Skip to main content
Erschienen in: Wireless Personal Communications 2/2023

27.02.2023

Energy and Latency Efficient Caching in Mobile Edge Networks: Survey, Solutions, and Challenges

verfasst von: Lubna B. Mohammed, Alagan Anpalagan, Muhammad Jaseemuddin

Erschienen in: Wireless Personal Communications | Ausgabe 2/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Future wireless networks provide research challenges with many fold increase of smart devices and the exponential growth in mobile data traffic. The advent of highly computational and real-time applications cause huge expansion in traffic volume. The emerging need to bring data closer to users and minimizing the traffic off the macrocell base station introduces the use of caches at the edge of the networks. Storing most popular files at the edge of mobile edge networks (MENs) in user terminals (UTs) and small base stations caches is a promising approach to the challenges that face data-rich wireless networks. Caching at the mobile UT allows to obtain requested contents directly from its nearby UTs caches through the device-to-device (D2D) communication. In this survey article, solutions for mobile edge computing and caching challenges in terms of energy and latency are presented. Caching in MENs and comparisons between different caching techniques in MENs are presented. An illustration of the research in cache development for wireless networks that apply intelligent and learning techniques in a specific domain in their design is presented. We summarize the challenges that face the design of caching system in MENs. Finally, some future research directions are discussed for the development of cache placement and cache access and delivery in MENs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Baştug, E., Bennis, M., & Debbah, M. (2016). Proactive caching in 5G small cell networks. Towards 5G: Applications, requirements and candidate technologies 78–98. Baştug, E., Bennis, M., & Debbah, M. (2016). Proactive caching in 5G small cell networks. Towards 5G: Applications, requirements and candidate technologies 78–98.
2.
Zurück zum Zitat Poularakis, K., Iosifidis, G., Sourlas, V., & Tassiulas, L. (2016). Exploiting caching and multicast for 5G wireless networks. IEEE Transactions on Wireless Communications, 15(4), 2995–3007. Poularakis, K., Iosifidis, G., Sourlas, V., & Tassiulas, L. (2016). Exploiting caching and multicast for 5G wireless networks. IEEE Transactions on Wireless Communications, 15(4), 2995–3007.
3.
Zurück zum Zitat Bastug, E., Bennis, M., & Debbah, M. (2014). Living on the edge: The role of proactive caching in 5G wireless networks. IEEE Communications Magazine, 52(8), 82–89. Bastug, E., Bennis, M., & Debbah, M. (2014). Living on the edge: The role of proactive caching in 5G wireless networks. IEEE Communications Magazine, 52(8), 82–89.
4.
Zurück zum Zitat Bastug, E., Bennis, M., & Debbah, M. (2014). Social ands patial proactive caching for mobile data offloading. In 2014 IEEE international conference on communications workshops, ICC, vol. 2014 (pp. 581–586). Bastug, E., Bennis, M., & Debbah, M. (2014). Social ands patial proactive caching for mobile data offloading. In 2014 IEEE international conference on communications workshops, ICC, vol. 2014 (pp. 581–586).
5.
Zurück zum Zitat KiskaniM, K., & Sadjadpour, H. R. (2017). Multihop caching-aided coded multicasting for the next generation of cellular networks. IEEE Transactions on Vehicular Technology, 66(3), 2576–2585. KiskaniM, K., & Sadjadpour, H. R. (2017). Multihop caching-aided coded multicasting for the next generation of cellular networks. IEEE Transactions on Vehicular Technology, 66(3), 2576–2585.
6.
Zurück zum Zitat Goian, H. S., Al-Jarrah, O. Y., Muhaidat, S., Al-Hammadi, Y., Yoo, P., & Dianati, M. (2019). Popularity-based video caching techniques for cache-enabled networks: a survey. IEEE Access, 7, 27699–27719. Goian, H. S., Al-Jarrah, O. Y., Muhaidat, S., Al-Hammadi, Y., Yoo, P., & Dianati, M. (2019). Popularity-based video caching techniques for cache-enabled networks: a survey. IEEE Access, 7, 27699–27719.
7.
Zurück zum Zitat Li, L., Zhao, G., & Blum, R. S. (2018). A survey of caching techniques in cellular networks: Research issues and challenges in content placement and delivery strategies. IEEE Communications Surveys & Tutorials, 20(3), 1710–1732. Li, L., Zhao, G., & Blum, R. S. (2018). A survey of caching techniques in cellular networks: Research issues and challenges in content placement and delivery strategies. IEEE Communications Surveys & Tutorials, 20(3), 1710–1732.
8.
Zurück zum Zitat Parvez, I., Rahmati, A., Guvenc, I., Sarwat, A. I., & Dai, H. A. (2018). Survey on low latency towards 5G: RAN, core network and caching solutions. IEEE Communications Surveys & Tutorials, 20, 3098–3130. Parvez, I., Rahmati, A., Guvenc, I., Sarwat, A. I., & Dai, H. A. (2018). Survey on low latency towards 5G: RAN, core network and caching solutions. IEEE Communications Surveys & Tutorials, 20, 3098–3130.
9.
Zurück zum Zitat Piao, Z., Peng, M., Liu, Y., & Daneshm, M. (2018). Recent advances of edge cache in radio access networks for internet of things: Techniques, performances, and challenges. IEEE Internet of Things Journal, 6(1), 1010–1028. Piao, Z., Peng, M., Liu, Y., & Daneshm, M. (2018). Recent advances of edge cache in radio access networks for internet of things: Techniques, performances, and challenges. IEEE Internet of Things Journal, 6(1), 1010–1028.
10.
Zurück zum Zitat Wang, S., Zhang, X., Zhang, Y., Wang, L., Yang, J., & Wang, W. (2017). A survey on mobile edge networks: Convergence of computing, caching and communications. IEEE Access, 5, 6757–6779. Wang, S., Zhang, X., Zhang, Y., Wang, L., Yang, J., & Wang, W. (2017). A survey on mobile edge networks: Convergence of computing, caching and communications. IEEE Access, 5, 6757–6779.
11.
Zurück zum Zitat Zhang, M., Luo, H., & Zhang, H. (2015). A survey of caching mechanisms in information-centric networking. IEEE Communications Surveys & Tutorials, 17(3), 1473–1499. Zhang, M., Luo, H., & Zhang, H. (2015). A survey of caching mechanisms in information-centric networking. IEEE Communications Surveys & Tutorials, 17(3), 1473–1499.
12.
Zurück zum Zitat Mehrabi, M., You, D., Latzko, V., Salah, H., Reisslein, M., & Fitzek, F. H. (2019). Device-enhanced MEC: Multi-access edge computing (MEC) aided by end device computation and caching: A Survey. IEEE Access, 7, 166079–166108. Mehrabi, M., You, D., Latzko, V., Salah, H., Reisslein, M., & Fitzek, F. H. (2019). Device-enhanced MEC: Multi-access edge computing (MEC) aided by end device computation and caching: A Survey. IEEE Access, 7, 166079–166108.
13.
Zurück zum Zitat Rahimi, M. R., Ren, J., Liu, C. H., Vasilakos, A. V., & Venkatasubramanian, N. (2014). Mobile cloud computing: A survey, state of art and future directions. Mobile Networks and Applications, 19(2), 133–143. Rahimi, M. R., Ren, J., Liu, C. H., Vasilakos, A. V., & Venkatasubramanian, N. (2014). Mobile cloud computing: A survey, state of art and future directions. Mobile Networks and Applications, 19(2), 133–143.
14.
