Skip to main content
Erschienen in: Clean Technologies and Environmental Policy 6/2015

01.08.2015 | Original Paper

Energy, economic, and environmental analysis of a flat-plate solar collector operated with SiO2 nanofluid

verfasst von: M. Faizal, R. Saidur, S. Mekhilef, A. Hepbasli, I. M. Mahbubul

Erschienen in: Clean Technologies and Environmental Policy | Ausgabe 6/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To overcome the environmental impact and declining source of fossil fuels, renewable energy sources need to meet the increasing demand of energy. Solar thermal energy is clean and infinite, suitable to be a good replacement for fossil fuel. However, the current solar technology is still expensive and low in efficiency. One of the effective ways of increasing the efficiency of solar collector is to utilize high thermal conductivity fluid known as nanofluid. This research analyzes the impact on the performance, fluid flow, heat transfer, economic, and environment of a flat-plate solar thermal collector by using silicon dioxide nanofluid as absorbing medium. The analysis is based on different volume flow rates and varying nanoparticles volume fractions. The study has indicated that nanofluids containing small amount of nanoparticles have higher heat transfer coefficient and also higher energy and exergy efficiency than base fluids. The measured viscosity of nanofluids is higher than water but it gives negligible effect on pressure drop and pumping power. Using SiO2 nanofluid in solar collector could also save 280 MJ more embodied energy, offsetting 170 kg less CO2 emissions and having a faster payback period of 0.12 years compared to conventional water-based solar collectors.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alim MA, Abdin Z, Saidur R, Hepbasli A, Khairul MA, Rahim NA (2013) Analyses of entropy generation and pressure drop for a conventional flat plate solar collector using different types of metal oxide nanofluids. Energy Build 66:289–296CrossRef Alim MA, Abdin Z, Saidur R, Hepbasli A, Khairul MA, Rahim NA (2013) Analyses of entropy generation and pressure drop for a conventional flat plate solar collector using different types of metal oxide nanofluids. Energy Build 66:289–296CrossRef
Zurück zum Zitat Ardante F, Beccali G, Cellura M, Brano VL (2005) Life cycle assessment of a solar thermal collector. Renew Energy 30:1031–1054CrossRef Ardante F, Beccali G, Cellura M, Brano VL (2005) Life cycle assessment of a solar thermal collector. Renew Energy 30:1031–1054CrossRef
Zurück zum Zitat ASHRAE (2010) Methods of testing to determine the thermal performance of solar collectors (ANSI approved). Atlanta, USA ASHRAE (2010) Methods of testing to determine the thermal performance of solar collectors (ANSI approved). Atlanta, USA
Zurück zum Zitat Azmi WH, Sharma KV, Sarma PK, Mamat R, Anuar S, Dharma Rao V (2013) Experimental determination of turbulent forced convection heat transfer and friction factor with SiO2 nanofluid. Exp Therm Fluid Sci 51:103–111CrossRef Azmi WH, Sharma KV, Sarma PK, Mamat R, Anuar S, Dharma Rao V (2013) Experimental determination of turbulent forced convection heat transfer and friction factor with SiO2 nanofluid. Exp Therm Fluid Sci 51:103–111CrossRef
Zurück zum Zitat Bejan A (1996) Entropy generation minimization: the method of thermodynamic optimization of finite-size systems and finite-time processes, vol 2. CRC Press, Boca Raton Bejan A (1996) Entropy generation minimization: the method of thermodynamic optimization of finite-size systems and finite-time processes, vol 2. CRC Press, Boca Raton
Zurück zum Zitat Bejan A, Keary DW, Kreith F (1981) Second law analysis and synthesis of solar collector systems. J Sol Energy Eng 103:23–28CrossRef Bejan A, Keary DW, Kreith F (1981) Second law analysis and synthesis of solar collector systems. J Sol Energy Eng 103:23–28CrossRef
