Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 2/2018

19.01.2018

Estimating the Contact Endurance of the AISI 321 Stainless Steel Under Contact Gigacycle Fatigue Tests

verfasst von: R. A. Savrai, A. V. Makarov, A. L. Osintseva, I. Yu. Malygina

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Mechanical testing of the AISI 321 corrosion resistant austenitic steel for contact gigacycle fatigue has been conducted with the application of a new method of contact fatigue testing with ultrasonic frequency of loading according to a pulsing impact “plane-to-plane” contact scheme. It has been found that the contact endurance (the ability to resist the fatigue spalling) of the AISI 321 steel under contact gigacycle fatigue loading is determined by its plasticity margin and the possibility of additional hardening under contact loading. It is demonstrated that the appearance of localized deep and long areas of spalling on a material surface can serve as a qualitative characteristic for the loss of the fatigue strength of the AISI 321 steel under impact contact fatigue loading. The value of surface microhardness measured within contact spots and the maximum depth of contact damages in the peripheral zone of contact spots can serve as quantitative criteria for that purpose.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat C. Bathias and P.C. Paris, Gigacycle Fatigue in Mechanical Practice, CRC Press, 2004, p. 328 C. Bathias and P.C. Paris, Gigacycle Fatigue in Mechanical Practice, CRC Press, 2004, p. 328
2.
Zurück zum Zitat C. He, C. Huang, Y. Liu, and Q. Wang, Fatigue Damage Evaluation of Low-Alloy Steel Welded Joints in Fusion Zone and Heat Affected Zone Based on Frequency Response Changes in Gigacycle Fatigue, Int. J. Fatigue, 2014, 61, p 297–303CrossRef C. He, C. Huang, Y. Liu, and Q. Wang, Fatigue Damage Evaluation of Low-Alloy Steel Welded Joints in Fusion Zone and Heat Affected Zone Based on Frequency Response Changes in Gigacycle Fatigue, Int. J. Fatigue, 2014, 61, p 297–303CrossRef
3.
Zurück zum Zitat C. Bathias, Coupling Effect of Plasticity, Thermal Dissipation and Metallurgical Stability in Ultrasonic Fatigue, Int. J. Fatigue, 2014, 60, p 18–22CrossRef C. Bathias, Coupling Effect of Plasticity, Thermal Dissipation and Metallurgical Stability in Ultrasonic Fatigue, Int. J. Fatigue, 2014, 60, p 18–22CrossRef
4.
Zurück zum Zitat Y. Furuya, Visualization of Internal Small Fatigue Crack Growth, Mater. Lett., 2013, 112, p 139–141CrossRef Y. Furuya, Visualization of Internal Small Fatigue Crack Growth, Mater. Lett., 2013, 112, p 139–141CrossRef
5.
Zurück zum Zitat Y. Furuya, K. Kobayashi, M. Hayakawa, M. Sakamoto, Y. Koizumi, and H. Harada, High-Temperature Ultrasonic Fatigue Testing of Single-Crystal Superalloys, Mater. Lett., 2012, 69, p 1–3CrossRef Y. Furuya, K. Kobayashi, M. Hayakawa, M. Sakamoto, Y. Koizumi, and H. Harada, High-Temperature Ultrasonic Fatigue Testing of Single-Crystal Superalloys, Mater. Lett., 2012, 69, p 1–3CrossRef
6.
Zurück zum Zitat C. Wang, D. Wagner, Q.Y. Wang, and C. Bathias, Gigacycle Fatigue Initiation Mechanism in Armco Iron, Int. J. Fatigue, 2012, 45, p 91–97CrossRef C. Wang, D. Wagner, Q.Y. Wang, and C. Bathias, Gigacycle Fatigue Initiation Mechanism in Armco Iron, Int. J. Fatigue, 2012, 45, p 91–97CrossRef
7.
Zurück zum Zitat Z. Duan, H. Shi, and X. Ma, Fish-Eye Shape Prediction with Gigacycle Fatigue Failure, Fatigue Fract. Eng. Mater. Struct., 2011, 34, p 832–837CrossRef Z. Duan, H. Shi, and X. Ma, Fish-Eye Shape Prediction with Gigacycle Fatigue Failure, Fatigue Fract. Eng. Mater. Struct., 2011, 34, p 832–837CrossRef
8.
