Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 2/2021

05.01.2021

Enhanced Power Density of Graphene Oxide–Phosphotetradecavanadate Nanohybrid for Supercapacitor Electrode

verfasst von: Sukanya Maity, Anjana Anandan Vannathan, Kiran Kumar, Partha Pratim Das, Sib Sankar Mal

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Successful exploration of supercapacitor (SC) material to integrate with high energy and high power density storage device still remains a daunting challenge. Conducting carbon nanostructures have been primarily used for this purpose; however, most of their surface area remains unutilized throughout the storage process. Herein, a new type of hybrid material has been reported by effectively using active sides of carbon nanostructures. Insertion of faradaic-type polyoxometalates (POMs), namely phosphotetradecavanadate (Na7[H2PV14O42], hereafter described as PV14), into the graphene oxide (GO) matrix creates a novel hybrid material for SC applications. Owing to the formation of nanohybrid, it can store charges both electrostatically and electrochemically. PV14/GO composite’s electrochemical behavior in different electrolyte (acidic/neutral) solutions shows different types of characteristics. The PV14/GO composite as a working electrode exhibits a high galvanostatic capacitance of 139 F/g while maintaining at a power density of 97.94 W/kg in 0.25 M H2SO4 electrolyte. The specific energy density was also found out to be around 56.58 Wh/kg at a 5 mV/s scan rate for the same electrolyte. Furthermore, in 1 M Na2SO4 solution, PV14/GO composite demonstrates a specific capacitance of 85.4 F/g at a scan rate of 5 mV/s. The equivalent series resistance for the device was found to be approximately 0.51 Ω with a circuit resistance of 3.881 Ω, using electrochemical impedance spectroscopy. The cell capacitance, employing the Nyquist plot, was calculated to be around 2.78 mF.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat L. Dong, C. Xu, Y. Li, Z.H. Huang, F. Kang, Q.H. Yang, and X. Zhaow, Flexible Electrodes and Supercapacitors for Wearable Energy Storage: A Review by Category, J. Mater. Chem. A, 2016, 4(13), p 4659–4685CrossRef L. Dong, C. Xu, Y. Li, Z.H. Huang, F. Kang, Q.H. Yang, and X. Zhaow, Flexible Electrodes and Supercapacitors for Wearable Energy Storage: A Review by Category, J. Mater. Chem. A, 2016, 4(13), p 4659–4685CrossRef
2.
Zurück zum Zitat Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai, P.J. Ferreira, A. Pirkle, R.M. Wallace, K.A. Cychosz, M. Thommes, and D. Su, Carbon-Based Supercapacitors Produced by Activation of Graphene, Science, 2011, 332(6037), p 1537–1541CrossRef Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai, P.J. Ferreira, A. Pirkle, R.M. Wallace, K.A. Cychosz, M. Thommes, and D. Su, Carbon-Based Supercapacitors Produced by Activation of Graphene, Science, 2011, 332(6037), p 1537–1541CrossRef
3.
Zurück zum Zitat P. Simon, and Y. Gogotsi, Materials for Electrochemical Capacitors, in Nanoscience and Technology: A Collection of Reviews from Nature Journals, 2010, p 320-329. P. Simon, and Y. Gogotsi, Materials for Electrochemical Capacitors, in Nanoscience and Technology: A Collection of Reviews from Nature Journals, 2010, p 320-329.
4.
Zurück zum Zitat K. Zhang, X. Han, Z. Hu, X. Zhang, Z. Tao, and J. Chen, Nanostructured Mn-Based Oxides for Electrochemical Energy Storage and Conversion, Chem. Soc. Rev., 2015, 44(3), p 699–728CrossRef K. Zhang, X. Han, Z. Hu, X. Zhang, Z. Tao, and J. Chen, Nanostructured Mn-Based Oxides for Electrochemical Energy Storage and Conversion, Chem. Soc. Rev., 2015, 44(3), p 699–728CrossRef
5.
