Skip to main content
Erschienen in: Bulletin of Engineering Geology and the Environment 12/2023

01.12.2023 | Original Article

Energy evolution analysis and related failure criterion for layered rocks

verfasst von: Min Gao, Zhengzhao Liang, Shanpo Jia, Qinghe Zhang, Jiuqun Zou

Erschienen in: Bulletin of Engineering Geology and the Environment | Ausgabe 12/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Energy accumulation and energy release are typical characteristics during the whole deformation process of layered rocks. To reveal the characteristics of the energy evolution and failure mechanism of layered rocks, uniaxial compression tests are carried out on layered shale samples. The anisotropic properties of layered rocks are studied. The energy indexes, namely, the elastic energy, dissipated energy, and total input energy of the specimens, are further investigated, revealing the energy damage evolution mechanism of the layered rocks. The experimental results show that the mechanical properties and failure modes of layered rocks are obviously anisotropic. The failure modes of layered rocks can be divided into three types, and the uniaxial compression strength typically shows “U” shaped with the increasing orientation of bedding planes. The energy reserve of the layered rock mass is also anisotropic due to the influence of bedding planes. Before the peak strength, the energy evolution of the layered rock samples is nearly similar, dominated by energy accumulation. The energy dissipation and energy release predominated after the peak strength. In the postpeak stress stage, the elastic strain energy (Ue) is released suddenly, while the dissipated energy (Ud) increases significantly. After that, the elastic-dissipated energy ratio (Ud/Ue) of the layered rocks is studied. The elastic-dissipated energy ratio slowly decreases with strain in the elastic stage, while it increases significantly in the postpeak fracture stage, which has a mutation point. The mutation point is defined as the critical elastic-dissipated energy ratio (Kc), which also shows a typical “U” shape with the orientation of bedding planes. Therefore, the strength failure criterion according to the energy mutation is proposed, which does not need to consider the tensile or shear failure mode of the layered rocks. The failure criterion is validated by the experimental results of other layered rock samples made of similar materials in the laboratory. The criterion is useful for the strength prediction of layered rocks under uniaxial compression.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Amadei B (1983) Rock anisotropy and the theory of stress measurements Lecture Notes in Engineering Series. Springer, New YorkCrossRef Amadei B (1983) Rock anisotropy and the theory of stress measurements Lecture Notes in Engineering Series. Springer, New YorkCrossRef
Zurück zum Zitat Amadei B (1996) Importance of anisotropy when estimation and measuring in situ stresses in rock. Int J Rock Mech Min Sci Geomech Abstr 33(3):293–326CrossRef Amadei B (1996) Importance of anisotropy when estimation and measuring in situ stresses in rock. Int J Rock Mech Min Sci Geomech Abstr 33(3):293–326CrossRef
Zurück zum Zitat Bieniawski ZT (1967) Mechanism of brittle fracture of rock: part I—theory of the fracture process. Int J Rock Mech Min Sci Geomech Abstr 4(4):395–406CrossRef Bieniawski ZT (1967) Mechanism of brittle fracture of rock: part I—theory of the fracture process. Int J Rock Mech Min Sci Geomech Abstr 4(4):395–406CrossRef
Zurück zum Zitat Bieniawski ZT (1968) Fracture dynamics of rock. Int J Fract Mech 4(4):415–430CrossRef Bieniawski ZT (1968) Fracture dynamics of rock. Int J Fract Mech 4(4):415–430CrossRef