Zurück zum Zitat Y. Furuya, Size Effects in Gigacycle Fatigue of High-Strength Steel Under Ultrasonic Fatigue Testing, Procedia Eng., 2010, 2, p 485–490CrossRef Y. Furuya, Size Effects in Gigacycle Fatigue of High-Strength Steel Under Ultrasonic Fatigue Testing, Procedia Eng., 2010, 2, p 485–490CrossRef
9.
Zurück zum Zitat H.Q. Xue and C. Bathias, Crack Path in Torsion Loading in Very High Cycle Fatigue Regime, Eng. Fract. Mech., 2010, 77, p 1866–1873CrossRef H.Q. Xue and C. Bathias, Crack Path in Torsion Loading in Very High Cycle Fatigue Regime, Eng. Fract. Mech., 2010, 77, p 1866–1873CrossRef
10.
Zurück zum Zitat T. Palin-Luc, R. Pérez-Mora, C. Bathias, G. Domínguez, P.C. Paris, and J.L. Arana, Fatigue Crack Initiation and Growth on a Steel in the Very High Cycle Regime with Sea Water Corrosion, Eng. Fract. Mech., 2010, 77, p 1953–1962CrossRef T. Palin-Luc, R. Pérez-Mora, C. Bathias, G. Domínguez, P.C. Paris, and J.L. Arana, Fatigue Crack Initiation and Growth on a Steel in the Very High Cycle Regime with Sea Water Corrosion, Eng. Fract. Mech., 2010, 77, p 1953–1962CrossRef
11.
Zurück zum Zitat D. Wagner, N. Ranc, C. Bathias, and P.C. Paris, Fatigue Crack Initiation Detection by an Infrared Thermography Method, Fatigue Fract. Eng. Mater. Struct., 2010, 33, p 12–21 D. Wagner, N. Ranc, C. Bathias, and P.C. Paris, Fatigue Crack Initiation Detection by an Infrared Thermography Method, Fatigue Fract. Eng. Mater. Struct., 2010, 33, p 12–21
12.
Zurück zum Zitat N. Ranc, D. Wagner, and P.C. Paris, Study of Thermal Effects Associated with Crack Propagation During very High Cycle Fatigue Tests, Acta Mater., 2008, 56, p 4012–4021CrossRef N. Ranc, D. Wagner, and P.C. Paris, Study of Thermal Effects Associated with Crack Propagation During very High Cycle Fatigue Tests, Acta Mater., 2008, 56, p 4012–4021CrossRef
13.
Zurück zum Zitat J. Zhang, W. Li, Q. Song, N. Zhang, and L. Lu, Fatigue of Austempered Ductile Iron with Two Strength Grades in Very High Cycle Regime, J. Mater. Eng. Perform., 2016, 25(3), p 744–749CrossRef J. Zhang, W. Li, Q. Song, N. Zhang, and L. Lu, Fatigue of Austempered Ductile Iron with Two Strength Grades in Very High Cycle Regime, J. Mater. Eng. Perform., 2016, 25(3), p 744–749CrossRef
14.
Zurück zum Zitat A. Tridello, D.S. Paolino, G. Chiandussi, and M. Rossetto, Gaussian Specimens for Gigacycle Fatigue Tests: Damping Effects, Procedia Eng., 2014, 74, p 113–118CrossRef A. Tridello, D.S. Paolino, G. Chiandussi, and M. Rossetto, Gaussian Specimens for Gigacycle Fatigue Tests: Damping Effects, Procedia Eng., 2014, 74, p 113–118CrossRef
15.
Zurück zum Zitat R.A. Savrai, A.V. Makarov, N.N. Soboleva, I.Yu. Malygina, and A.L. Osintseva, The Behavior of Gas Powder Laser Clad NiCrBSi Coatings Under Contact Loading, J. Mater. Eng. Perform., 2016, 25(3), p 1068–1075CrossRef R.A. Savrai, A.V. Makarov, N.N. Soboleva, I.Yu. Malygina, and A.L. Osintseva, The Behavior of Gas Powder Laser Clad NiCrBSi Coatings Under Contact Loading, J. Mater. Eng. Perform., 2016, 25(3), p 1068–1075CrossRef
16.