Zurück zum Zitat J. Vatamanu, Z. Hu, D. Bedrov, C. Perez, and Y. Gogotsi, Increasing Energy Storage in Electrochemical Capacitors with Ionic Liquid Electrolytes and Nanostructured Carbon Electrodes, J. Phys. Chem. Lett., 2013, 4(17), p 2829–2837CrossRef J. Vatamanu, Z. Hu, D. Bedrov, C. Perez, and Y. Gogotsi, Increasing Energy Storage in Electrochemical Capacitors with Ionic Liquid Electrolytes and Nanostructured Carbon Electrodes, J. Phys. Chem. Lett., 2013, 4(17), p 2829–2837CrossRef
6.
Zurück zum Zitat G.Z. Chen, Understanding Supercapacitors Based on Nano-hybrid Materials with Interfacial Conjugation, Progr. Nat. Sci.: Mater. Int., 2013, 23(3), p 245–255CrossRef G.Z. Chen, Understanding Supercapacitors Based on Nano-hybrid Materials with Interfacial Conjugation, Progr. Nat. Sci.: Mater. Int., 2013, 23(3), p 245–255CrossRef
7.
Zurück zum Zitat W. Li, F. Zhang, Y. Dou, Z. Wu, H. Liu, X. Qian, D. Gu, Y. Xia, B. Tu, and D. Zhao, A Self-Template Strategy for the Synthesis of Mesoporous Carbon Nanofibers as Advanced Supercapacitor Electrodes, Adv. Energy Mater., 2011, 1(3), p 382–386CrossRef W. Li, F. Zhang, Y. Dou, Z. Wu, H. Liu, X. Qian, D. Gu, Y. Xia, B. Tu, and D. Zhao, A Self-Template Strategy for the Synthesis of Mesoporous Carbon Nanofibers as Advanced Supercapacitor Electrodes, Adv. Energy Mater., 2011, 1(3), p 382–386CrossRef
8.
Zurück zum Zitat C.H.A. Wong, A. Ambrosi, and M. Pumera, Thermally Reduced Graphenes Exhibiting a Close Relationship to Amorphous Carbon, Nanoscale, 2012, 4(16), p 4972–4977CrossRef C.H.A. Wong, A. Ambrosi, and M. Pumera, Thermally Reduced Graphenes Exhibiting a Close Relationship to Amorphous Carbon, Nanoscale, 2012, 4(16), p 4972–4977CrossRef
9.
Zurück zum Zitat E. Raymundo-Piñero, F. Leroux, and F. Béguin, A High-Performance Carbon for Supercapacitors Obtained by Carbonization of a Seaweed Biopolymer, Adv. Mater., 2006, 18(14), p 1877–1882CrossRef E. Raymundo-Piñero, F. Leroux, and F. Béguin, A High-Performance Carbon for Supercapacitors Obtained by Carbonization of a Seaweed Biopolymer, Adv. Mater., 2006, 18(14), p 1877–1882CrossRef
10.
Zurück zum Zitat C. Liu, Z. Yu, D. Neff, A. Zhamu, and B.Z. Jang, Graphene-Based Supercapacitor with an Ultrahigh Energy Density, Nano Lett., 2010, 10(12), p 4863–4868CrossRef C. Liu, Z. Yu, D. Neff, A. Zhamu, and B.Z. Jang, Graphene-Based Supercapacitor with an Ultrahigh Energy Density, Nano Lett., 2010, 10(12), p 4863–4868CrossRef
11.
Zurück zum Zitat Y. Shao, M.F. El-Kady, L.J. Wang, Q. Zhang, Y. Li, H. Wang, M.F. Mousavi, and R.B. Kaner, Graphene-Based Materials for Flexible Supercapacitors, Chem. Soc. Rev., 2015, 44(11), p 3639–3665CrossRef Y. Shao, M.F. El-Kady, L.J. Wang, Q. Zhang, Y. Li, H. Wang, M.F. Mousavi, and R.B. Kaner, Graphene-Based Materials for Flexible Supercapacitors, Chem. Soc. Rev., 2015, 44(11), p 3639–3665CrossRef
12.
