Skip to main content
Erschienen in: Journal of Materials Science 2/2015

01.01.2015 | Original Paper

Enhancement of the power conversion efficiency of polymer solar cells by incorporating PbSe quantum dots

verfasst von: Zhixiao Li, Haowei Wang, Dan Yang, Li Zhang, Yishan Wang, Taojian Song, Chunjie Fu, Hongyu Zhang, Shengyi Yang, Bingsuo Zou

Erschienen in: Journal of Materials Science | Ausgabe 2/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

By expanding the absorption into infrared region, we have successfully demonstrated an enhanced efficiency of polymer solar cells by incorporating lead selenide (PbSe) colloidal quantum dots into copolymers of [poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM)] as active layer. The influence of inorganic ligands and the post-annealing conditions on device performance has been investigated in detail. After optimization of these parameters, a maximum power conversion efficiency of 3.31 % is obtained from solar cell indium tin oxide (ITO)/poly(3,4-ethylendioxy thiophene):poly(styrenesulfonate) (PEDOT:PSS)/P3HT:PCBM:PbSe/Al under AM 1.5 and it has been improved by 14.5 % as compared with the control device ITO/PEDOT:PSS/P3HT:PCBM/Al.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kim SJ, Kim WJ, Cartwright AN, Prasad PN (2009) Self-passivating hybrid (organic/inorganic) tandem solar cell. Sol Energy Mater Sol Cells 93:657–661CrossRef Kim SJ, Kim WJ, Cartwright AN, Prasad PN (2009) Self-passivating hybrid (organic/inorganic) tandem solar cell. Sol Energy Mater Sol Cells 93:657–661CrossRef
2.
Zurück zum Zitat Brabec CJ (2004) Organic photovoltaics: technology and market. Sol Energy Mater Sol Cells 83:273–292CrossRef Brabec CJ (2004) Organic photovoltaics: technology and market. Sol Energy Mater Sol Cells 83:273–292CrossRef
3.
Zurück zum Zitat Ni T, Zou F, Jiang YR, Yang SY (2014) To improve the efficiency of bulk heterojunction organic solar cells by incorporating CdSe/ZnS quantum dots. Acta Phys Chim Sin 3:453–459 Ni T, Zou F, Jiang YR, Yang SY (2014) To improve the efficiency of bulk heterojunction organic solar cells by incorporating CdSe/ZnS quantum dots. Acta Phys Chim Sin 3:453–459
4.
Zurück zum Zitat Kim JY, Lee K, Coates NE, Moses D, Nguyen TQ, Dante M, Heeger AJ (2007) Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317:222–225CrossRef Kim JY, Lee K, Coates NE, Moses D, Nguyen TQ, Dante M, Heeger AJ (2007) Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317:222–225CrossRef
5.
Zurück zum Zitat Wang LD, Zhao DX, Su ZS, Li BH, Zhang ZZ, Shen DZ (2011) Enhanced efficiency of polymer/ZnO nanorods hybrid solar cell sensitized by CdS quantum dots. J Electrochem Soc 158:H804–H807CrossRef Wang LD, Zhao DX, Su ZS, Li BH, Zhang ZZ, Shen DZ (2011) Enhanced efficiency of polymer/ZnO nanorods hybrid solar cell sensitized by CdS quantum dots. J Electrochem Soc 158:H804–H807CrossRef
6.
Zurück zum Zitat Reyes-Reyes M, Kim K, Carroll DL (2005) High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C[sub 61] blends. Appl Phys Lett 87:083503–083506CrossRef Reyes-Reyes M, Kim K, Carroll DL (2005) High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C[sub 61] blends. Appl Phys Lett 87:083503–083506CrossRef
7.
Zurück zum Zitat Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270:1789–1791CrossRef Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270:1789–1791CrossRef
8.
Zurück zum Zitat Carey GH, Chou KW, Yan BY, Kirmani AR, Amassian A, Sargent EH (2013) Materials processing strategies for colloidal quantum dot solar cells: advances, present-day limitations, and pathways to improvement. MRS Commun 3:83–90CrossRef Carey GH, Chou KW, Yan BY, Kirmani AR, Amassian A, Sargent EH (2013) Materials processing strategies for colloidal quantum dot solar cells: advances, present-day limitations, and pathways to improvement. MRS Commun 3:83–90CrossRef
9.