Zurück zum Zitat Abbas, N., Zhang, Y., Taherkordi, A., & Skeie, T. (2018). Mobile edge computing: A survey. IEEE Internet of Things Journal, 5(1), 450–465. Abbas, N., Zhang, Y., Taherkordi, A., & Skeie, T. (2018). Mobile edge computing: A survey. IEEE Internet of Things Journal, 5(1), 450–465.
15.
Zurück zum Zitat Hu, Y. C., Patel, M., Sabella, D., Sprecher, N., & Young, V. (2015). Mobile edge computingaâĂŤA key technology towards 5G. ETSI White Paper, 11(11), 1–16. Hu, Y. C., Patel, M., Sabella, D., Sprecher, N., & Young, V. (2015). Mobile edge computingaâĂŤA key technology towards 5G. ETSI White Paper, 11(11), 1–16.
16.
Zurück zum Zitat Chiang, M., & Zhang, T. (2016). Fog and IoT: An overview of research opportunities. IEEE Internet of Things Journal, 3(6), 854–864. Chiang, M., & Zhang, T. (2016). Fog and IoT: An overview of research opportunities. IEEE Internet of Things Journal, 3(6), 854–864.
17.
Zurück zum Zitat Satyanarayanan, M., Bahl, P., Caceres, R., & Davies, N. (2009). The case for VM-based cloudlets in mobile computing. IEEE Pervasive Computing, 8(4), 14–23. Satyanarayanan, M., Bahl, P., Caceres, R., & Davies, N. (2009). The case for VM-based cloudlets in mobile computing. IEEE Pervasive Computing, 8(4), 14–23.
18.
Zurück zum Zitat Pang, Z., Sun, L., Wang, Z., Tian, E., & Yang, S. (2015). A survey of cloudlet based mobile computing. In: International Conference on Cloud Computing and Big Data (CCBD) IEEE, (pp. 268–275). Pang, Z., Sun, L., Wang, Z., Tian, E., & Yang, S. (2015). A survey of cloudlet based mobile computing. In: International Conference on Cloud Computing and Big Data (CCBD) IEEE, (pp. 268–275).
19.
Zurück zum Zitat Liu, Y., Point, J. C., Katsaros, K. V., Glykantzis, V., Siddiqui, M. S., & Escalona, E. (2017). SDN/NFV based caching solution for future mobile network (5G). (pp. 1–5), IEEE. Liu, Y., Point, J. C., Katsaros, K. V., Glykantzis, V., Siddiqui, M. S., & Escalona, E. (2017). SDN/NFV based caching solution for future mobile network (5G). (pp. 1–5), IEEE.
20.
Zurück zum Zitat Chen, Q., Yu, F. R., Huang, T., Xie, R., Liu, J., & Liu, Y. (2018). Joint resource allocation for software-defined networking, caching, and computing. IEEE/ACM Transactions on Networking, 26(1), 274–287. Chen, Q., Yu, F. R., Huang, T., Xie, R., Liu, J., & Liu, Y. (2018). Joint resource allocation for software-defined networking, caching, and computing. IEEE/ACM Transactions on Networking, 26(1), 274–287.
21.
Zurück zum Zitat Huo, R., Yu, F. R., Huang, T., et al. (2016). Software defined networking, caching, and computing for green wireless networks. IEEE Communications Magazine, 54(11), 185–193. Huo, R., Yu, F. R., Huang, T., et al. (2016). Software defined networking, caching, and computing for green wireless networks. IEEE Communications Magazine, 54(11), 185–193.
22.
Zurück zum Zitat Zhang, X., & Zhu, Q. (2017). Distributed mobile devices caching over edge computing wireless networks (pp. 127–132), IEEE. Zhang, X., & Zhu, Q. (2017). Distributed mobile devices caching over edge computing wireless networks (pp. 127–132), IEEE.
23.
Zurück zum Zitat Taleb, T., Dutta, S., Ksentini, A., Iqbal, M., & Flinck, H. (2017). Mobile edge computing potential in making cities smarter. IEEE Communications Magazine, 55(3), 38–43. Taleb, T., Dutta, S., Ksentini, A., Iqbal, M., & Flinck, H. (2017). Mobile edge computing potential in making cities smarter. IEEE Communications Magazine, 55(3), 38–43.
24.
Zurück zum Zitat Ko, H., Lee, J., & Pack, S. (2018). Spatial and temporal computation offloading decision algorithm in edge cloud-enabled heterogeneous networks. IEEE Access, 6, 18920–18932. Ko, H., Lee, J., & Pack, S. (2018). Spatial and temporal computation offloading decision algorithm in edge cloud-enabled heterogeneous networks. IEEE Access, 6, 18920–18932.
25.
Zurück zum Zitat Kumar, K., Liu, J., Lu, Y. H., & Bhargava, B. (2013). A survey of computation offloading for mobile systems. Mobile Networks and Applications, 18(1), 129–140. Kumar, K., Liu, J., Lu, Y. H., & Bhargava, B. (2013). A survey of computation offloading for mobile systems. Mobile Networks and Applications, 18(1), 129–140.
26.
Zurück zum Zitat Hao, Y., Chen, M., Hu, L., Hossain, M. S., & Ghoniem, A. (2018). Energy efficient task caching and offloading for mobile edge Computing. IEEE Access, 6, 11365–11373. Hao, Y., Chen, M., Hu, L., Hossain, M. S., & Ghoniem, A. (2018). Energy efficient task caching and offloading for mobile edge Computing. IEEE Access, 6, 11365–11373.
27.
Zurück zum Zitat Mao, Y., You, C., Zhang, J., Huang, K., & Letaief, K. B. (2017). A survey on mobile edge computing: The communication perspective. IEEE Communications Surveys & Tutorials, 19(4), 2322–2358. Mao, Y., You, C., Zhang, J., Huang, K., & Letaief, K. B. (2017). A survey on mobile edge computing: The communication perspective. IEEE Communications Surveys & Tutorials, 19(4), 2322–2358.
28.
Zurück zum Zitat Cui, Y., & Jiang, D. (2017). Analysis and optimization of caching and multi casting in large-scale cache-enabled heterogeneous wireless networks. IEEE Transactions on Wireless Communications, 16(1), 250–264.MathSciNet Cui, Y., & Jiang, D. (2017). Analysis and optimization of caching and multi casting in large-scale cache-enabled heterogeneous wireless networks. IEEE Transactions on Wireless Communications, 16(1), 250–264.MathSciNet
29.
Zurück zum Zitat Ding, W., Qi, W., Wang, J., & Chen, B. (2015). OpenSCaaS: An open service chain as a service platform toward the integration of SDN and NFV. IEEE Network, 29(3), 30–35. Ding, W., Qi, W., Wang, J., & Chen, B. (2015). OpenSCaaS: An open service chain as a service platform toward the integration of SDN and NFV. IEEE Network, 29(3), 30–35.
30.
Zurück zum Zitat Hung, C. H., Hsieh, Y. C., Wang, L. C. (2017). Control plane latency reduction for service chaining in mobile edge computing system (pp. 1–5). IEEE. Hung, C. H., Hsieh, Y. C., Wang, L. C. (2017). Control plane latency reduction for service chaining in mobile edge computing system (pp. 1–5). IEEE.
31.
Zurück zum Zitat Chen, M., Qian, Y., Hao, Y., Li, Y., & Song, J. (2018). Data-driven computing and caching in 5G networks: Architecture and delay analysis. IEEE Wireless Communications, 25(1), 70–75. Chen, M., Qian, Y., Hao, Y., Li, Y., & Song, J. (2018). Data-driven computing and caching in 5G networks: Architecture and delay analysis. IEEE Wireless Communications, 25(1), 70–75.