Zurück zum Zitat B. Xu, S. Yue, Z. Sui, X. Zhang, S. Hou, G. Cao, and Y. Yang, What is the Choice for Supercapacitors: Graphene or Graphene Oxide?, Energy Environ. Sci., 2011, 4(8), p 2826–2830CrossRef B. Xu, S. Yue, Z. Sui, X. Zhang, S. Hou, G. Cao, and Y. Yang, What is the Choice for Supercapacitors: Graphene or Graphene Oxide?, Energy Environ. Sci., 2011, 4(8), p 2826–2830CrossRef
13.
Zurück zum Zitat Q. Zhang, K. Scrafford, M. Li, Z. Cao, Z. Xia, P.M. Ajayan, and B. Wei, Anomalous Capacitive Behaviors of Graphene Oxide Based Solid-State Supercapacitors, Nano Lett., 2014, 14(4), p 1938–1943CrossRef Q. Zhang, K. Scrafford, M. Li, Z. Cao, Z. Xia, P.M. Ajayan, and B. Wei, Anomalous Capacitive Behaviors of Graphene Oxide Based Solid-State Supercapacitors, Nano Lett., 2014, 14(4), p 1938–1943CrossRef
14.
Zurück zum Zitat R.B. Rakhi and M.L. Lekshmi, Reduced Graphene Oxide Based Ternary Nanocomposite Cathodes for High-Performance Aqueous Asymmetric Supercapacitor, Electrochim. Acta, 2017, 231, p 539–548CrossRef R.B. Rakhi and M.L. Lekshmi, Reduced Graphene Oxide Based Ternary Nanocomposite Cathodes for High-Performance Aqueous Asymmetric Supercapacitor, Electrochim. Acta, 2017, 231, p 539–548CrossRef
15.
Zurück zum Zitat S. Wang, N. Liu, J. Su, L. Li, F. Long, Z. Zou, X. Jiang, and Y. Gao, Highly Stretchable and Self-Healable Supercapacitor with Reduced Graphene Oxide Based Fiber Springs, ACS Nano, 2017, 11(2), p 2066–2074CrossRef S. Wang, N. Liu, J. Su, L. Li, F. Long, Z. Zou, X. Jiang, and Y. Gao, Highly Stretchable and Self-Healable Supercapacitor with Reduced Graphene Oxide Based Fiber Springs, ACS Nano, 2017, 11(2), p 2066–2074CrossRef
16.
Zurück zum Zitat X. Xiao, T. Li, Z. Peng, H. Jin, Q. Zhong, Q. Hu, B. Yao, Q. Luo, C. Zhang, L. Gong, and J. Chen, Freestanding Functionalized Carbon Nanotube-Based Electrode for Solid-State Asymmetric Supercapacitors, Nano Energy, 2014, 6, p 1–9CrossRef X. Xiao, T. Li, Z. Peng, H. Jin, Q. Zhong, Q. Hu, B. Yao, Q. Luo, C. Zhang, L. Gong, and J. Chen, Freestanding Functionalized Carbon Nanotube-Based Electrode for Solid-State Asymmetric Supercapacitors, Nano Energy, 2014, 6, p 1–9CrossRef
17.
Zurück zum Zitat Q. Zhang, C. Cai, J. Qin, and B. Wei, Tunable Self-Discharge Process of Carbon Nanotube Based Supercapacitors, Nano Energy, 2014, 4, p 14–22CrossRef Q. Zhang, C. Cai, J. Qin, and B. Wei, Tunable Self-Discharge Process of Carbon Nanotube Based Supercapacitors, Nano Energy, 2014, 4, p 14–22CrossRef
18.
Zurück zum Zitat P.C. Chen, G. Shen, Y. Shi, H. Chen, and C. Zhou, Preparation and Characterization of Flexible Asymmetric Supercapacitors Based on Transition-Metal-Oxide Nanowire/Single-Walled Carbon Nanotube Hybrid Thin-Film Electrodes, ACS Nano, 2010, 4(8), p 4403–4411CrossRef P.C. Chen, G. Shen, Y. Shi, H. Chen, and C. Zhou, Preparation and Characterization of Flexible Asymmetric Supercapacitors Based on Transition-Metal-Oxide Nanowire/Single-Walled Carbon Nanotube Hybrid Thin-Film Electrodes, ACS Nano, 2010, 4(8), p 4403–4411CrossRef
19.