Zurück zum Zitat Bundgaard E, Krebs FC (2007) Low band gap polymers for organic photovoltaics. Sol Energy Mater Sol Cells 91:954–985CrossRef Bundgaard E, Krebs FC (2007) Low band gap polymers for organic photovoltaics. Sol Energy Mater Sol Cells 91:954–985CrossRef
10.
Zurück zum Zitat Gunes S, Neugebauer H, Sariciftci NS (2012) Conjugated polymer-based organic solar cells. Chem Rev 107:1324–1338CrossRef Gunes S, Neugebauer H, Sariciftci NS (2012) Conjugated polymer-based organic solar cells. Chem Rev 107:1324–1338CrossRef
11.
Zurück zum Zitat Dou LT, You JB, Yang J, Chen CC (2012) A polymer tandem solar cell with 10.6 % power conversion efficiency. Nat Commun 4:1446-10 Dou LT, You JB, Yang J, Chen CC (2012) A polymer tandem solar cell with 10.6 % power conversion efficiency. Nat Commun 4:1446-10
12.
Zurück zum Zitat Landi BJ, Castro SL, Ruf HJ, Evans CM, Bailey SG, Raffaelle RP (2005) CdSe quantum dot-single wall carbon nanotube complexes for polymeric solar cells. Sol Energy Mater Sol Cells 87:733–746CrossRef Landi BJ, Castro SL, Ruf HJ, Evans CM, Bailey SG, Raffaelle RP (2005) CdSe quantum dot-single wall carbon nanotube complexes for polymeric solar cells. Sol Energy Mater Sol Cells 87:733–746CrossRef
13.
Zurück zum Zitat Zhang JB, Gao JB, Miller EM, Luther JM, Beard MC (2014) Diffusion-controlled synthesis of PbS and PbSe quantum dots with in situ halide passivation for quantum dot solar cells. ACS Nano 8(1):614–622CrossRef Zhang JB, Gao JB, Miller EM, Luther JM, Beard MC (2014) Diffusion-controlled synthesis of PbS and PbSe quantum dots with in situ halide passivation for quantum dot solar cells. ACS Nano 8(1):614–622CrossRef
14.
Zurück zum Zitat Peng YC, Fu GP (2009) Approach to quantum dot solar cells. Chinese. J Mater Res Chin J Mater Res 5:449–457 Peng YC, Fu GP (2009) Approach to quantum dot solar cells. Chinese. J Mater Res Chin J Mater Res 5:449–457
15.
Zurück zum Zitat Chuang CHM, Brown PR, Bulović V, Bawendi MG (2014) Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat Mater 13:796–801CrossRef Chuang CHM, Brown PR, Bulović V, Bawendi MG (2014) Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat Mater 13:796–801CrossRef
16.
Zurück zum Zitat Semonin OE, Luther JM, Choi S, Chen HY, Gao JB, Nozik AJ, Beard MC (2011) Peak external photocurrent quantum efficiency exceeding 100 % via MEG in a quantum dot solar cell. Science 334:1530–1533CrossRef Semonin OE, Luther JM, Choi S, Chen HY, Gao JB, Nozik AJ, Beard MC (2011) Peak external photocurrent quantum efficiency exceeding 100 % via MEG in a quantum dot solar cell. Science 334:1530–1533CrossRef
17.
Zurück zum Zitat Ip AH, Thon SM, Hoogland S, Voznyy O, Zhitomirsky D, Debnath R, Levina L, Rollny LR, Carey GH, Fischer A (2012) Hybrid passivated colloidal quantum dot solids. Nat Nanotechnol 7:577–582CrossRef Ip AH, Thon SM, Hoogland S, Voznyy O, Zhitomirsky D, Debnath R, Levina L, Rollny LR, Carey GH, Fischer A (2012) Hybrid passivated colloidal quantum dot solids. Nat Nanotechnol 7:577–582CrossRef
18.
Zurück zum Zitat Gao J, Perkins CL, Luther JM, Hanna MC, Chen HY, Semonin OE, Nozik AJ, Ellingson RJ, Beard MC (2011) n-Type transition metal oxide as a hole extraction layer in PbS quantum dot solar cells. Nano Lett 11:3263–3266CrossRef Gao J, Perkins CL, Luther JM, Hanna MC, Chen HY, Semonin OE, Nozik AJ, Ellingson RJ, Beard MC (2011) n-Type transition metal oxide as a hole extraction layer in PbS quantum dot solar cells. Nano Lett 11:3263–3266CrossRef
19.
Zurück zum Zitat Luther JM, Law M, Beard MC, Song Q, Reese MO, Ellingson RJ, Nozik AJ (2008) Schottky solar cells based on colloidal nanocrystal films. Nano Lett 8:3488–3492CrossRef Luther JM, Law M, Beard MC, Song Q, Reese MO, Ellingson RJ, Nozik AJ (2008) Schottky solar cells based on colloidal nanocrystal films. Nano Lett 8:3488–3492CrossRef
20.