Zurück zum Zitat I.A. Bataev, A.A. Bataev, M.G. Golkovski, D.S. Krivizhenko, A.A. Losinskaya, and O.G. Lenivtseva, Structure of Surface Layers Produced by Non-vacuum Electron Beam Boriding, Appl. Surf. Sci., 2013, 284, p 472–481CrossRef I.A. Bataev, A.A. Bataev, M.G. Golkovski, D.S. Krivizhenko, A.A. Losinskaya, and O.G. Lenivtseva, Structure of Surface Layers Produced by Non-vacuum Electron Beam Boriding, Appl. Surf. Sci., 2013, 284, p 472–481CrossRef
17.
Zurück zum Zitat G. Ramírez, A. Mestra, B. Casas, I. Valls, R. Martínez, R. Bueno, A. Góez, A. Mateo, and L. Llanes, Influence of Substrate Microstructure on the Contact Fatigue Strength of Coated Cold-Work Tool Steels, Surf. Coat. Technol., 2012, 206, p 3069–3081CrossRef G. Ramírez, A. Mestra, B. Casas, I. Valls, R. Martínez, R. Bueno, A. Góez, A. Mateo, and L. Llanes, Influence of Substrate Microstructure on the Contact Fatigue Strength of Coated Cold-Work Tool Steels, Surf. Coat. Technol., 2012, 206, p 3069–3081CrossRef
18.
Zurück zum Zitat A. Yonezu, B. Xu, and X. Chen, An Experimental Methodology for Characterizing Fracture of Hard Thin films Under Cyclic Contact Loading, Thin Solid Films, 2010, 518, p 2082–2089CrossRef A. Yonezu, B. Xu, and X. Chen, An Experimental Methodology for Characterizing Fracture of Hard Thin films Under Cyclic Contact Loading, Thin Solid Films, 2010, 518, p 2082–2089CrossRef
19.
Zurück zum Zitat E. Tarrés, G. Ramírez, Y. Gaillard, E. Jiménez-Piqué, and L. Llanes, Contact Fatigue Behavior of PVD-Coated Hardmetals, Int. J. Refract. Met. Hard Mat., 2009, 27, p 323–331CrossRef E. Tarrés, G. Ramírez, Y. Gaillard, E. Jiménez-Piqué, and L. Llanes, Contact Fatigue Behavior of PVD-Coated Hardmetals, Int. J. Refract. Met. Hard Mat., 2009, 27, p 323–331CrossRef
20.
Zurück zum Zitat H.-J. Jang, D.-H. Park, Y.-G. Jung, J.-C. Jang, S.-C. Choi, and U. Paik, Mechanical Characterization and Thermal Behavior of HVOF-Sprayed Bond Coat in Thermal Barrier Coatings (TBCs), Surf. Coat. Technol., 2006, 200, p 4355–4362CrossRef H.-J. Jang, D.-H. Park, Y.-G. Jung, J.-C. Jang, S.-C. Choi, and U. Paik, Mechanical Characterization and Thermal Behavior of HVOF-Sprayed Bond Coat in Thermal Barrier Coatings (TBCs), Surf. Coat. Technol., 2006, 200, p 4355–4362CrossRef
21.
Zurück zum Zitat L.I. Tushinskii, V.A. Bataev, V.M. Potapov, A.A. Bataev, and A.P. Timofeev, Life of Hardened Materials Under the Conditions of Contact Load, Met. Sci. Heat Treat., 1988, 30(5), p 363–365CrossRef L.I. Tushinskii, V.A. Bataev, V.M. Potapov, A.A. Bataev, and A.P. Timofeev, Life of Hardened Materials Under the Conditions of Contact Load, Met. Sci. Heat Treat., 1988, 30(5), p 363–365CrossRef
22.
Zurück zum Zitat G. Ramírez, E. Jiménez-Piqué, A. Mestra, M. Vilaseca, D. Casellas, and L. Llanes, A Comparative Study of the Contact Fatigue Behavior and Associated Damage Micromechanisms of TiN- and WC:H-Coated Cold-Work Tool Steel, Tribol. Int., 2015, 88, p 263–270CrossRef G. Ramírez, E. Jiménez-Piqué, A. Mestra, M. Vilaseca, D. Casellas, and L. Llanes, A Comparative Study of the Contact Fatigue Behavior and Associated Damage Micromechanisms of TiN- and WC:H-Coated Cold-Work Tool Steel, Tribol. Int., 2015, 88, p 263–270CrossRef
23.