Zurück zum Zitat K. Leitner, A. Lerf, M. Winter, J.O. Besenhard, S. Villar-Rodil, F. Suarez-Garcia, A. Martinez-Alonso, and J.M.D. Tascon, Nomex-Derived Activated Carbon Fibers as Electrode Materials in Carbon Based Supercapacitors, J. Power Sources, 2006, 153(2), p 419–423CrossRef K. Leitner, A. Lerf, M. Winter, J.O. Besenhard, S. Villar-Rodil, F. Suarez-Garcia, A. Martinez-Alonso, and J.M.D. Tascon, Nomex-Derived Activated Carbon Fibers as Electrode Materials in Carbon Based Supercapacitors, J. Power Sources, 2006, 153(2), p 419–423CrossRef
20.
Zurück zum Zitat Y. Huang, Y. Zhao, Q. Gong, M. Weng, J. Bai, X. Liu, Y. Jiang, J. Wang, D. Wang, Y. Shao, and M. Zhao, Experimental and Correlative Analyses of the Ageing Mechanism of Activated Carbon Based Supercapacitor, Electrochim. Acta, 2017, 228, p 214–225CrossRef Y. Huang, Y. Zhao, Q. Gong, M. Weng, J. Bai, X. Liu, Y. Jiang, J. Wang, D. Wang, Y. Shao, and M. Zhao, Experimental and Correlative Analyses of the Ageing Mechanism of Activated Carbon Based Supercapacitor, Electrochim. Acta, 2017, 228, p 214–225CrossRef
21.
Zurück zum Zitat H. Xia, Y.S. Meng, G. Yuan, C. Cui, and L. Lu, A Symmetric RuO2/RuO2 Supercapacitor Operating at 1.6 V by Using a Neutral Aqueous Electrolyte, Electrochem. Solid State Lett., 2012, 15(4), p A60CrossRef H. Xia, Y.S. Meng, G. Yuan, C. Cui, and L. Lu, A Symmetric RuO2/RuO2 Supercapacitor Operating at 1.6 V by Using a Neutral Aqueous Electrolyte, Electrochem. Solid State Lett., 2012, 15(4), p A60CrossRef
22.
Zurück zum Zitat O. Ghodbane, J.L. Pascal, and F. Favier, Microstructural Effects on Charge-Storage Properties in MnO2-Based Electrochemical Supercapacitors, ACS Appl. Mater. Interfaces, 2009, 1(5), p 1130–1139CrossRef O. Ghodbane, J.L. Pascal, and F. Favier, Microstructural Effects on Charge-Storage Properties in MnO2-Based Electrochemical Supercapacitors, ACS Appl. Mater. Interfaces, 2009, 1(5), p 1130–1139CrossRef
23.
Zurück zum Zitat M. Sadakane and E. Steckhan, Electrochemical Properties of Polyoxometalates as Electrocatalysts, Chem. Rev., 1998, 98(1), p 219–238CrossRef M. Sadakane and E. Steckhan, Electrochemical Properties of Polyoxometalates as Electrocatalysts, Chem. Rev., 1998, 98(1), p 219–238CrossRef
24.
Zurück zum Zitat J. Hu, Y. Ji, W. Chen, C. Streb, and Y.F. Song, “Wiring” Redox-Active Polyoxometalates to Carbon Nanotubes Using a Sonication-Driven Periodic Functionalization Strategy, Energy Environ. Sci., 2016, 9(3), p 1095–1101CrossRef J. Hu, Y. Ji, W. Chen, C. Streb, and Y.F. Song, “Wiring” Redox-Active Polyoxometalates to Carbon Nanotubes Using a Sonication-Driven Periodic Functionalization Strategy, Energy Environ. Sci., 2016, 9(3), p 1095–1101CrossRef
25.