Zurück zum Zitat Luther JM, Gao JB, Lloyd MT, Semonin OE, Beard MC, Nozik AJ (2010) Stability assessment on a 3 % bilayer PbS/ZnO quantum dot heterojunction solar cell. Adv Mater 22:3704–3707CrossRef Luther JM, Gao JB, Lloyd MT, Semonin OE, Beard MC, Nozik AJ (2010) Stability assessment on a 3 % bilayer PbS/ZnO quantum dot heterojunction solar cell. Adv Mater 22:3704–3707CrossRef
21.
Zurück zum Zitat Clifford JP, Konstantatos G, Johnston KW, Hoogland S, Levina L, Sargent EH (2009) Sensitive and spectrally tuneable colloidal quantum-dot photodetectors. Nat Nanotechnol 4:40–44CrossRef Clifford JP, Konstantatos G, Johnston KW, Hoogland S, Levina L, Sargent EH (2009) Sensitive and spectrally tuneable colloidal quantum-dot photodetectors. Nat Nanotechnol 4:40–44CrossRef
22.
Zurück zum Zitat Sukhovatkin V, Hinds S, Brzozowski L, Sargent EH (2009) Colloidal quantum-dot photodetectors exploiting multiexciton generation. Science 324:1542–1544CrossRef Sukhovatkin V, Hinds S, Brzozowski L, Sargent EH (2009) Colloidal quantum-dot photodetectors exploiting multiexciton generation. Science 324:1542–1544CrossRef
23.
Zurück zum Zitat Bae WK, Joo J, Padilha LA, Won J, Lee DC, Lin Q, Koh WK, Luo H, Klimov VI, Pietryga JM (2012) Highly effective surface passivation of pbse quantum dots through reaction with molecular chlorine. J Am Chem Soc 134:20160–20168CrossRef Bae WK, Joo J, Padilha LA, Won J, Lee DC, Lin Q, Koh WK, Luo H, Klimov VI, Pietryga JM (2012) Highly effective surface passivation of pbse quantum dots through reaction with molecular chlorine. J Am Chem Soc 134:20160–20168CrossRef
24.
Zurück zum Zitat Tang J, Kemp KW, Hoogland S, Jeong KS, Liu H, Levina L, Furukawa M, Wang XH, Debnath R, Cha D, Chou KW, Fischer A, Amassian A, Asbury JB, Sargent EH (2011) Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat Mater 10:765–771CrossRef Tang J, Kemp KW, Hoogland S, Jeong KS, Liu H, Levina L, Furukawa M, Wang XH, Debnath R, Cha D, Chou KW, Fischer A, Amassian A, Asbury JB, Sargent EH (2011) Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat Mater 10:765–771CrossRef
25.
Zurück zum Zitat Meng QL, Li FX, Xi X, Qian WN, Que LZ, Ji JJ, Ding YQ, Li GHJ (2010) Field emission election study of organic electroluminescent device. Synth Cryst 39:670–676 Meng QL, Li FX, Xi X, Qian WN, Que LZ, Ji JJ, Ding YQ, Li GHJ (2010) Field emission election study of organic electroluminescent device. Synth Cryst 39:670–676
26.
Zurück zum Zitat Ni T, Yan JY, Jiang YR, Zou F, Zhang L, Yang D, Wei JW, Yang SY, Zou BS (2014) Enhancement of the power conversion efficiency of polymer solar cells by functionalized single-walled carbon nanotubes decorated with CdSe/ZnS core–shell colloidal quantum dots. J Mater Sci 49:2571–2577. doi:10.1007/s10853-013-7953-x CrossRef Ni T, Yan JY, Jiang YR, Zou F, Zhang L, Yang D, Wei JW, Yang SY, Zou BS (2014) Enhancement of the power conversion efficiency of polymer solar cells by functionalized single-walled carbon nanotubes decorated with CdSe/ZnS core–shell colloidal quantum dots. J Mater Sci 49:2571–2577. doi:10.​1007/​s10853-013-7953-x CrossRef
27.
Zurück zum Zitat Yang SY, Zhao N, Zhang L, Zhong HZ, Liu RB, Zou BZ (2012) Field-effect transistor-based solution-processed colloidal quantum dot photodetector with broad bandwidth into near-infrared region. Nanotechnology 23:255203CrossRef Yang SY, Zhao N, Zhang L, Zhong HZ, Liu RB, Zou BZ (2012) Field-effect transistor-based solution-processed colloidal quantum dot photodetector with broad bandwidth into near-infrared region. Nanotechnology 23:255203CrossRef
28.
Zurück zum Zitat Lipovskii A, Kolobkova E, Petrikov V, Kang I, Olkhovets A, Krauss T, Thomas M, Silcox J, Wise F, Shen Q, Kycia S (1997) Synthesis and characterization of PbSe quantum dots in phosphate glass. Appl Phys Lett 71:3406–3408CrossRef Lipovskii A, Kolobkova E, Petrikov V, Kang I, Olkhovets A, Krauss T, Thomas M, Silcox J, Wise F, Shen Q, Kycia S (1997) Synthesis and characterization of PbSe quantum dots in phosphate glass. Appl Phys Lett 71:3406–3408CrossRef