Zurück zum Zitat Y. Lin, J. Wang, D. Zeng, R. Huang, and H. Fan, Advance Complex Liquid Nitriding of Stainless Steel AISI, 321 Surface at 430 °C, J. Mater. Eng. Perform., 2013, 22(9), p 2567–2573CrossRef Y. Lin, J. Wang, D. Zeng, R. Huang, and H. Fan, Advance Complex Liquid Nitriding of Stainless Steel AISI, 321 Surface at 430 °C, J. Mater. Eng. Perform., 2013, 22(9), p 2567–2573CrossRef
24.
Zurück zum Zitat S.M. Levcovici, D.T. Levcovici, V. Munteanu, M.M. Paraschiv, and A. Preda, Laser Surface Hardening of Austenitic Stainless Steel, J. Mater. Eng. Perform., 2000, 9(5), p 536–540CrossRef S.M. Levcovici, D.T. Levcovici, V. Munteanu, M.M. Paraschiv, and A. Preda, Laser Surface Hardening of Austenitic Stainless Steel, J. Mater. Eng. Perform., 2000, 9(5), p 536–540CrossRef
25.
Zurück zum Zitat M. Golzar Shahri, M. Salehi, S.R. Hosseini, and M. Naderi, Effect of Nanostructured Grains on Martensite Formation During Plasma Nitriding of AISI 321 Austenitic Stainless Steel, Surf. Coat. Technol., 2017, 310, p 231–238CrossRef M. Golzar Shahri, M. Salehi, S.R. Hosseini, and M. Naderi, Effect of Nanostructured Grains on Martensite Formation During Plasma Nitriding of AISI 321 Austenitic Stainless Steel, Surf. Coat. Technol., 2017, 310, p 231–238CrossRef
26.
Zurück zum Zitat L.M. Zamaraev, S.V. Smirnov, and P.P. Matafonov, Investigation of the Thermal Fatigue Life of Steel 12Kh18N10T in Hydrogen and Air Media, J. Mach. Manuf. Reliab., 2008, 37(2), p 139–142CrossRef L.M. Zamaraev, S.V. Smirnov, and P.P. Matafonov, Investigation of the Thermal Fatigue Life of Steel 12Kh18N10T in Hydrogen and Air Media, J. Mach. Manuf. Reliab., 2008, 37(2), p 139–142CrossRef
27.
Zurück zum Zitat A.V. Dobromyslov and N.I. Taluts, Элeктpoннo-микpocкoпичecкoe иccлeдoвaниe дeфopмaциoннoй cтpyктypы cтaли 12X18H10T пocлe взpывнoгo нaгpyжeния в cфepичecкиx cиcтeмax (An Electron-Microscopic Study of the Deformation Structure of the 12KH18N10T Steel After Explosive Loading in Spherical Systems), Diagn. Resour. Mech. Mater. Struct., 2015, https://doi.org/10.17804/2410-9908.2015.5.109-117 (in Russian) A.V. Dobromyslov and N.I. Taluts, Элeктpoннo-микpocкoпичecкoe иccлeдoвaниe дeфopмaциoннoй cтpyктypы cтaли 12X18H10T пocлe взpывнoгo нaгpyжeния в cфepичecкиx cиcтeмax (An Electron-Microscopic Study of the Deformation Structure of the 12KH18N10T Steel After Explosive Loading in Spherical Systems), Diagn. Resour. Mech. Mater. Struct., 2015, https://​doi.​org/​10.​17804/​2410-9908.​2015.​5.​109-117 (in Russian)
28.
Zurück zum Zitat A.A. Tiamiyu, M. Eskandari, M. Nezakat, X. Wang, J.A. Szpunar, and A.G. Odeshi, A Comparative Study of the Compressive Behaviour of AISI 321 Austenitic Stainless Steel Under Quasi-Static and Dynamic Shock Loading, Mater. Des., 2016, 112, p 309–319CrossRef A.A. Tiamiyu, M. Eskandari, M. Nezakat, X. Wang, J.A. Szpunar, and A.G. Odeshi, A Comparative Study of the Compressive Behaviour of AISI 321 Austenitic Stainless Steel Under Quasi-Static and Dynamic Shock Loading, Mater. Des., 2016, 112, p 309–319CrossRef
29.