32.
Zurück zum Zitat Ranadheera, S., Maghsudi, S., & Hossain, E. (2018). Computation offloading and activation of mobile edge computing servers: A minority game. IEEE Wireless Communications Letters, 7, 688–691. Ranadheera, S., Maghsudi, S., & Hossain, E. (2018). Computation offloading and activation of mobile edge computing servers: A minority game. IEEE Wireless Communications Letters, 7, 688–691.
33.
Zurück zum Zitat Yu, S., Wang, X., & Langar, R. (2017). Computation off loading for mobile edge computing: A deep learning approach (pp. 1–6). IEEE. Yu, S., Wang, X., & Langar, R. (2017). Computation off loading for mobile edge computing: A deep learning approach (pp. 1–6). IEEE.
34.
Zurück zum Zitat Guo, H., Liu, J., Qin, H., & Zhang, H. (2017). Collaborative computation offloading for mobile-edge computing over fiber-wireless networks (pp. 1–6). IEEE. Guo, H., Liu, J., Qin, H., & Zhang, H. (2017). Collaborative computation offloading for mobile-edge computing over fiber-wireless networks (pp. 1–6). IEEE.
35.
Zurück zum Zitat Luo, C., Salinas, S., Li, M., & Li, P. (2017). Energy-efficient autonomic offloading in mobile edge computing, (pp. 581–588). IEEE. Luo, C., Salinas, S., Li, M., & Li, P. (2017). Energy-efficient autonomic offloading in mobile edge computing, (pp. 581–588). IEEE.
36.
Zurück zum Zitat Deng, M., Tian, H., & Lyu, X. (2016). Adaptive sequential offloading game for multi-cell mobile edge computing (pp. 1–5). IEEE. Deng, M., Tian, H., & Lyu, X. (2016). Adaptive sequential offloading game for multi-cell mobile edge computing (pp. 1–5). IEEE.
37.
Zurück zum Zitat Perabathini, B., Baştuğ, E., Kountouris, M., Debbah, M., & Conte, A. (2018). Caching at the edge: A green perspective for 5G networks (pp. 2830–2835). IEEE. Perabathini, B., Baştuğ, E., Kountouris, M., Debbah, M., & Conte, A. (2018). Caching at the edge: A green perspective for 5G networks (pp. 2830–2835). IEEE.
38.
Zurück zum Zitat Lee, M. C., & Molisch, A. F. (2017). Individual preference aware caching policy design for energy-efficient wireless D2D communi-cations (pp. 1–7). IEEE. Lee, M. C., & Molisch, A. F. (2017). Individual preference aware caching policy design for energy-efficient wireless D2D communi-cations (pp. 1–7). IEEE.
39.
Zurück zum Zitat Zhang, J., Zhang, X., Yan, Z., Li, Y., Wang, W., & Zhang, Y. (2016). Social-aware cache information processing for 5G ultra-dense networks (pp. 1–5). IEEE. Zhang, J., Zhang, X., Yan, Z., Li, Y., Wang, W., & Zhang, Y. (2016). Social-aware cache information processing for 5G ultra-dense networks (pp. 1–5). IEEE.
40.
Zurück zum Zitat Gregori, M., Gómez-Vilardebó, J., Matamoros, J., & Gündüz, D. (2016). Wireless content caching for small cell and D2D networks. IEEE Journal on Selected Areas in Communications, 34(5), 1222–1234. Gregori, M., Gómez-Vilardebó, J., Matamoros, J., & Gündüz, D. (2016). Wireless content caching for small cell and D2D networks. IEEE Journal on Selected Areas in Communications, 34(5), 1222–1234.
41.
Zurück zum Zitat Cui, Y., He, W., Ni, C., Guo, C., & Liu, Z. (2017). Energy-efficient resource allocation for cache-assisted mobile edge computing. arXiv preprint arXiv:1708.04813. Cui, Y., He, W., Ni, C., Guo, C., & Liu, Z. (2017). Energy-efficient resource allocation for cache-assisted mobile edge computing. arXiv preprint arXiv:​1708.​04813.
42.
Zurück zum Zitat Liang, C., He, Y., Yu, F. R., & Zhao, N. (2017). Energy-efficient resource allocation in software-defined mobile networks with mobile edge computing and caching (pp. 121–126). IEEE. Liang, C., He, Y., Yu, F. R., & Zhao, N. (2017). Energy-efficient resource allocation in software-defined mobile networks with mobile edge computing and caching (pp. 121–126). IEEE.
43.
Zurück zum Zitat Mrad, S., Hamouda, S., & Rezig, H. (2017). Graph Theory based multi cast caching for better energy saving in dense small c.ell networks (pp. 2015–2020). IEEE. Mrad, S., Hamouda, S., & Rezig, H. (2017). Graph Theory based multi cast caching for better energy saving in dense small c.ell networks (pp. 2015–2020). IEEE.
44.
Zurück zum Zitat Zhang, J., Xia, W., Yan, F., & Shen, L. (2018). Joint computation offloading and resource allocation optimization in heterogeneous networks with mobile edge computing. IEEE Access, 6, 19324–19337. Zhang, J., Xia, W., Yan, F., & Shen, L. (2018). Joint computation offloading and resource allocation optimization in heterogeneous networks with mobile edge computing. IEEE Access, 6, 19324–19337.
45.
Zurück zum Zitat Wu, D., Liu, Q., Wang, H., Wu, D., & Wang, R. (2017). Socially aware energy-efficient mobile edge collaboration for video distribution. IEEE Transactions on Multimedia, 19(10), 2197–2209. Wu, D., Liu, Q., Wang, H., Wu, D., & Wang, R. (2017). Socially aware energy-efficient mobile edge collaboration for video distribution. IEEE Transactions on Multimedia, 19(10), 2197–2209.
46.
Zurück zum Zitat Liu, J., & Zhang, Q. (2018). Offloading schemes in mobile edge computing for ultra-reliable low latency communications. IEEE Access, 6, 12825–12837. Liu, J., & Zhang, Q. (2018). Offloading schemes in mobile edge computing for ultra-reliable low latency communications. IEEE Access, 6, 12825–12837.
47.
Zurück zum Zitat Liu, C. F, Bennis, M., & Poor, H. V. (2017). Latency and reliability-aware task offloading and resource allocation for mobile edge computing. arXiv preprint arXiv:1710.00590. Liu, C. F, Bennis, M., & Poor, H. V. (2017). Latency and reliability-aware task offloading and resource allocation for mobile edge computing. arXiv preprint arXiv:​1710.​00590.
48.
Zurück zum Zitat Mao, Y., Zhang, J., & Letaief, K. B. (2016). Dynamic computation off loading for mobile-edge computing with energy harvesting devices. IEEE Journal on Selected Areas in Communications, 34(12), 3590–3605. Mao, Y., Zhang, J., & Letaief, K. B. (2016). Dynamic computation off loading for mobile-edge computing with energy harvesting devices. IEEE Journal on Selected Areas in Communications, 34(12), 3590–3605.
49.
Zurück zum Zitat Xu, J., Chen, L., & Ren, S. (2017). Online learning for offloading and auto scaling in energy harvesting mobile edge computing. IEEE Transactions on Cognitive Communications and Networking, 3(3), 361–373. Xu, J., Chen, L., & Ren, S. (2017). Online learning for offloading and auto scaling in energy harvesting mobile edge computing. IEEE Transactions on Cognitive Communications and Networking, 3(3), 361–373.