Zurück zum Zitat Bergman TL, Lavine AS, Incropera FP, DeWitt DP (2011) Fundamentals of heat and mass transfer, 7th edn. Wiley, Hoboken Bergman TL, Lavine AS, Incropera FP, DeWitt DP (2011) Fundamentals of heat and mass transfer, 7th edn. Wiley, Hoboken
Zurück zum Zitat Cengel YA, Boles MA (2010) Thermodynamics: an engineering approach, 7th edn. McGrawHill, New York Cengel YA, Boles MA (2010) Thermodynamics: an engineering approach, 7th edn. McGrawHill, New York
Zurück zum Zitat Chen Z, Meng H, Xing G, Guan H, Zhao F, Liu R, Chang X, Gau X, Wang T, Jia G, Ye C, Chai Z, Zhao Y (2008) Age-related differences in pulmonary and cardiovascular response to SiO2 nanoparticles inhalation: nanotoxicity has susceptible population. Environ Sci Technol 42:8985–8992CrossRef Chen Z, Meng H, Xing G, Guan H, Zhao F, Liu R, Chang X, Gau X, Wang T, Jia G, Ye C, Chai Z, Zhao Y (2008) Age-related differences in pulmonary and cardiovascular response to SiO2 nanoparticles inhalation: nanotoxicity has susceptible population. Environ Sci Technol 42:8985–8992CrossRef
Zurück zum Zitat Chen Y-j , Wang P-y, Liu Z-h (2013) Application of water-based SiO2 functionalized nanofluid in a loop thermosyphon. Int J Heat Mass Transf 56:59–68CrossRef Chen Y-j , Wang P-y, Liu Z-h (2013) Application of water-based SiO2 functionalized nanofluid in a loop thermosyphon. Int J Heat Mass Transf 56:59–68CrossRef
Zurück zum Zitat Choi SUS (1995) Enhancing therm conductivity of fluids with nanoparticles. ASME FED 231:99–103 Choi SUS (1995) Enhancing therm conductivity of fluids with nanoparticles. ASME FED 231:99–103
Zurück zum Zitat Das SK, Choi SUS (2009) A review of heat transfer in nanofluids. In: Irvine TF, Hartnett JP (eds) Advances in heat transfer. Elsevier, New York, pp 81–197 Das SK, Choi SUS (2009) A review of heat transfer in nanofluids. In: Irvine TF, Hartnett JP (eds) Advances in heat transfer. Elsevier, New York, pp 81–197
Zurück zum Zitat de Sanchez-Bautista AF, Santibanez-Aguilar JE, Ponce-Ortega JM, Napoles-Rivera F, Serna-Gonzalez M, El-Halwagi MM (2014) Optimal design of domestic water-heating solar systems. Clean Technol Environ Policy. doi:10.1007/s10098-014-0818-4 de Sanchez-Bautista AF, Santibanez-Aguilar JE, Ponce-Ortega JM, Napoles-Rivera F, Serna-Gonzalez M, El-Halwagi MM (2014) Optimal design of domestic water-heating solar systems. Clean Technol Environ Policy. doi:10.​1007/​s10098-014-0818-4
Zurück zum Zitat Duangthongsuk W, Wongwises S (2009) Heat transfer enhancement and pressure drop characteristics of TiO2–water nanofluid in a double-tube counter flow heat exchanger. Int J Heat Mass Transf 52:2059–2067CrossRef Duangthongsuk W, Wongwises S (2009) Heat transfer enhancement and pressure drop characteristics of TiO2–water nanofluid in a double-tube counter flow heat exchanger. Int J Heat Mass Transf 52:2059–2067CrossRef
Zurück zum Zitat Esen H (2008) Experimental energy and exergy analysis of double-flow solar air heater having different obstacles on absorber plates. Build Environ 43:1046–1054CrossRef Esen H (2008) Experimental energy and exergy analysis of double-flow solar air heater having different obstacles on absorber plates. Build Environ 43:1046–1054CrossRef
Zurück zum Zitat Faizal M, Saidur R, Mekhilef S, Alim MA (2013) Energy, economic and environmental analysis of metal oxides nanofluid for flat-plate solar collector. Energy Convers Manag 76:162–168CrossRef Faizal M, Saidur R, Mekhilef S, Alim MA (2013) Energy, economic and environmental analysis of metal oxides nanofluid for flat-plate solar collector. Energy Convers Manag 76:162–168CrossRef