Zurück zum Zitat Cazacu O, Cristescu ND (1999) A paraboloid failure surface for transversely isotropic materials. Mech Mater 31:381–393CrossRef Cazacu O, Cristescu ND (1999) A paraboloid failure surface for transversely isotropic materials. Mech Mater 31:381–393CrossRef
Zurück zum Zitat Chen X, Yang Q, Qiu KB, Feng JL (2008) An anisotropic strength criterion for jointed rock masses and its application in wellbore stability analyses. Int J Numer Anal Methods Geomech 32:607–631CrossRef Chen X, Yang Q, Qiu KB, Feng JL (2008) An anisotropic strength criterion for jointed rock masses and its application in wellbore stability analyses. Int J Numer Anal Methods Geomech 32:607–631CrossRef
Zurück zum Zitat Chen YF, Wei K, Liu W, Hu SH, Hu R, Zhou CB (2016) Experimental characterization and micromechanical modelling of anisotropic slates. Rock Mech Rock Eng 49:3541–3557CrossRef Chen YF, Wei K, Liu W, Hu SH, Hu R, Zhou CB (2016) Experimental characterization and micromechanical modelling of anisotropic slates. Rock Mech Rock Eng 49:3541–3557CrossRef
Zurück zum Zitat Cho JW, Kim H, Joen SK, Min KB (2012) Deformation and strength anisotropy of Asan gneiss, Boryeong shale, and Yeoncheon schist. Int J Rock Mech Min Sci 50:158–169CrossRef Cho JW, Kim H, Joen SK, Min KB (2012) Deformation and strength anisotropy of Asan gneiss, Boryeong shale, and Yeoncheon schist. Int J Rock Mech Min Sci 50:158–169CrossRef
Zurück zum Zitat Debecker B, Vervoort A (2009) Experimental observation of fracture patterns in layered slate. Int J Fract 159(1):51–62CrossRef Debecker B, Vervoort A (2009) Experimental observation of fracture patterns in layered slate. Int J Fract 159(1):51–62CrossRef
Zurück zum Zitat Donath FA (1961) Experimental study of shear failure in anisotropic rocks. Geol Soc Am Bull 72(6):985–989CrossRef Donath FA (1961) Experimental study of shear failure in anisotropic rocks. Geol Soc Am Bull 72(6):985–989CrossRef
Zurück zum Zitat Duveau G, Shao JF (1998) A modified single discontinuity theory for the failure of highly stratified rocks. Int J Rock Mech Min Sci 35(6):807–813CrossRef Duveau G, Shao JF (1998) A modified single discontinuity theory for the failure of highly stratified rocks. Int J Rock Mech Min Sci 35(6):807–813CrossRef
Zurück zum Zitat Gholami R, Rasouli V (2014) Mechanical and elastic properties of transversely isotropic slate. Rock Mech Rock Eng 47:1763–1773CrossRef Gholami R, Rasouli V (2014) Mechanical and elastic properties of transversely isotropic slate. Rock Mech Rock Eng 47:1763–1773CrossRef
Zurück zum Zitat He MC, Sousa LRE, Miranda T, Zhu GL (2015) Rockbust laboratory tests databasedapplication of data mining techniques. Eng Geol 185:116–130CrossRef He MC, Sousa LRE, Miranda T, Zhu GL (2015) Rockbust laboratory tests databasedapplication of data mining techniques. Eng Geol 185:116–130CrossRef
Zurück zum Zitat Jaeger JC (1960) Shear failure of anisotropic rocks. Geol Mag 97(1):65–72CrossRef Jaeger JC (1960) Shear failure of anisotropic rocks. Geol Mag 97(1):65–72CrossRef
Zurück zum Zitat Lai YS, Wang CY, Tien YM (1999) Modified Mohr-Coulomb-type micromechanical failure criteria for layered rocks. Int J Numer Anal Methods Geomech 23(5):451–460CrossRef Lai YS, Wang CY, Tien YM (1999) Modified Mohr-Coulomb-type micromechanical failure criteria for layered rocks. Int J Numer Anal Methods Geomech 23(5):451–460CrossRef
Zurück zum Zitat Li ZY, Wu G, Huang TZ, Liu Y (2018) Variation of energy and criteria for strength failure of shale under triaxial cyclic loading. Chin J Rock Mech Eng 37(3):662–670 (in Chinese) Li ZY, Wu G, Huang TZ, Liu Y (2018) Variation of energy and criteria for strength failure of shale under triaxial cyclic loading. Chin J Rock Mech Eng 37(3):662–670 (in Chinese)
Zurück zum Zitat McLamore R, Gray KE (1967) The mechanical behavior of anisotropic sedimentary rocks. J Eng Ind 89(1):62–73CrossRef McLamore R, Gray KE (1967) The mechanical behavior of anisotropic sedimentary rocks. J Eng Ind 89(1):62–73CrossRef