50.
Zurück zum Zitat Hou, T., Feng, G., Qin, S., & Jiang, W. (2017). Proactive content caching by exploiting transfer learning for mobile edge computing (pp. 1–6). IEEE. Hou, T., Feng, G., Qin, S., & Jiang, W. (2017). Proactive content caching by exploiting transfer learning for mobile edge computing (pp. 1–6). IEEE.
51.
Zurück zum Zitat Poderys, J., Artuso, M., Lensbøl, C. M. O., Christiansen, H. L., & Soler, J. (2018). Caching at the mobile edge: A practical implementation. IEEE Access, 6, 8630–8637. Poderys, J., Artuso, M., Lensbøl, C. M. O., Christiansen, H. L., & Soler, J. (2018). Caching at the mobile edge: A practical implementation. IEEE Access, 6, 8630–8637.
52.
Zurück zum Zitat Xu, J., Palanisamy, B., Ludwig, H., & Wang, Q. (2017). Zenith: Utility-aware resource allocation for edge computing (pp. 47–54). IEEE. Xu, J., Palanisamy, B., Ludwig, H., & Wang, Q. (2017). Zenith: Utility-aware resource allocation for edge computing (pp. 47–54). IEEE.
53.
Zurück zum Zitat Zhu, Z., Peng, J., Gu, X., et al. (2018). Fair resource allocation for system throughput maximization in mobile edge computing. IEEE Access, 6, 5332–5340. Zhu, Z., Peng, J., Gu, X., et al. (2018). Fair resource allocation for system throughput maximization in mobile edge computing. IEEE Access, 6, 5332–5340.
54.
Zurück zum Zitat Kiskani, M. K., Vakilinia, S., & Cheriet, M. (2017) Popularity based file categorization and coded caching in 5G networks (pp. 1–5). IEEE. Kiskani, M. K., Vakilinia, S., & Cheriet, M. (2017) Popularity based file categorization and coded caching in 5G networks (pp. 1–5). IEEE.
55.
Zurück zum Zitat Müller, S., Atan, O., Schaar, vdM., & Klein, A. (2017). Context-aware proactive content caching with service differentiation in wireless networks. IEEE Transactions on Wireless Communications, 16(2), 1024–1036. Müller, S., Atan, O., Schaar, vdM., & Klein, A. (2017). Context-aware proactive content caching with service differentiation in wireless networks. IEEE Transactions on Wireless Communications, 16(2), 1024–1036.
56.
Zurück zum Zitat Leconte, M., Paschos, G., Gkatzikis, L., Draief, M., Vassilaras, S., & Chouvardas, S. (2016). Placing dynamic content in caches with small population (pp. 1–9). IEEE. Leconte, M., Paschos, G., Gkatzikis, L., Draief, M., Vassilaras, S., & Chouvardas, S. (2016). Placing dynamic content in caches with small population (pp. 1–9). IEEE.
57.
Zurück zum Zitat Maijller, S., Atan, O., Schaar, v. d. M, & Klein, A. (2016). Smart caching in wireless small cell networks via contextual multi-armed bandits (pp. 1–7). IEEE. Maijller, S., Atan, O., Schaar, v. d. M, & Klein, A. (2016). Smart caching in wireless small cell networks via contextual multi-armed bandits (pp. 1–7). IEEE.
58.
Zurück zum Zitat Shanmugam, K., Golrezaei, N., Dimakis, A. G., Molisch, A. F., & Caire, G. (2013). Femto caching: Wireless content delivery through distributed caching helpers. IEEE Transactions on Information Theory, 59(12), 8402–8413.MathSciNetMATH Shanmugam, K., Golrezaei, N., Dimakis, A. G., Molisch, A. F., & Caire, G. (2013). Femto caching: Wireless content delivery through distributed caching helpers. IEEE Transactions on Information Theory, 59(12), 8402–8413.MathSciNetMATH
59.
Zurück zum Zitat Vo, N. S., Duong, T. Q., & Guizani, M. (2016). QoE-oriented resource efficiency for 5G two-tier cellular networks: A femtocaching framework (pp. 1–6). IEEE. Vo, N. S., Duong, T. Q., & Guizani, M. (2016). QoE-oriented resource efficiency for 5G two-tier cellular networks: A femtocaching framework (pp. 1–6). IEEE.
60.
Zurück zum Zitat Golrezaei, N., Molisch, A. F., Dimakis, A. G., & Caire, G. (2013). Femtocaching and device-to-device collaboration: A new architecture for wireless video distribution. IEEE Communications Magazine, 51(4), 142–149. Golrezaei, N., Molisch, A. F., Dimakis, A. G., & Caire, G. (2013). Femtocaching and device-to-device collaboration: A new architecture for wireless video distribution. IEEE Communications Magazine, 51(4), 142–149.
61.
Zurück zum Zitat Vo, N. S., Duong, T. Q., Guizani, M. (2016). QoE-oriented resource efficiency for 5G two-tier cellular networks: A femto caching framework (pp. 1–6). IEEE. Vo, N. S., Duong, T. Q., Guizani, M. (2016). QoE-oriented resource efficiency for 5G two-tier cellular networks: A femto caching framework (pp. 1–6). IEEE.
62.
Zurück zum Zitat Sengupta, A., Amuru, S., Tandon, R., Buehrer, R. M., & Clancy, T. C. (2014). Learning distributed caching strategies in small cell networks (pp. 917–921). IEEE. Sengupta, A., Amuru, S., Tandon, R., Buehrer, R. M., & Clancy, T. C. (2014). Learning distributed caching strategies in small cell networks (pp. 917–921). IEEE.
63.
Zurück zum Zitat Müller, S., Atan, O., Schaar, v. d. M., & Klein, A. (2016). Smart caching in wireless small cell networks via context UAL multi-armedbandits (pp. 1–7). IEEE. Müller, S., Atan, O., Schaar, v. d. M., & Klein, A. (2016). Smart caching in wireless small cell networks via context UAL multi-armedbandits (pp. 1–7). IEEE.
64.
Zurück zum Zitat Sengupta, A., Amuru, S., Tandon, R., Buehrer, R. M., & Clancy, T. C. (2014). Learning distributed caching strategies in small cell networks (pp. 917–921). IEEE. Sengupta, A., Amuru, S., Tandon, R., Buehrer, R. M., & Clancy, T. C. (2014). Learning distributed caching strategies in small cell networks (pp. 917–921). IEEE.
65.
Zurück zum Zitat Maijller, S., Atan, O., Schaar, V. D. M., & Klein, A. (2017). Context-aware proactive content caching with service differentiation in wireless networks. IEEE Transactions on Wireless Communications, 16(2), 1024–1036. Maijller, S., Atan, O., Schaar, V. D. M., & Klein, A. (2017). Context-aware proactive content caching with service differentiation in wireless networks. IEEE Transactions on Wireless Communications, 16(2), 1024–1036.
66.
Zurück zum Zitat Li, S., Xu, J., Van Der Schaar, M., Li, W. (2016). Popularity-driven content caching (pp. 1–9). IEEE. Li, S., Xu, J., Van Der Schaar, M., Li, W. (2016). Popularity-driven content caching (pp. 1–9). IEEE.
67.
Zurück zum Zitat Pantisano, F., Bennis, M., Saad, W., & ,Debbah, M. (2014). Cache-aware user association in backhaul-constrained small cell networks (pp. 37–42). IEEE. Pantisano, F., Bennis, M., Saad, W., & ,Debbah, M. (2014). Cache-aware user association in backhaul-constrained small cell networks (pp. 37–42). IEEE.