Zurück zum Zitat Faizal M, Saidur R, Mekhilef S (2013b) Potential of size reduction of flat-plate solar collectors when applying MWCNT nanofluid. Earth Environ Sci 16:1–4 Faizal M, Saidur R, Mekhilef S (2013b) Potential of size reduction of flat-plate solar collectors when applying MWCNT nanofluid. Earth Environ Sci 16:1–4
Zurück zum Zitat Faizal M, Saidur R, Mekhilef S (2014) Potential of size reduction of flat-plate solar collectors when applying Al2O3 nanofluid. Adv Mater Res 832:149–153CrossRef Faizal M, Saidur R, Mekhilef S (2014) Potential of size reduction of flat-plate solar collectors when applying Al2O3 nanofluid. Adv Mater Res 832:149–153CrossRef
Zurück zum Zitat Farahat S, Sarhaddi F, Ajam H (2009) Exergetic optimization of flat plate solar collectors. Renew Energy 34:1169–1174CrossRef Farahat S, Sarhaddi F, Ajam H (2009) Exergetic optimization of flat plate solar collectors. Renew Energy 34:1169–1174CrossRef
Zurück zum Zitat Foster R, Witcher J, Nelson V, Ghassemi M, Mimbela LE, Ghassemi A (2009) Sol energy: renewable energy and the environment. Taylor and Francis, New YorkCrossRef Foster R, Witcher J, Nelson V, Ghassemi M, Mimbela LE, Ghassemi A (2009) Sol energy: renewable energy and the environment. Taylor and Francis, New YorkCrossRef
Zurück zum Zitat Garg HP, Agarwal RK (1995) Some aspects of a PV/T collector/forced circulation flat plate solar water heater with solar cells. Energy Convers Manag 36:87–99CrossRef Garg HP, Agarwal RK (1995) Some aspects of a PV/T collector/forced circulation flat plate solar water heater with solar cells. Energy Convers Manag 36:87–99CrossRef
Zurück zum Zitat Gupta KKD, Saha SK (1990) Energy analysis of solar thermal collectors. Renew Energy Environ 1:283–287 Gupta KKD, Saha SK (1990) Energy analysis of solar thermal collectors. Renew Energy Environ 1:283–287
Zurück zum Zitat He Y, Jin Y, Chen H, Ding Y, Cang D, Lu H (2007) Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe. Int J Heat Mass Transf 50:2272–2281CrossRef He Y, Jin Y, Chen H, Ding Y, Cang D, Lu H (2007) Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe. Int J Heat Mass Transf 50:2272–2281CrossRef
Zurück zum Zitat Ise N, Sogami I (2005) Structure formation in solution: ionic polymers and colloidal particles. Springer, Berlin Ise N, Sogami I (2005) Structure formation in solution: ionic polymers and colloidal particles. Springer, Berlin
Zurück zum Zitat Jiang H, Li H, Zan C, Wang F, Yang Q, Shi L (2014) Temperature dependence of the stability and thermal conductivity of an oil-based nanofluid. Thermochim Acta 579:27–30CrossRef Jiang H, Li H, Zan C, Wang F, Yang Q, Shi L (2014) Temperature dependence of the stability and thermal conductivity of an oil-based nanofluid. Thermochim Acta 579:27–30CrossRef
Zurück zum Zitat Kabeel AE, Abou El Maaty T, El Samadony Y (2013) The effect of using nano-particles on corrugated plate heat exchanger performance. Appl Therm Eng 52:221–229CrossRef Kabeel AE, Abou El Maaty T, El Samadony Y (2013) The effect of using nano-particles on corrugated plate heat exchanger performance. Appl Therm Eng 52:221–229CrossRef
Zurück zum Zitat Kahani M, Heris SZ, Mousavi SM (2013) Effects of curvature ratio and coil pitch spacing on heat transfer performance of Al2O3/water nanofluid laminar flow through helical coils. J Dispers Sci Technol 34:1704–1712CrossRef Kahani M, Heris SZ, Mousavi SM (2013) Effects of curvature ratio and coil pitch spacing on heat transfer performance of Al2O3/water nanofluid laminar flow through helical coils. J Dispers Sci Technol 34:1704–1712CrossRef
Zurück zum Zitat Kalogirou S (2004) Environmental benefits of domestic solar energy systems. Energy Convers Manag 45:3075–3092CrossRef Kalogirou S (2004) Environmental benefits of domestic solar energy systems. Energy Convers Manag 45:3075–3092CrossRef