Zurück zum Zitat X.C. Zhang, B.S. Xu, F.Z. Xuan, Z.D. Wang, and S.T. Tu, Failure Mode and Fatigue Mechanism of Laser-Remelted Plasma-Sprayed Ni Alloy Coatings in Rolling Contact, Surf. Coat. Technol., 2011, 205(10), p 3119–3127CrossRef X.C. Zhang, B.S. Xu, F.Z. Xuan, Z.D. Wang, and S.T. Tu, Failure Mode and Fatigue Mechanism of Laser-Remelted Plasma-Sprayed Ni Alloy Coatings in Rolling Contact, Surf. Coat. Technol., 2011, 205(10), p 3119–3127CrossRef
30.
Zurück zum Zitat J.-S. Xu, X.-C. Zhang, F.-Z. Xuan, Z.-D. Wang, and S.-T. Tu, Rolling Contact Fatigue Behavior of Laser Cladded WC/Ni Composite Coating, Surf. Coat. Technol., 2014, 239, p 7–15CrossRef J.-S. Xu, X.-C. Zhang, F.-Z. Xuan, Z.-D. Wang, and S.-T. Tu, Rolling Contact Fatigue Behavior of Laser Cladded WC/Ni Composite Coating, Surf. Coat. Technol., 2014, 239, p 7–15CrossRef
31.
Zurück zum Zitat Z.Q. Zhang, H.D. Wang, B.S. Xu, and G.S. Zhang, Characterization of Microstructure and Rolling Contact Fatigue Performance of NiCrBSi/WC–Ni Composite Coatings Prepared by Plasma Spraying, Surf. Coat. Technol., 2015, 261, p 60–68CrossRef Z.Q. Zhang, H.D. Wang, B.S. Xu, and G.S. Zhang, Characterization of Microstructure and Rolling Contact Fatigue Performance of NiCrBSi/WC–Ni Composite Coatings Prepared by Plasma Spraying, Surf. Coat. Technol., 2015, 261, p 60–68CrossRef
32.
Zurück zum Zitat C.O. Ruud and R.E. Green, Jr. (Eds), Nondestructive Methods for Material Property Determination, Plenum Press, 1984, p. 410 C.O. Ruud and R.E. Green, Jr. (Eds), Nondestructive Methods for Material Property Determination, Plenum Press, 1984, p. 410
33.
Zurück zum Zitat J.C. Newman, Jr. and R.S. Piascik (Eds.) Fatigue Crack Growth Thresholds, Endurance Limits, and Design, (STP 1372), ASTM Int., 2000, p. 431 J.C. Newman, Jr. and R.S. Piascik (Eds.) Fatigue Crack Growth Thresholds, Endurance Limits, and Design, (STP 1372), ASTM Int., 2000, p. 431
34.
Zurück zum Zitat L.G. Korshunov, V.G. Pushin, N.L. Chernenko, and V.V. Makarov, Structural Transformations, Strengthening, and wear Resistance of Titanium Nickelide Upon Abrasive and Adhesive Wear, Phys. Metals Metallogr., 2010, 110(1), p 91–101CrossRef L.G. Korshunov, V.G. Pushin, N.L. Chernenko, and V.V. Makarov, Structural Transformations, Strengthening, and wear Resistance of Titanium Nickelide Upon Abrasive and Adhesive Wear, Phys. Metals Metallogr., 2010, 110(1), p 91–101CrossRef
35.
Zurück zum Zitat A.V. Makarov, E.S. Gorkunov, P.A. Skorynina, L.Kh. Kogan, A.S. Yurovskikh, and A.L. Osintseva, Eddy-Current Control of the Phase Composition and Hardness of Metastable Austenitic Steel After Different Regimes of Nanostructuring Frictional Treatment, Russ. J. Nondestr. Test., 2016, 52(11), p 627–637CrossRef A.V. Makarov, E.S. Gorkunov, P.A. Skorynina, L.Kh. Kogan, A.S. Yurovskikh, and A.L. Osintseva, Eddy-Current Control of the Phase Composition and Hardness of Metastable Austenitic Steel After Different Regimes of Nanostructuring Frictional Treatment, Russ. J. Nondestr. Test., 2016, 52(11), p 627–637CrossRef
36.