68.
Zurück zum Zitat Bastug, E., Bennis, M., & Debbah, M. (2014). Social and spatial proactive caching for mobile data offloading (pp. 581–586). IEEE. Bastug, E., Bennis, M., & Debbah, M. (2014). Social and spatial proactive caching for mobile data offloading (pp. 581–586). IEEE.
69.
Zurück zum Zitat Rao, J., Feng, H., Yang, C., Chen, Z., & Xia, B. (2016). Optimal caching placement for D2D assisted wireless caching networks (pp. 1–6). IEEE. Rao, J., Feng, H., Yang, C., Chen, Z., & Xia, B. (2016). Optimal caching placement for D2D assisted wireless caching networks (pp. 1–6). IEEE.
70.
Zurück zum Zitat Zhang, X., Wang, Y., Sun, R., & Wang, D. (2016).. Clustered device-to-device caching based on file preferences (pp. 1–6). IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC) Zhang, X., Wang, Y., Sun, R., & Wang, D. (2016).. Clustered device-to-device caching based on file preferences (pp. 1–6). IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)
71.
Zurück zum Zitat Khreishah, A., Chakareski, J., & Gharaibeh, A. (2016). Joint caching, routing, and channel assignment for collaborative small-cell cellular networks. IEEE Journal on Selected Areas in Communications, 34(8), 2275–2284. Khreishah, A., Chakareski, J., & Gharaibeh, A. (2016). Joint caching, routing, and channel assignment for collaborative small-cell cellular networks. IEEE Journal on Selected Areas in Communications, 34(8), 2275–2284.
72.
Zurück zum Zitat Wang, Y., Chen, Y., Dai, H., Huang, Y., Yang, L. A. (2017). Learning-based approach for proactive caching in wireless communication networks (pp. 1–6). IEEE. Wang, Y., Chen, Y., Dai, H., Huang, Y., Yang, L. A. (2017). Learning-based approach for proactive caching in wireless communication networks (pp. 1–6). IEEE.
73.
Zurück zum Zitat Zheng, Z., Song, L., Han, Z., Li, G. Y., & Poor, H. V. (2018). A Stackelberg game approach to proactive caching in large-scale mobile edge networks. IEEE Transactions on Wireless Communications, 17, 5198–5211. Zheng, Z., Song, L., Han, Z., Li, G. Y., & Poor, H. V. (2018). A Stackelberg game approach to proactive caching in large-scale mobile edge networks. IEEE Transactions on Wireless Communications, 17, 5198–5211.
74.
Zurück zum Zitat Doan, K. N., Van Nguyen, T., Quek, T. Q., & Shin, H. (2018). Content-aware proactive caching for backhaul offloading in cellular network. IEEE Transactions on Wireless Communications, 17(5), 3128–3140. Doan, K. N., Van Nguyen, T., Quek, T. Q., & Shin, H. (2018). Content-aware proactive caching for backhaul offloading in cellular network. IEEE Transactions on Wireless Communications, 17(5), 3128–3140.
75.
Zurück zum Zitat Ahlehagh, H., & Dey, S. (2014). Video-aware scheduling and caching in the radio access network. IEEE/ACM Transactions on Networking (TON), 22(5), 1444–1462. Ahlehagh, H., & Dey, S. (2014). Video-aware scheduling and caching in the radio access network. IEEE/ACM Transactions on Networking (TON), 22(5), 1444–1462.
76.
Zurück zum Zitat Tanzil, S. S., Hoiles, W., & Krishnamurthy, V. (2017). Adaptive scheme for caching youtube content in a cellular network: Machine learning approach. IEEE Access, 5, 5870–5881. Tanzil, S. S., Hoiles, W., & Krishnamurthy, V. (2017). Adaptive scheme for caching youtube content in a cellular network: Machine learning approach. IEEE Access, 5, 5870–5881.
77.
Zurück zum Zitat Chen, M., Hao, Y., Hu, L., Huang, K., & Lau, V. K. (2017). Green and mobility-aware caching in 5G networks. IEEE Transactions on Wireless Communications, 16(12), 8347–8361. Chen, M., Hao, Y., Hu, L., Huang, K., & Lau, V. K. (2017). Green and mobility-aware caching in 5G networks. IEEE Transactions on Wireless Communications, 16(12), 8347–8361.
78.
Zurück zum Zitat Tan, Y., Yuan, Y., Yang, T., Xu, Y., & Hu, B. (2016). Femtocaching in wireless video networks: Distributed framework based on exact potential game (pp. 1–6). IEEE. Tan, Y., Yuan, Y., Yang, T., Xu, Y., & Hu, B. (2016). Femtocaching in wireless video networks: Distributed framework based on exact potential game (pp. 1–6). IEEE.
79.
Zurück zum Zitat Shanmugam, K., Golrezaei, N., Dimakis, A. G., Molisch, A. F., & Caire, G. (2013). Femtocaching: Wireless content delivery through distributed caching helpers. IEEE Transactions on Information Theory, 59(12), 8402–8413.MathSciNetMATH Shanmugam, K., Golrezaei, N., Dimakis, A. G., Molisch, A. F., & Caire, G. (2013). Femtocaching: Wireless content delivery through distributed caching helpers. IEEE Transactions on Information Theory, 59(12), 8402–8413.MathSciNetMATH
80.
Zurück zum Zitat Wang, R., Peng, X., Zhang, J., & Letaief, K. B. (2016). Mobility-aware caching for content-centric wireless networks: Modeling and methodology. IEEE Communications Magazine, 54(8), 77–83. Wang, R., Peng, X., Zhang, J., & Letaief, K. B. (2016). Mobility-aware caching for content-centric wireless networks: Modeling and methodology. IEEE Communications Magazine, 54(8), 77–83.
81.
Zurück zum Zitat Yang, L., Liu, T., Hu, Q., Liu, S., & Huang, H. (2017). Empirical analysis on temporal statistics of pairwise contact patterns in dynamic human networks (pp. 9–16). IEEE. Yang, L., Liu, T., Hu, Q., Liu, S., & Huang, H. (2017). Empirical analysis on temporal statistics of pairwise contact patterns in dynamic human networks (pp. 9–16). IEEE.
82.
Zurück zum Zitat Wang, T., Song, L., & Han, Z. (2015). Dynamic femtocaching for mobile users (pp. 861–865). IEEE. Wang, T., Song, L., & Han, Z. (2015). Dynamic femtocaching for mobile users (pp. 861–865). IEEE.
83.
Zurück zum Zitat Poularakis, K., & Tassiulas, L. (2017). Code, cache and deliver on the move: A novel caching paradigm in hyper-dense small-cell networks. IEEE Transactions on Mobile Computing, 16(3), 675–687. Poularakis, K., & Tassiulas, L. (2017). Code, cache and deliver on the move: A novel caching paradigm in hyper-dense small-cell networks. IEEE Transactions on Mobile Computing, 16(3), 675–687.
84.
Zurück zum Zitat Guan, Y., Xiao, Y., Feng, H., Shen, C. C., Cimini, L. J. (2014). MobiCacher: Mobility-aware content caching in small-cell networks (pp. 4537–4542). IEEE. Guan, Y., Xiao, Y., Feng, H., Shen, C. C., Cimini, L. J. (2014). MobiCacher: Mobility-aware content caching in small-cell networks (pp. 4537–4542). IEEE.
85.