Zurück zum Zitat Kalogirou S (2008) Thermal performance, economic and environmental life cycle analysis of thermosyphon solar water heaters. J Sol Energy 83:39–48 Kalogirou S (2008) Thermal performance, economic and environmental life cycle analysis of thermosyphon solar water heaters. J Sol Energy 83:39–48
Zurück zum Zitat Kalogirou S (2009) Solar energy engineering: processes and systems. Academic Press, Burlington Kalogirou S (2009) Solar energy engineering: processes and systems. Academic Press, Burlington
Zurück zum Zitat Kamyar A, Saidur R, Hasanuzzaman M (2012) Application of computational fluid dynamics (CFD) for nanofluids. Int J Heat Mass Transf 55:4104–4115CrossRef Kamyar A, Saidur R, Hasanuzzaman M (2012) Application of computational fluid dynamics (CFD) for nanofluids. Int J Heat Mass Transf 55:4104–4115CrossRef
Zurück zum Zitat Khairul MA, Alim MA, Mahbubul IM, Saidur R, Hepbasli A, Hossain A (2014) Heat transfer performance and exergy analyses of a corrugated plate heat exchanger using metal oxide nanofluids. Int Commun Heat Mass Transf 50:8–14CrossRef Khairul MA, Alim MA, Mahbubul IM, Saidur R, Hepbasli A, Hossain A (2014) Heat transfer performance and exergy analyses of a corrugated plate heat exchanger using metal oxide nanofluids. Int Commun Heat Mass Transf 50:8–14CrossRef
Zurück zum Zitat Kline SJ, McClintock FA (1953) Describing uncertainties in single-sample experiments. Mech Eng 75:3–8 Kline SJ, McClintock FA (1953) Describing uncertainties in single-sample experiments. Mech Eng 75:3–8
Zurück zum Zitat Kosmulski M (2001) Chemical properties of material surfaces. Marcel Dekker, New YorkCrossRef Kosmulski M (2001) Chemical properties of material surfaces. Marcel Dekker, New YorkCrossRef
Zurück zum Zitat Kotas TJ (1995) The exergy method of thermal plant analysis. Krieger Publish Company, Malabar Kotas TJ (1995) The exergy method of thermal plant analysis. Krieger Publish Company, Malabar
Zurück zum Zitat Kotulski ZA, Szczepinski W (2010) Error analysis with applications in engineering. Springer, DordrechtCrossRef Kotulski ZA, Szczepinski W (2010) Error analysis with applications in engineering. Springer, DordrechtCrossRef
Zurück zum Zitat Kulkarni DP, Das DK, Vajjha RS (2009) Application of nanofluids in heating buildings and reducing pollution. Appl Energy 86:2566–2573CrossRef Kulkarni DP, Das DK, Vajjha RS (2009) Application of nanofluids in heating buildings and reducing pollution. Appl Energy 86:2566–2573CrossRef
Zurück zum Zitat Lenert A, Wang EN (2012) Optimization of nanofluid volumetric receivers for solar thermal energy conversion. Sol Energy 86:253–265CrossRef Lenert A, Wang EN (2012) Optimization of nanofluid volumetric receivers for solar thermal energy conversion. Sol Energy 86:253–265CrossRef
Zurück zum Zitat Leong KY, Saidur R, Kazi SN, Mamun AH (2010) Performance investigation of an automotive car radiator operated with nanofluid-based coolants. Appl Therm Eng 30:2685–2692CrossRef Leong KY, Saidur R, Kazi SN, Mamun AH (2010) Performance investigation of an automotive car radiator operated with nanofluid-based coolants. Appl Therm Eng 30:2685–2692CrossRef
Zurück zum Zitat Leong KY, Saidur R, Mahlia TMI, Yau YH (2012) Predicting size reduction of shell and tube heat recovery exchanger operated with nanofluids based coolants and its associated energy saving. Energy Educ Sci Technol A 30:1–14 Leong KY, Saidur R, Mahlia TMI, Yau YH (2012) Predicting size reduction of shell and tube heat recovery exchanger operated with nanofluids based coolants and its associated energy saving. Energy Educ Sci Technol A 30:1–14
