium ion batteries. J Mater Chem A 4:11103–11109. doi:10.​1039/​c6ta02845d CrossRef
126.
Metadaten
Titel
Electrochemical in situ X-ray probing in lithium-ion and sodium-ion batteries
verfasst von
Guobin Zhang
Tengfei Xiong
Liang He
Mengyu Yan
Kangning Zhao
Xu Xu
Liqiang Mai
Publikationsdatum
09.01.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 7/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0732-8

Weitere Artikel der Ausgabe 7/2017

Journal of Materials Science 7/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.