Zurück zum Zitat Liu, X., Zhang, J., Zhang, X., & Wang, W. (2017). Mobility-aware coded probabilistic caching scheme for MEC-enabled small cell networks. IEEE Access, 5, 17824–17833. Liu, X., Zhang, J., Zhang, X., & Wang, W. (2017). Mobility-aware coded probabilistic caching scheme for MEC-enabled small cell networks. IEEE Access, 5, 17824–17833.
86.
Zurück zum Zitat Lan, R., Wang, W., Huang, A., & Shan, H. (2015). Device-to-device offloading with proactive caching in mobile cellular networks (pp. 1–6). IEEE. Lan, R., Wang, W., Huang, A., & Shan, H. (2015). Device-to-device offloading with proactive caching in mobile cellular networks (pp. 1–6). IEEE.
87.
Zurück zum Zitat Wang, R., Zhang, J., Song, S., & Letaief, K. B. (2017). Mobility-aware caching in D2D networks. IEEE Transactions on Wireless Communications, 16(8), 5001–5015. Wang, R., Zhang, J., Song, S., & Letaief, K. B. (2017). Mobility-aware caching in D2D networks. IEEE Transactions on Wireless Communications, 16(8), 5001–5015.
88.
Zurück zum Zitat Zhang, K., Leng, S., He, Y., Maharjan, S., & Zhang, Y. (2018). Cooperative content caching in 5G networks with mobile edge computing. IEEE Wireless Communications, 25(3), 80–87. Zhang, K., Leng, S., He, Y., Maharjan, S., & Zhang, Y. (2018). Cooperative content caching in 5G networks with mobile edge computing. IEEE Wireless Communications, 25(3), 80–87.
89.
Zurück zum Zitat Wang, R., Zhang, J., Song, S., & Letaief, K. B. (2018). Exploiting mobility in cache-assisted D2D networks: Performance analysis and optimization. arXiv preprint arXiv:1806.04069. Wang, R., Zhang, J., Song, S., & Letaief, K. B. (2018). Exploiting mobility in cache-assisted D2D networks: Performance analysis and optimization. arXiv preprint arXiv:​1806.​04069.
90.
Zurück zum Zitat Deng, T., Ahani, G., Fan, P., & Yuan, D. (2018). Cost-optimal caching for D2D networks with user mobility: Modeling, analysis, and computational approaches. IEEE Transactions on Wireless Communications, 17(5), 3082–3094. Deng, T., Ahani, G., Fan, P., & Yuan, D. (2018). Cost-optimal caching for D2D networks with user mobility: Modeling, analysis, and computational approaches. IEEE Transactions on Wireless Communications, 17(5), 3082–3094.
91.
Zurück zum Zitat Chen, M., Hao, Y., Qiu, M., Song, J., Wu, D., & Humar, I. (2016). Mobility-aware caching and computation offloading in 5G ultra-dense cellular networks. Sensors, 16(7), 974. Chen, M., Hao, Y., Qiu, M., Song, J., Wu, D., & Humar, I. (2016). Mobility-aware caching and computation offloading in 5G ultra-dense cellular networks. Sensors, 16(7), 974.
92.
Zurück zum Zitat Wang, Y., Chen, Y., Dai, H., Huang, Y., & Yang, L. (2017). A learning-based approach for proactive caching in wireless communication networks (pp. 1–6). IEEE. Wang, Y., Chen, Y., Dai, H., Huang, Y., & Yang, L. (2017). A learning-based approach for proactive caching in wireless communication networks (pp. 1–6). IEEE.
93.
Zurück zum Zitat Nguyen, Q. N., Arifuzzaman, M., Yu, K., & Sato, T. (2018). A context-aware green information-centric networking model for future wireless communications. IEEE Access, 6, 22804–22816. Nguyen, Q. N., Arifuzzaman, M., Yu, K., & Sato, T. (2018). A context-aware green information-centric networking model for future wireless communications. IEEE Access, 6, 22804–22816.
94.
Zurück zum Zitat Abou-Zeid, H., & Hassanein, H. (2014). Toward green media delivery: Location-aware opportunities and approaches. IEEE Wireless Communications, 21(4), 38–46. Abou-Zeid, H., & Hassanein, H. (2014). Toward green media delivery: Location-aware opportunities and approaches. IEEE Wireless Communications, 21(4), 38–46.
95.
Zurück zum Zitat Huang, X., & Ansari, N. (2017). Content caching and distribution in smart grid enabled wireless networks. IEEE Internet of Things Journal, 4(2), 513–520. Huang, X., & Ansari, N. (2017). Content caching and distribution in smart grid enabled wireless networks. IEEE Internet of Things Journal, 4(2), 513–520.
96.
Zurück zum Zitat Peng, X., Shi, Y., Zhang, J., & Letaief, K. B. (2017). Layered group sparse beamforming for cache-enabled green wireless networks. IEEE Transactions on Communications, 65(12), 5589–5603. Peng, X., Shi, Y., Zhang, J., & Letaief, K. B. (2017). Layered group sparse beamforming for cache-enabled green wireless networks. IEEE Transactions on Communications, 65(12), 5589–5603.
97.
Zurück zum Zitat Duan, P., Jia, Y., Liang, L., Rodriguez, J., Huq, K. M. S., & Li, G. (2018). Space-reserved cooperative caching in 5G heterogeneous networks for industrial IoT. IEEE Transactions on Industrial Informatics, 14(6), 2715. Duan, P., Jia, Y., Liang, L., Rodriguez, J., Huq, K. M. S., & Li, G. (2018). Space-reserved cooperative caching in 5G heterogeneous networks for industrial IoT. IEEE Transactions on Industrial Informatics, 14(6), 2715.
98.
Zurück zum Zitat Gabry, F., Bioglio, V., & Land, I. (2016). On energy-efficient edge caching in heterogeneous networks. IEEE Journal on Selected Areas in Communications, 34(12), 3288–3298. Gabry, F., Bioglio, V., & Land, I. (2016). On energy-efficient edge caching in heterogeneous networks. IEEE Journal on Selected Areas in Communications, 34(12), 3288–3298.
99.
Zurück zum Zitat Guo, F., Zhang, H., Li, X., Ji, H., & Leung, V. C. (2018). Joint optimization of caching and association in energy harvesting powered small cell networks. IEEE Transactions on Vehicular Technology, 67, 6469–6480. Guo, F., Zhang, H., Li, X., Ji, H., & Leung, V. C. (2018). Joint optimization of caching and association in energy harvesting powered small cell networks. IEEE Transactions on Vehicular Technology, 67, 6469–6480.
100.
Zurück zum Zitat Zhang, X., Lv, T., Ni, W., Cioffi, J. M., Beaulieu, N. C., & Guo, Y. J. (2018). Energy-efficient caching for scalable videos in heterogeneous networks. IEEE Journal on Selected Areas in Communications, 36, 1802–1815. Zhang, X., Lv, T., Ni, W., Cioffi, J. M., Beaulieu, N. C., & Guo, Y. J. (2018). Energy-efficient caching for scalable videos in heterogeneous networks. IEEE Journal on Selected Areas in Communications, 36, 1802–1815.
101.
Zurück zum Zitat Yu, F. R., Huang, T., & Liu, Y. (2018). Integrated networking, caching, and computing. CRC Press. 2018. Yu, F. R., Huang, T., & Liu, Y. (2018). Integrated networking, caching, and computing. CRC Press. 2018.
103.
Zurück zum Zitat Parvez I, Rahmati, A., Güvenç, I., Sarwat, A. I., & Dai, H. (2017). A survey on low latency towards 5G: RAN, core network and caching solutions. CoRR. Parvez I, Rahmati, A., Güvenç, I., Sarwat, A. I., & Dai, H. (2017). A survey on low latency towards 5G: RAN, core network and caching solutions. CoRR.