Zurück zum Zitat Li Q, Xuan Y, Wang J (2003) Investigation on convective heat transfer and flow features of nanofluids. J Heat Transf 125:151–155CrossRef Li Q, Xuan Y, Wang J (2003) Investigation on convective heat transfer and flow features of nanofluids. J Heat Transf 125:151–155CrossRef
Zurück zum Zitat Li FC, Yang JC, Zhou WW, He YR, Huang YM, Jiang BC (2013) Equation experimental study on the characteristics of thermal conductivity and shear viscosity of viscoelastic-fluid-based nanofluids containing multiwalled carbon nanotubes. Thermochim Acta 556:47–53CrossRef Li FC, Yang JC, Zhou WW, He YR, Huang YM, Jiang BC (2013) Equation experimental study on the characteristics of thermal conductivity and shear viscosity of viscoelastic-fluid-based nanofluids containing multiwalled carbon nanotubes. Thermochim Acta 556:47–53CrossRef
Zurück zum Zitat Liu Z-h, Liao L (2008) Sorption and agglutination phenomenon of nanofluids on a plain heating surface during pool boiling. Int J Heat Mass Transf 51:2593–2602CrossRef Liu Z-h, Liao L (2008) Sorption and agglutination phenomenon of nanofluids on a plain heating surface during pool boiling. Int J Heat Mass Transf 51:2593–2602CrossRef
Zurück zum Zitat Lu L, Liu Z-H, Xiao H-S (2011) Thermal performance of an open thermosyphon using nanofluids for high-temperature evacuated tubular solar collectors: Part 1: indoor experiment. Sol Energy 85:379–387CrossRef Lu L, Liu Z-H, Xiao H-S (2011) Thermal performance of an open thermosyphon using nanofluids for high-temperature evacuated tubular solar collectors: Part 1: indoor experiment. Sol Energy 85:379–387CrossRef
Zurück zum Zitat Mahian O, Mahmud S, Heris SZ (2012) Analysis of entropy generation between co-rotating cylinders using nanofluids. Energy 44:438–446CrossRef Mahian O, Mahmud S, Heris SZ (2012) Analysis of entropy generation between co-rotating cylinders using nanofluids. Energy 44:438–446CrossRef
Zurück zum Zitat Mahian O, Kianifar A, Kleinstreuer C, Al-Nimr MdA, Pop I, Sahin AZ, Wongwises S (2013) A review of entropy generation in nanofluid flow. Int J Heat Mass Transf 65:514–532CrossRef Mahian O, Kianifar A, Kleinstreuer C, Al-Nimr MdA, Pop I, Sahin AZ, Wongwises S (2013) A review of entropy generation in nanofluid flow. Int J Heat Mass Transf 65:514–532CrossRef
Zurück zum Zitat Mekhilef S, Safari A, Mustaffa WES, Saidur R, Omar R, Younis MAA (2012) Solar energy in Malaysia: current state and prospects. Renew Sustain Energy Rev 16:386–396CrossRef Mekhilef S, Safari A, Mustaffa WES, Saidur R, Omar R, Younis MAA (2012) Solar energy in Malaysia: current state and prospects. Renew Sustain Energy Rev 16:386–396CrossRef
Zurück zum Zitat Namburu P, Kulkarni D, Dandekar A, Das D (2007) Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids. Micro Nano Lett IET 2:67–71CrossRef Namburu P, Kulkarni D, Dandekar A, Das D (2007) Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids. Micro Nano Lett IET 2:67–71CrossRef
Zurück zum Zitat Nemet A, Kravanja Z, Klemeš JJ (2012) Integration of solar thermal energy into processes with heat demand. Clean Technol Environ Policy 14:453–463CrossRef Nemet A, Kravanja Z, Klemeš JJ (2012) Integration of solar thermal energy into processes with heat demand. Clean Technol Environ Policy 14:453–463CrossRef
Zurück zum Zitat Otanicar TP (2009). Direct absorption solar thermal collectors utilizing liquid-nanoparticle suspensions. Arizona State University Otanicar TP (2009). Direct absorption solar thermal collectors utilizing liquid-nanoparticle suspensions. Arizona State University
Zurück zum Zitat Otanicar T, Phelan PE, Prasher RS, Rosengarten G, Taylor RA (2010) Nanofluid-based direct absorption solar collector. J Renew Sustain Energy 2:033102CrossRef Otanicar T, Phelan PE, Prasher RS, Rosengarten G, Taylor RA (2010) Nanofluid-based direct absorption solar collector. J Renew Sustain Energy 2:033102CrossRef