Zurück zum Zitat Meng QB, Zhang MW, Zhang ZZ, Han LJ, Pu H (2018) Experimental research on rock energy evolution under uniaxial cyclic loading and unloading compression. Geotech Test J 41(4):717–729CrossRef Meng QB, Zhang MW, Zhang ZZ, Han LJ, Pu H (2018) Experimental research on rock energy evolution under uniaxial cyclic loading and unloading compression. Geotech Test J 41(4):717–729CrossRef
Zurück zum Zitat Nasseri MHB, Rao KS, Ramamurthy T (2003) Anisotropic strength and deformation behavior of Himalayan schists. Int J Rock Mech Min Sci 40:3–23CrossRef Nasseri MHB, Rao KS, Ramamurthy T (2003) Anisotropic strength and deformation behavior of Himalayan schists. Int J Rock Mech Min Sci 40:3–23CrossRef
Zurück zum Zitat Niandou H, Shao JF, Henry JP, Fourmaintraux D (1997) Laboratory investigation of the mechanical behavior of Tournemire shale. Int J Rock Mech Min Sci 34(1):3–16CrossRef Niandou H, Shao JF, Henry JP, Fourmaintraux D (1997) Laboratory investigation of the mechanical behavior of Tournemire shale. Int J Rock Mech Min Sci 34(1):3–16CrossRef
Zurück zum Zitat Saroglou H, Tsiambaos G (2008) A modified Hoek-Brown failure criterion for anisotropic intact rock. Int J Rock Mech Min Sci 45:223–234CrossRef Saroglou H, Tsiambaos G (2008) A modified Hoek-Brown failure criterion for anisotropic intact rock. Int J Rock Mech Min Sci 45:223–234CrossRef
Zurück zum Zitat Shi XC, Yang X, Meng YF, Li G (2016) An anisotropic strength model for layered rocks considering planes of weakness. Rock Mech Rock Eng 49:3783–3792CrossRef Shi XC, Yang X, Meng YF, Li G (2016) An anisotropic strength model for layered rocks considering planes of weakness. Rock Mech Rock Eng 49:3783–3792CrossRef
Zurück zum Zitat Singh M, Samadhiya NK, Kumar A, Kumar V, Singh B (2015) A nonlinear criterion for triaxial strength of inherently anisotropic rocks. Rock Mech Rock Eng 48(4):1387–1405CrossRef Singh M, Samadhiya NK, Kumar A, Kumar V, Singh B (2015) A nonlinear criterion for triaxial strength of inherently anisotropic rocks. Rock Mech Rock Eng 48(4):1387–1405CrossRef
Zurück zum Zitat Solecki R, Conant RJ (2003) Advanced Mechanics of Materials. Oxford University Press, London Solecki R, Conant RJ (2003) Advanced Mechanics of Materials. Oxford University Press, London
Zurück zum Zitat Tan X, Konietzky H, Fruhwirt T, Dan DQ (2014) Brazilian tests on transversely isotropic rock. Rock Mech Rock Eng 48(4):1341–1351CrossRef Tan X, Konietzky H, Fruhwirt T, Dan DQ (2014) Brazilian tests on transversely isotropic rock. Rock Mech Rock Eng 48(4):1341–1351CrossRef
Zurück zum Zitat Tien YM, Kuo MC (2001) A failure criterion for transversely isotropic rocks. Int J Rock Mech Min Sci 38:399–412CrossRef Tien YM, Kuo MC (2001) A failure criterion for transversely isotropic rocks. Int J Rock Mech Min Sci 38:399–412CrossRef
Zurück zum Zitat Tien YM, Kuo MC, Juang CH (2006) An experimental investigation of the failure mechanism of simulated transversely isotropic rocks. Int J Rock Mech Min Sci 43:1163–1181CrossRef Tien YM, Kuo MC, Juang CH (2006) An experimental investigation of the failure mechanism of simulated transversely isotropic rocks. Int J Rock Mech Min Sci 43:1163–1181CrossRef
Zurück zum Zitat Tien YM, Tsao PF (2000) Preparation and mechanical properties of artificial transversely isotropic rock. Int J Rock Mech Min Sci 37:1001–1012CrossRef Tien YM, Tsao PF (2000) Preparation and mechanical properties of artificial transversely isotropic rock. Int J Rock Mech Min Sci 37:1001–1012CrossRef
Zurück zum Zitat Wang GL, Zhang L, Xu M, Liang ZY, Rang LB (2019) Energy damage evolution mechanism of non-across jointed rock mass under uniaxial compression. Chin J Geotech Eng 41(4):639–647 (in Chinese) Wang GL, Zhang L, Xu M, Liang ZY, Rang LB (2019) Energy damage evolution mechanism of non-across jointed rock mass under uniaxial compression. Chin J Geotech Eng 41(4):639–647 (in Chinese)