104.
Zurück zum Zitat Suppliers Association mG. (2015). The road to 5G: Drivers, applications, requirements and technical development. Global Mobile suppliers Association Suppliers Association mG. (2015). The road to 5G: Drivers, applications, requirements and technical development. Global Mobile suppliers Association
105.
Zurück zum Zitat Qi, Y., Hunukumbure, M., Nekovee, M., Lorca, J., & Sgardoni, V. (2016). Quantifying data rate and bandwidth requirements for immersive 5G experience (pp. 455–461). IEEE. Qi, Y., Hunukumbure, M., Nekovee, M., Lorca, J., & Sgardoni, V. (2016). Quantifying data rate and bandwidth requirements for immersive 5G experience (pp. 455–461). IEEE.
106.
Zurück zum Zitat Popovski, P. (2014). Ultra-reliable communication in 5G wireless systems (pp. 146–151). IEEE. Popovski, P. (2014). Ultra-reliable communication in 5G wireless systems (pp. 146–151). IEEE.
107.
Zurück zum Zitat Sengupta, A., Tandon, R., & Simeone, O. (2017). Fog-aided wireless networks for content delivery: Fundamental latency trade-offs. IEEE Transactions on Information Theory, 63, 6650–6678.MathSciNetMATH Sengupta, A., Tandon, R., & Simeone, O. (2017). Fog-aided wireless networks for content delivery: Fundamental latency trade-offs. IEEE Transactions on Information Theory, 63, 6650–6678.MathSciNetMATH
108.
Zurück zum Zitat Kwak, J., Kim, Y., Le, L. B., & Chong, S. (2018). Hybrid content caching in 5G wireless networks: Cloud versus edge caching. IEEE Transactions on Wireless Communications, 17(5), 3030–3045. Kwak, J., Kim, Y., Le, L. B., & Chong, S. (2018). Hybrid content caching in 5G wireless networks: Cloud versus edge caching. IEEE Transactions on Wireless Communications, 17(5), 3030–3045.
109.
Zurück zum Zitat Wang, Y., Tao, X., Zhang, X., & Mao, G. (2016). Joint caching placement and user association for minimizing user download delay. IEEE Access, 4, 8625–8633. Wang, Y., Tao, X., Zhang, X., & Mao, G. (2016). Joint caching placement and user association for minimizing user download delay. IEEE Access, 4, 8625–8633.
110.
Zurück zum Zitat Jiang, W., Feng, G., & Qin, S. (2017). Optimal cooperative content caching and delivery policy for heterogeneous cellular networks. IEEE Transactions on Mobile Computing, 1, 1–1. Jiang, W., Feng, G., & Qin, S. (2017). Optimal cooperative content caching and delivery policy for heterogeneous cellular networks. IEEE Transactions on Mobile Computing, 1, 1–1.
111.
Zurück zum Zitat Amer, R., Butt, M. M., Bennis, M., & Marchetti, N. (2018). Inter-cluster cooperation for wireless D2D caching networks. IEEE Transactions on Wireless Communications, 17(9), 6108–6121. Amer, R., Butt, M. M., Bennis, M., & Marchetti, N. (2018). Inter-cluster cooperation for wireless D2D caching networks. IEEE Transactions on Wireless Communications, 17(9), 6108–6121.
112.
Zurück zum Zitat Chen, Z., Pappas, N., & Kountouris, M. (2017). Probabilistic caching in wireless D2D networks: Cache hit optimal versus throughput optimal. IEEE Communications Letters, 21(3), 584–587. Chen, Z., Pappas, N., & Kountouris, M. (2017). Probabilistic caching in wireless D2D networks: Cache hit optimal versus throughput optimal. IEEE Communications Letters, 21(3), 584–587.
113.
Zurück zum Zitat Cheng, P., Ma, C., Ding, M., Hu, Y., Lin, Z., Li, Y., & Vucetic, B. (2018). Localized small cell caching: A machine learning approach based on rating data. IEEE Transactions on Communications, 67, 1663–1676. Cheng, P., Ma, C., Ding, M., Hu, Y., Lin, Z., Li, Y., & Vucetic, B. (2018). Localized small cell caching: A machine learning approach based on rating data. IEEE Transactions on Communications, 67, 1663–1676.
114.
Zurück zum Zitat Kiskani, M. K., & Sadjadpour, H. R. (2017). Throughput analysis of decentralized coded content caching in cellular networks. IEEE Transactions on Wireless Communications, 16(1), 663–672. Kiskani, M. K., & Sadjadpour, H. R. (2017). Throughput analysis of decentralized coded content caching in cellular networks. IEEE Transactions on Wireless Communications, 16(1), 663–672.
115.
Zurück zum Zitat Golrezaei, N., Molisch, A. F., Dimakis, A. G., & Caire, G. (2013). Femtocaching and device-to-device collaboration: A new architecture for wireless video distribution. IEEE Communications Magazine, 51(4), 142–149. Golrezaei, N., Molisch, A. F., Dimakis, A. G., & Caire, G. (2013). Femtocaching and device-to-device collaboration: A new architecture for wireless video distribution. IEEE Communications Magazine, 51(4), 142–149.
116.
Zurück zum Zitat Golrezaei, N., Mansourifard, P., Molisch, A. F., & Dimakis, A. G. (2014). Base-station assisted device-to-device communications for high- throughput wireless video networks. IEEE Transactions on Wireless Communications, 13(7), 3665–3676. Golrezaei, N., Mansourifard, P., Molisch, A. F., & Dimakis, A. G. (2014). Base-station assisted device-to-device communications for high- throughput wireless video networks. IEEE Transactions on Wireless Communications, 13(7), 3665–3676.
117.
Zurück zum Zitat Kim, K., & Hong, C. S. (2019) Optimal task-UAV-edge matching for computation offloading in UAV assisted mobile edge computing (pp. 1–4). IEEE. Kim, K., & Hong, C. S. (2019) Optimal task-UAV-edge matching for computation offloading in UAV assisted mobile edge computing (pp. 1–4). IEEE.
118.
Zurück zum Zitat Zhou, Z., Chen, X., Li, E., Zeng, L., Luo, K., & Zhang, J. (2019). Edge intelligence: Paving the last mile of artificial intelligence with edge computing. Proceedings of the IEEE, 107(8), 1738–1762. Zhou, Z., Chen, X., Li, E., Zeng, L., Luo, K., & Zhang, J. (2019). Edge intelligence: Paving the last mile of artificial intelligence with edge computing. Proceedings of the IEEE, 107(8), 1738–1762.
119.
Zurück zum Zitat Narang, M., Xiang, S., Liu, W., Gutierrez, J., Chiaraviglio, L, Sathiaseelan, A., & Merwaday, A. (2017). UAV-assisted edge infrastructure for challenged networks (pp. 60–65). IEEE. Narang, M., Xiang, S., Liu, W., Gutierrez, J., Chiaraviglio, L, Sathiaseelan, A., & Merwaday, A. (2017). UAV-assisted edge infrastructure for challenged networks (pp. 60–65). IEEE.
120.
Zurück zum Zitat Liu, W. X., Zhang, J., Liang, Z. W., Peng, L. X., & Cai, J. (2018). Content popularity prediction and caching for ICN: A deep learning approach with SDN. IEEE Access, 6, 5075–5089. Liu, W. X., Zhang, J., Liang, Z. W., Peng, L. X., & Cai, J. (2018). Content popularity prediction and caching for ICN: A deep learning approach with SDN. IEEE Access, 6, 5075–5089.