Zurück zum Zitat Owhaib W, Palm B (2004) Experimental investigation of single-phase convective heat transfer in circular microchannels. Exp Therm Fluid Sci 2:105–110CrossRef Owhaib W, Palm B (2004) Experimental investigation of single-phase convective heat transfer in circular microchannels. Exp Therm Fluid Sci 2:105–110CrossRef
Zurück zum Zitat Ranjan KR, Kaushik SC (2013) Exergy analysis of the active solar distillation systems integrated with solar ponds. Clean Technol Environ Policy 16:791–805CrossRef Ranjan KR, Kaushik SC (2013) Exergy analysis of the active solar distillation systems integrated with solar ponds. Clean Technol Environ Policy 16:791–805CrossRef
Zurück zum Zitat Saidur R, Lai YK (2011) Nanotechnology in vehicle’s weight reduction and associated energy savings. Energy Educ Sci Technol A 26:87–101 Saidur R, Lai YK (2011) Nanotechnology in vehicle’s weight reduction and associated energy savings. Energy Educ Sci Technol A 26:87–101
Zurück zum Zitat Saidur R, BoroumandJazi G, Mekhilef S, Jameel M (2012) Exergy analysis of solar energy applications. Renew Sustain Energy Rev 16:350–356CrossRef Saidur R, BoroumandJazi G, Mekhilef S, Jameel M (2012) Exergy analysis of solar energy applications. Renew Sustain Energy Rev 16:350–356CrossRef
Zurück zum Zitat Shin D, Banerjee D (2011) Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications. Int J Heat Mass Transf 54:1064–1070CrossRef Shin D, Banerjee D (2011) Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications. Int J Heat Mass Transf 54:1064–1070CrossRef
Zurück zum Zitat Singal RK (2008) Non-conventional energy resources (alternative energy sources and systems). S.K. Kataria and Sons, Delhi Singal RK (2008) Non-conventional energy resources (alternative energy sources and systems). S.K. Kataria and Sons, Delhi
Zurück zum Zitat Spardo JV, Rabl A (1999) Estimates of real damage from air pollution: site dependence and simple impact indices for LCA. Int J LCA 4:229–243CrossRef Spardo JV, Rabl A (1999) Estimates of real damage from air pollution: site dependence and simple impact indices for LCA. Int J LCA 4:229–243CrossRef
Zurück zum Zitat Sustainable Energy Development (2010) Ninth Malaysia plan Sustainable Energy Development (2010) Ninth Malaysia plan
Zurück zum Zitat Suzuki A (1988) General theory of exergy balance analysis and application to solar collectors. Energy 13:153–160CrossRef Suzuki A (1988) General theory of exergy balance analysis and application to solar collectors. Energy 13:153–160CrossRef
Zurück zum Zitat Taylor RA, Phelan PE, Otanicar TP, Adrian R, Prasher R (2011) Nanofluid optical property characterization: towards efficient direct absorption solar collectors. Nanoscale Res Lett 6:225CrossRef Taylor RA, Phelan PE, Otanicar TP, Adrian R, Prasher R (2011) Nanofluid optical property characterization: towards efficient direct absorption solar collectors. Nanoscale Res Lett 6:225CrossRef
Zurück zum Zitat Tiwari AK, Ghosh P, Sarkar J (2013) Heat transfer and pressure drop characteristics of CeO2/water nanofluid in plate heat exchanger. Appl Therm Eng 57:24–32CrossRef Tiwari AK, Ghosh P, Sarkar J (2013) Heat transfer and pressure drop characteristics of CeO2/water nanofluid in plate heat exchanger. Appl Therm Eng 57:24–32CrossRef
Zurück zum Zitat Tora EA, El-Halwagi MM (2009) Optimal design and integration of solar systems and fossil fuels for sustainable and stable power outlet. Clean Technol Environ Policy 11:401–407CrossRef Tora EA, El-Halwagi MM (2009) Optimal design and integration of solar systems and fossil fuels for sustainable and stable power outlet. Clean Technol Environ Policy 11:401–407CrossRef