Zurück zum Zitat S. Kumari, S. Maity, A.A. Vannathan, D. Shee, P.P. Das, and S. Mal, Improved Electrochemical Performance of Graphene Oxide Supported Vanadomanganate (IV) Nanohybrid Electrode Material for Supercapacitors, Ceram. Int., 2020, 46(3), p 3028–3035CrossRef S. Kumari, S. Maity, A.A. Vannathan, D. Shee, P.P. Das, and S. Mal, Improved Electrochemical Performance of Graphene Oxide Supported Vanadomanganate (IV) Nanohybrid Electrode Material for Supercapacitors, Ceram. Int., 2020, 46(3), p 3028–3035CrossRef
26.
Zurück zum Zitat E. Ni, S. Uematsu, Z. Quan, and N. Sonoyama, Improved Electrochemical Property of Nanoparticle Polyoxovanadate K7NiV13O38 as Cathode Material for Lithium Battery, J. Nanopart. Res., 2013, 15(6), p 1732CrossRef E. Ni, S. Uematsu, Z. Quan, and N. Sonoyama, Improved Electrochemical Property of Nanoparticle Polyoxovanadate K7NiV13O38 as Cathode Material for Lithium Battery, J. Nanopart. Res., 2013, 15(6), p 1732CrossRef
27.
Zurück zum Zitat A. Afif, S.M. Rahman, A.T. Azad, J. Zaini, M.A. Islan, and A.K. Azad, Advanced Materials and Technologies for Hybrid Supercapacitors for Energy Storage—A Review, J. Energy Storage, 2019, 25, p 100852CrossRef A. Afif, S.M. Rahman, A.T. Azad, J. Zaini, M.A. Islan, and A.K. Azad, Advanced Materials and Technologies for Hybrid Supercapacitors for Energy Storage—A Review, J. Energy Storage, 2019, 25, p 100852CrossRef
28.
Zurück zum Zitat S. Najib and E. Erdem, Current Progress Achieved in Novel Materials for Supercapacitor Electrodes: Mini Review, Nanoscale Adv., 2019, 1(8), p 2817–2827CrossRef S. Najib and E. Erdem, Current Progress Achieved in Novel Materials for Supercapacitor Electrodes: Mini Review, Nanoscale Adv., 2019, 1(8), p 2817–2827CrossRef
29.
Zurück zum Zitat A.K. Cuentas-Gallegos, R. Martínez-Rosales, M. Baibarac, P. Gomez-Romero, and M.E. Rincón, Electrochemical Supercapacitors Based on Novel Hybrid Materials Made of Carbon Nanotubes and Polyoxometalates, Electrochem. Commun., 2007, 9(8), p 2088–2092CrossRef A.K. Cuentas-Gallegos, R. Martínez-Rosales, M. Baibarac, P. Gomez-Romero, and M.E. Rincón, Electrochemical Supercapacitors Based on Novel Hybrid Materials Made of Carbon Nanotubes and Polyoxometalates, Electrochem. Commun., 2007, 9(8), p 2088–2092CrossRef
30.
Zurück zum Zitat J.J. Chen, M.D. Symes, S.C. Fan, M.S. Zheng, H.N. Miras, Q.F. Dong, and L. Cronin, High-Performance Polyoxometalate-Based Cathode Materials for Rechargeable Lithium-Ion Batteries, Adv. Mater., 2015, 27(31), p 4649–4654CrossRef J.J. Chen, M.D. Symes, S.C. Fan, M.S. Zheng, H.N. Miras, Q.F. Dong, and L. Cronin, High-Performance Polyoxometalate-Based Cathode Materials for Rechargeable Lithium-Ion Batteries, Adv. Mater., 2015, 27(31), p 4649–4654CrossRef
31.