121.
Zurück zum Zitat Hao, H., Xu, C., Wang, M., Xie, H., Liu, Y., & Wu, D. O. (2018). Knowledge-centric proactive edge caching over mobile content distribution network (pp. 450–455). IEEE. Hao, H., Xu, C., Wang, M., Xie, H., Liu, Y., & Wu, D. O. (2018). Knowledge-centric proactive edge caching over mobile content distribution network (pp. 450–455). IEEE.
122.
Zurück zum Zitat Baştuǧ, E., Bennis, M., Zeydan, E., et al. (2015). Big data meets telcos: A proactive caching perspective. Journal of Communications and Networks, 17(6), 549–557. Baştuǧ, E., Bennis, M., Zeydan, E., et al. (2015). Big data meets telcos: A proactive caching perspective. Journal of Communications and Networks, 17(6), 549–557.
123.
Zurück zum Zitat Kader, M. A., Bastug, E., Bennis, M., Zeydan, E., Karatepe, A., Salih Er, A., Debbah, M. (2015). Leveraging big data analytics for cache-enabled wireless networks (pp. 1–6). IEEE. Kader, M. A., Bastug, E., Bennis, M., Zeydan, E., Karatepe, A., Salih Er, A., Debbah, M. (2015). Leveraging big data analytics for cache-enabled wireless networks (pp. 1–6). IEEE.
124.
Zurück zum Zitat Paschos, G., Bastug, E., Land, I., Caire, G., & Debbah, M. (2016). Wireless caching: Technical misconceptions and business barriers. IEEE Communications Magazine, 54(8), 16–22. Paschos, G., Bastug, E., Land, I., Caire, G., & Debbah, M. (2016). Wireless caching: Technical misconceptions and business barriers. IEEE Communications Magazine, 54(8), 16–22.
125.
Zurück zum Zitat Hajri, S. E., & Assaad, M. (2018). Energy efficiency in cache-enabled small cell networks with adaptive user clustering. IEEE Transactions on Wireless Communications, 17(2), 955–968. Hajri, S. E., & Assaad, M. (2018). Energy efficiency in cache-enabled small cell networks with adaptive user clustering. IEEE Transactions on Wireless Communications, 17(2), 955–968.
126.
Zurück zum Zitat Sadeghi, A., Sheikholeslami, F., Matrques, A. G., & Giannakis, G. B. (2018). Reinforcement learning for 5G caching with dynamic cost (pp. 6653–6657). IEEE. Sadeghi, A., Sheikholeslami, F., Matrques, A. G., & Giannakis, G. B. (2018). Reinforcement learning for 5G caching with dynamic cost (pp. 6653–6657). IEEE.
127.
Zurück zum Zitat Sadeghi, A., Sheikholeslami, F., & Giannakis, G. B. (2018). Optimal and scalable caching for 5G using reinforcement learning of space-time popularities. IEEE Journal of Selected Topics in Signal Processing, 12(1), 180–190. Sadeghi, A., Sheikholeslami, F., & Giannakis, G. B. (2018). Optimal and scalable caching for 5G using reinforcement learning of space-time popularities. IEEE Journal of Selected Topics in Signal Processing, 12(1), 180–190.
128.
Zurück zum Zitat Mishra, S. K., Pandey, P., Arya, P., & Jain, A. (2018). Efficient proactive caching in storage constrained 5G small cells (pp. 291–296). IEEE. Mishra, S. K., Pandey, P., Arya, P., & Jain, A. (2018). Efficient proactive caching in storage constrained 5G small cells (pp. 291–296). IEEE.
129.
Zurück zum Zitat Hou, T., Feng, G., Qin, S., & Jiang, W. (2018). Proactive content caching by exploiting transfer learning for mobile edge computing. International Journal of Communication Systems, 31(11), e3706. Hou, T., Feng, G., Qin, S., & Jiang, W. (2018). Proactive content caching by exploiting transfer learning for mobile edge computing. International Journal of Communication Systems, 31(11), e3706.
130.
Zurück zum Zitat Lei, L., You, L., Dai, G., Vu, T. X., Yuan, D., & Chatzinotas, S. (2017). A deep learning approach for optimizing content delivering in cache-enabled HetNet (pp. 449–453). IEEE. Lei, L., You, L., Dai, G., Vu, T. X., Yuan, D., & Chatzinotas, S. (2017). A deep learning approach for optimizing content delivering in cache-enabled HetNet (pp. 449–453). IEEE.
131.
Zurück zum Zitat Tang, Q., Xie, R., Huang, T., & Liu, Y. (2018). Hierarchical collaborative caching in 5G networks. IET Communications, 12(18), 2357–2365. Tang, Q., Xie, R., Huang, T., & Liu, Y. (2018). Hierarchical collaborative caching in 5G networks. IET Communications, 12(18), 2357–2365.
132.
Zurück zum Zitat Mohammed, L., Jaseemuddin, M., & Anpalagan, A. (2018). Fuzzy soft-set based approach for femto-caching in wireless networks. IEEE. Mohammed, L., Jaseemuddin, M., & Anpalagan, A. (2018). Fuzzy soft-set based approach for femto-caching in wireless networks. IEEE.
133.
Zurück zum Zitat Mahendra Mallick, Vikram Krishnamurthy, Ba-Ngu Vo, (2012). Distributed detection and decision fusion with applications to wireless sensor networks. In Integrated Tracking, Classification, and Sensor Management: Theory and Applications,.Wiley-IEEE Press, pp. 617–660. Mahendra Mallick, Vikram Krishnamurthy, Ba-Ngu Vo, (2012). Distributed detection and decision fusion with applications to wireless sensor networks. In Integrated Tracking, Classification, and Sensor Management: Theory and Applications,.Wiley-IEEE Press, pp. 617–660.
134.
Zurück zum Zitat Roux, L. (1997). An application of possibility theory information fusion to satellite image classification (pp. 166–179). Springer. Roux, L. (1997). An application of possibility theory information fusion to satellite image classification (pp. 166–179). Springer.
135.
Zurück zum Zitat Lobato, F. S, & Steffen, Jr. V. (2017). Multi-objective optimization problems: Concepts and self-adaptive parameters with mathematical and engineering applications. Springer. Lobato, F. S, & Steffen, Jr. V. (2017). Multi-objective optimization problems: Concepts and self-adaptive parameters with mathematical and engineering applications. Springer.
136.
Zurück zum Zitat Chen, Z., & Liu, B. (2016). Life long machine learning. Synthesis Lectures on Artificial Intelligence and Machine Learning, 10(3), 1–145. Chen, Z., & Liu, B. (2016). Life long machine learning. Synthesis Lectures on Artificial Intelligence and Machine Learning, 10(3), 1–145.
137.
Zurück zum Zitat Witten, I. H., Frank, E., Hall, M. A., Pal, C. J. (2016). Data mining: Practical machine learning tools and techniques. Morgan Kaufmann. Witten, I. H., Frank, E., Hall, M. A., Pal, C. J. (2016). Data mining: Practical machine learning tools and techniques. Morgan Kaufmann.
Metadaten
Titel
Energy and Latency Efficient Caching in Mobile Edge Networks: Survey, Solutions, and Challenges
verfasst von
Lubna B. Mohammed
Alagan Anpalagan
Muhammad Jaseemuddin
Publikationsdatum
27.02.2023
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2023
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-023-10187-9

Weitere Artikel der Ausgabe 2/2023

Wireless Personal Communications 2/2023 Zur Ausgabe