29.
Zurück zum Zitat Gunawan AA, Chernomordik B, Plemmons D, Deng D, Aydil ES, Mkhoyan KA (2013) Ligands in PbSe nanocrystals: characterizations and plasmonic interactions. Microsc Microanal 19:1506–1507 Gunawan AA, Chernomordik B, Plemmons D, Deng D, Aydil ES, Mkhoyan KA (2013) Ligands in PbSe nanocrystals: characterizations and plasmonic interactions. Microsc Microanal 19:1506–1507
30.
Zurück zum Zitat Dixit SK, Madan S, Madhwal D, Kumar J, Singh I, Bhatia CS, Bhatnagar PK, Mathur PC (2012) Bulk heterojunction formation with induced concentration gradient from a bilayer structure of P3HT:CdSe/ZnS quantum dots using inter-diffusion process for developing high efficiency solar cell. Org Electron 13:710–714CrossRef Dixit SK, Madan S, Madhwal D, Kumar J, Singh I, Bhatia CS, Bhatnagar PK, Mathur PC (2012) Bulk heterojunction formation with induced concentration gradient from a bilayer structure of P3HT:CdSe/ZnS quantum dots using inter-diffusion process for developing high efficiency solar cell. Org Electron 13:710–714CrossRef
31.
Zurück zum Zitat Olek M, Bulsgen T, Hilgendorff M, Giersig M (2006) Quantum dot modified multiwall carbon nanotubes. J Phys Chem B 110:12901–12904CrossRef Olek M, Bulsgen T, Hilgendorff M, Giersig M (2006) Quantum dot modified multiwall carbon nanotubes. J Phys Chem B 110:12901–12904CrossRef
32.
Zurück zum Zitat Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, Jensen KF, Bawendi MG (1997) (CdSe)ZnS core–shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 101:9463–9475CrossRef Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, Jensen KF, Bawendi MG (1997) (CdSe)ZnS core–shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 101:9463–9475CrossRef
33.
Zurück zum Zitat Yan JY, Ni T, Zou F, Zhang L, Yang D, Yang SY, Zou BZ (2014) Towards optimization of functionalized single-walled carbon nanotubes adhering with poly(3-hexylthiophene) for highly efficient polymer solar cells. Diam Relat Mater 41:79–83CrossRef Yan JY, Ni T, Zou F, Zhang L, Yang D, Yang SY, Zou BZ (2014) Towards optimization of functionalized single-walled carbon nanotubes adhering with poly(3-hexylthiophene) for highly efficient polymer solar cells. Diam Relat Mater 41:79–83CrossRef
34.
Zurück zum Zitat Choi JJ, Lim YF, Santiago-Berrios MEB, Oh M, Hyun BR, Sun LF, Bartnik AC, Goedhart A, Malliaras GG, Abruna HD, Wise FW, Hanrath T (2009) PbSe nanocrystal excitonic solar cells. Nano Lett 11:3749–3755CrossRef Choi JJ, Lim YF, Santiago-Berrios MEB, Oh M, Hyun BR, Sun LF, Bartnik AC, Goedhart A, Malliaras GG, Abruna HD, Wise FW, Hanrath T (2009) PbSe nanocrystal excitonic solar cells. Nano Lett 11:3749–3755CrossRef
35.
Zurück zum Zitat Cho N, Choudhury KR, Thapa RB, Sahoo Y, Ohulchanskyy T, Cartwright AN, Lee KS, Prasad PN (2007) Photodetection at IR wavelengths by incorporation of PbSe–carbon-nanotube conjugates in a polymeric nanocomposite. Adv Mater 19:232–236CrossRef Cho N, Choudhury KR, Thapa RB, Sahoo Y, Ohulchanskyy T, Cartwright AN, Lee KS, Prasad PN (2007) Photodetection at IR wavelengths by incorporation of PbSe–carbon-nanotube conjugates in a polymeric nanocomposite. Adv Mater 19:232–236CrossRef
36.
Zurück zum Zitat Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4:864–868CrossRef Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4:864–868CrossRef
Metadaten
Titel
Enhancement of the power conversion efficiency of polymer solar cells by incorporating PbSe quantum dots
verfasst von
Zhixiao Li
Haowei Wang
Dan Yang
Li Zhang
Yishan Wang
Taojian Song
Chunjie Fu
Hongyu Zhang
Shengyi Yang
Bingsuo Zou
Publikationsdatum
01.01.2015
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 2/2015
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-014-8644-y

Weitere Artikel der Ausgabe 2/2015

Journal of Materials Science 2/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.