Zurück zum Zitat X. Sang, X. Xu, L. Bian, X. Liu, and Y. Wang, The Loading of Polyoxometalates Based Compound on Reduced Graphene Oxide, a Composite Material for Electrical Energy Storage and Tetracycline Removal, Solid State Sci., 2018, 83, p 8–16CrossRef X. Sang, X. Xu, L. Bian, X. Liu, and Y. Wang, The Loading of Polyoxometalates Based Compound on Reduced Graphene Oxide, a Composite Material for Electrical Energy Storage and Tetracycline Removal, Solid State Sci., 2018, 83, p 8–16CrossRef
32.
Zurück zum Zitat C.C. Lin, W.H. Lin, S.C. Huang, C.W. Hu, T.Y. Chen, C.T. Hsu, H. Yang, A. Haider, Z. Lin, U. Kortz, and U. Stimming, Mechanism of Sodium Ion Storage in Na7 [H2PV14O42] Anode for Sodium-Ion Batteries, Adv. Mater. Interfaces, 2018, 5(15), p 1800491CrossRef C.C. Lin, W.H. Lin, S.C. Huang, C.W. Hu, T.Y. Chen, C.T. Hsu, H. Yang, A. Haider, Z. Lin, U. Kortz, and U. Stimming, Mechanism of Sodium Ion Storage in Na7 [H2PV14O42] Anode for Sodium-Ion Batteries, Adv. Mater. Interfaces, 2018, 5(15), p 1800491CrossRef
33.
Zurück zum Zitat D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, and J.M. Tour, Improved Synthesis of Graphene Oxide, ACS Nano, 2010, 4(8), p 4806–4814CrossRef D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, and J.M. Tour, Improved Synthesis of Graphene Oxide, ACS Nano, 2010, 4(8), p 4806–4814CrossRef
34.
Zurück zum Zitat S. Jana, N. Singh, A.S. Bhattacharyya, and G.P. Singh, Synthesis of Self-Assembled rGO-Co3O4 Nanoparticles in Nanorods Structure for Supercapacitor Application, J. Mater. Eng. Perform., 2018, 27(6), p 2741–2746CrossRef S. Jana, N. Singh, A.S. Bhattacharyya, and G.P. Singh, Synthesis of Self-Assembled rGO-Co3O4 Nanoparticles in Nanorods Structure for Supercapacitor Application, J. Mater. Eng. Perform., 2018, 27(6), p 2741–2746CrossRef
35.
Zurück zum Zitat T. Liu, L. Li, L. Zhang, B. Cheng, W. You, and J. Yu, 0D/2D (Fe0. 5Ni0. 5) S2/rGO Nanocomposite with Enhanced Supercapacitor and Lithium Ion Battery Performance, J. Power Sources, 2019, 426, p 266–274CrossRef T. Liu, L. Li, L. Zhang, B. Cheng, W. You, and J. Yu, 0D/2D (Fe0. 5Ni0. 5) S2/rGO Nanocomposite with Enhanced Supercapacitor and Lithium Ion Battery Performance, J. Power Sources, 2019, 426, p 266–274CrossRef
36.
Zurück zum Zitat H.Y. Chen, G. Wee, R. Al-Oweini, J. Friedl, K.S. Tan, Y. Wang, C.L. Wong, U. Kortz, U. Stimming, and M. Srinivasan, A Polyoxovanadate as an Advanced Electrode Material for Supercapacitors, ChemPhysChem, 2014, 15, p 2162–2169CrossRef H.Y. Chen, G. Wee, R. Al-Oweini, J. Friedl, K.S. Tan, Y. Wang, C.L. Wong, U. Kortz, U. Stimming, and M. Srinivasan, A Polyoxovanadate as an Advanced Electrode Material for Supercapacitors, ChemPhysChem, 2014, 15, p 2162–2169CrossRef
Metadaten
Titel
Enhanced Power Density of Graphene Oxide–Phosphotetradecavanadate Nanohybrid for Supercapacitor Electrode
verfasst von
Sukanya Maity
Anjana Anandan Vannathan
Kiran Kumar
Partha Pratim Das
Sib Sankar Mal
Publikationsdatum
05.01.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 2/2021
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-05349-w

Weitere Artikel der Ausgabe 2/2021

Journal of Materials Engineering and Performance 2/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.