Zurück zum Zitat Tsillingiridis G, Martinopoulos G, Kyriakis N (2004) Life cycle environmental impact of a thermosyphon domestic solar hot water system in comparison with electrical and gas water heating. Renew Energy 29:1277–1288CrossRef Tsillingiridis G, Martinopoulos G, Kyriakis N (2004) Life cycle environmental impact of a thermosyphon domestic solar hot water system in comparison with electrical and gas water heating. Renew Energy 29:1277–1288CrossRef
Zurück zum Zitat Vatanpour V, Madaeni SS, Moradian R, Zinadini S, Astinchap B (2011) Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite. J Membr Sci 375:284–294CrossRef Vatanpour V, Madaeni SS, Moradian R, Zinadini S, Astinchap B (2011) Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite. J Membr Sci 375:284–294CrossRef
Zurück zum Zitat Wang H (2009) Dispersing carbon nanotubes using surfactants. Curr Opin Colloid Interface Sci 14:364–371CrossRef Wang H (2009) Dispersing carbon nanotubes using surfactants. Curr Opin Colloid Interface Sci 14:364–371CrossRef
Zurück zum Zitat White FM (2003) Fluid mechanics, 5th edn. McGraw-Hill, Boston White FM (2003) Fluid mechanics, 5th edn. McGraw-Hill, Boston
Zurück zum Zitat Yang X, Liu Z-h (2010) A kind of nanofluid consisting of surface-functionalized nanoparticles. Nanoscale Res Lett 5:1324–1328CrossRef Yang X, Liu Z-h (2010) A kind of nanofluid consisting of surface-functionalized nanoparticles. Nanoscale Res Lett 5:1324–1328CrossRef
Zurück zum Zitat Yousefi T, Shojaeizadeh E, Veysi F, Zinadini S (2012a) An experimental investigation on the effect of pH variation of MWCNT–H2O nanofluid on the efficiency of a flat-plate solar collector. Sol Energy 86:771–779CrossRef Yousefi T, Shojaeizadeh E, Veysi F, Zinadini S (2012a) An experimental investigation on the effect of pH variation of MWCNT–H2O nanofluid on the efficiency of a flat-plate solar collector. Sol Energy 86:771–779CrossRef
Zurück zum Zitat Yousefi T, Veisy F, Shojaeizadeh E, Zinadini S (2012b) An experimental investigation on the effect of MWCNT–H2O nanofluid on the efficiency of flat-plate solar collectors. Exp Therm Fluid Sci 39:207–212CrossRef Yousefi T, Veisy F, Shojaeizadeh E, Zinadini S (2012b) An experimental investigation on the effect of MWCNT–H2O nanofluid on the efficiency of flat-plate solar collectors. Exp Therm Fluid Sci 39:207–212CrossRef
Zurück zum Zitat Yousefi T, Veysi F, Shojaeizadeh E, Zinadini S (2012c) An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors. Renew Energy 39:293–298CrossRef Yousefi T, Veysi F, Shojaeizadeh E, Zinadini S (2012c) An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors. Renew Energy 39:293–298CrossRef
Zurück zum Zitat Zamzamian A, KeyanpourRad M, KianiNeyestani M, Jamal-Abad MT (2014) An experimental study on the effect of Cu-synthesized/EG nanofluid on the efficiency of flat-plate solar collectors. Renew Energy 71:658–664CrossRef Zamzamian A, KeyanpourRad M, KianiNeyestani M, Jamal-Abad MT (2014) An experimental study on the effect of Cu-synthesized/EG nanofluid on the efficiency of flat-plate solar collectors. Renew Energy 71:658–664CrossRef
Zurück zum Zitat Zhou SQ, Ni R (2008) Measurement of the specific heat capacity of water-based Al2O3 nanofluid. Appl Phys Lett 92:1–3 Zhou SQ, Ni R (2008) Measurement of the specific heat capacity of water-based Al2O3 nanofluid. Appl Phys Lett 92:1–3
Metadaten
Titel
Energy, economic, and environmental analysis of a flat-plate solar collector operated with SiO2 nanofluid
verfasst von
M. Faizal
R. Saidur
S. Mekhilef
A. Hepbasli
I. M. Mahbubul
Publikationsdatum
01.08.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Clean Technologies and Environmental Policy / Ausgabe 6/2015
Print ISSN: 1618-954X
Elektronische ISSN: 1618-9558
DOI
https://doi.org/10.1007/s10098-014-0870-0

Weitere Artikel der Ausgabe 6/2015

Clean Technologies and Environmental Policy 6/2015 Zur Ausgabe