Zurück zum Zitat Wang MM, Li P, Wu XW, Chen HR (2016) A study on the brittleness and progressive failure process of anisotropic shale. Environ Earth Sci 75(10):866CrossRef Wang MM, Li P, Wu XW, Chen HR (2016) A study on the brittleness and progressive failure process of anisotropic shale. Environ Earth Sci 75(10):866CrossRef
Zurück zum Zitat Xie HP, Ju Y, Li LY (2005b) Criteria for strength and structural failure of rocks based on energy dissipation and release principles. Chin J Rock Mech Eng 24(17):3003–3010 (in Chinese) Xie HP, Ju Y, Li LY (2005b) Criteria for strength and structural failure of rocks based on energy dissipation and release principles. Chin J Rock Mech Eng 24(17):3003–3010 (in Chinese)
Zurück zum Zitat Xie HP, Ju Y, Li LY, Peng RD (2008) Energy mechanism of deformation and failure of rock masses. Chin J Rock Mech Eng 27(9):1729–1740 (in Chinese) Xie HP, Ju Y, Li LY, Peng RD (2008) Energy mechanism of deformation and failure of rock masses. Chin J Rock Mech Eng 27(9):1729–1740 (in Chinese)
Zurück zum Zitat Xie HP, Li LY, Ju Y, Peng RD, Yang YM (2011) Energy analysis for damage and catastrophic failure of rocks. Sci China Technol Sci 54(S1):199–209CrossRef Xie HP, Li LY, Ju Y, Peng RD, Yang YM (2011) Energy analysis for damage and catastrophic failure of rocks. Sci China Technol Sci 54(S1):199–209CrossRef
Zurück zum Zitat Xie HP, Li LY, Peng RD, Ju Y (2009) Energy analysis and criteria for structure failure of rocks. J Rock Mech Geotech Eng 1(1):11–20CrossRef Xie HP, Li LY, Peng RD, Ju Y (2009) Energy analysis and criteria for structure failure of rocks. J Rock Mech Geotech Eng 1(1):11–20CrossRef
Zurück zum Zitat Xie HP, Peng RD, Ju Y, Zhou HW (2005a) On energy analysis of rock failure. Chin J Rock Mech Eng 24(15):2603–2608 (in Chinese) Xie HP, Peng RD, Ju Y, Zhou HW (2005a) On energy analysis of rock failure. Chin J Rock Mech Eng 24(15):2603–2608 (in Chinese)
Zurück zum Zitat Yang YR, Xie HQ, Xiao ML, Liu JF, He JD (2017) Deformation failure and energy characteristics of transversely-isotropic rock under unloading of high confining pressure. Rock Soil Mech 36(8):1999–2006 (in Chinese) Yang YR, Xie HQ, Xiao ML, Liu JF, He JD (2017) Deformation failure and energy characteristics of transversely-isotropic rock under unloading of high confining pressure. Rock Soil Mech 36(8):1999–2006 (in Chinese)
Zurück zum Zitat Zhang P, Yang CH, Wang H, Guo YT, Xu F, Hou ZK (2018) Stress-strain characteristics and anisotropy energy of shale under uniaxial compression. Rock Soil Mech 39(6):2106–2114 (in Chinese) Zhang P, Yang CH, Wang H, Guo YT, Xu F, Hou ZK (2018) Stress-strain characteristics and anisotropy energy of shale under uniaxial compression. Rock Soil Mech 39(6):2106–2114 (in Chinese)
Zurück zum Zitat Zhou YY, Feng XT, Xu DP, Fan QX (2017) An enhanced equivalent continuum model for layered rock mass incorporating bedding structure and stress dependence. Int J Rock Mech Min Sci 97:75–98CrossRef Zhou YY, Feng XT, Xu DP, Fan QX (2017) An enhanced equivalent continuum model for layered rock mass incorporating bedding structure and stress dependence. Int J Rock Mech Min Sci 97:75–98CrossRef
Metadaten
Titel
Energy evolution analysis and related failure criterion for layered rocks
verfasst von
Min Gao
Zhengzhao Liang
Shanpo Jia
Qinghe Zhang
Jiuqun Zou
Publikationsdatum
01.12.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Bulletin of Engineering Geology and the Environment / Ausgabe 12/2023
Print ISSN: 1435-9529
Elektronische ISSN: 1435-9537
DOI
https://doi.org/10.1007/s10064-023-03445-4

Weitere Artikel der Ausgabe 12/2023

Bulletin of Engineering Geology and the Environment 12/2023 Zur Ausgabe