Zurück zum Zitat V.P. Kuznetsov, A.V. Makarov, A.L. Osintseva, A.S. Yurovskikh, R.A. Savrai, S.A. Rogovaya, and A.E. Kiryakov, Упpoчнeниe и пoвышeниe кaчecтвa пoвepxнocти дeтaлeй из aycтeнитнoй нepжaвeющeй cтaли aлмaзным выглaживaниeм нa тoкapнo-фpeзepнoм цeнтpe (The Increase of Strength and Surface Quality of Austenitic Stainless Steel Parts by Diamond Burnishing on the Turning/Milling Center), Strengthen. Technol. Coat., 2011, 11, p 16–26 (in Russian) V.P. Kuznetsov, A.V. Makarov, A.L. Osintseva, A.S. Yurovskikh, R.A. Savrai, S.A. Rogovaya, and A.E. Kiryakov, Упpoчнeниe и пoвышeниe кaчecтвa пoвepxнocти дeтaлeй из aycтeнитнoй нepжaвeющeй cтaли aлмaзным выглaживaниeм нa тoкapнo-фpeзepнoм цeнтpe (The Increase of Strength and Surface Quality of Austenitic Stainless Steel Parts by Diamond Burnishing on the Turning/Milling Center), Strengthen. Technol. Coat., 2011, 11, p 16–26 (in Russian)
37.
Zurück zum Zitat A.V. Makarov, R.A. Savrai, V.M. Schastlivtsev, T.I. Tabatchikova, I.L. Yakovleva, and L.Yu. Egorova, Structural Features of the Behavior of a High-Carbon Pearlitic Steel upon Cyclic Loading, Phys. Metals Metallogr., 2011, 111(1), p 95–109CrossRef A.V. Makarov, R.A. Savrai, V.M. Schastlivtsev, T.I. Tabatchikova, I.L. Yakovleva, and L.Yu. Egorova, Structural Features of the Behavior of a High-Carbon Pearlitic Steel upon Cyclic Loading, Phys. Metals Metallogr., 2011, 111(1), p 95–109CrossRef
38.
Zurück zum Zitat J.A. Benito, J. Jorba, J.M. Manero, and A. Roca, Change of Young’s Modulus of Cold-Deformed Pure Iron in a Tensile Test, Metall. Mater. Trans. A, 2005, 36(12), p 3317–3324CrossRef J.A. Benito, J. Jorba, J.M. Manero, and A. Roca, Change of Young’s Modulus of Cold-Deformed Pure Iron in a Tensile Test, Metall. Mater. Trans. A, 2005, 36(12), p 3317–3324CrossRef
39.
Zurück zum Zitat S. Shima and M. Yang, A Study of Accuracy in an Intelligent V-Bending Process for Sheet Metals—Change in Young’s Modulus due to Plastic Deformation and Its Effect on Springback, J. Soc. Mater. Sci. Jpn., 1995, 44(500), p 578–583CrossRef S. Shima and M. Yang, A Study of Accuracy in an Intelligent V-Bending Process for Sheet Metals—Change in Young’s Modulus due to Plastic Deformation and Its Effect on Springback, J. Soc. Mater. Sci. Jpn., 1995, 44(500), p 578–583CrossRef
40.
Zurück zum Zitat F. Morestin and M. Boivin, On the Necessity of Taking into Account the Variation in the Young Modulus with Plastic Strain in Elastic-Plastic Software, Nucl. Eng. Design, 1996, 162(1), p 107–116CrossRef F. Morestin and M. Boivin, On the Necessity of Taking into Account the Variation in the Young Modulus with Plastic Strain in Elastic-Plastic Software, Nucl. Eng. Design, 1996, 162(1), p 107–116CrossRef
41.
Zurück zum Zitat H.M. Ledbetter and S.A. Kim, Low Temperature Elastic Constants of Deformed Polycrystalline Copper, Mater. Sci. Eng., A, 1988, 101, p 87–92 H.M. Ledbetter and S.A. Kim, Low Temperature Elastic Constants of Deformed Polycrystalline Copper, Mater. Sci. Eng., A, 1988, 101, p 87–92
42.
Zurück zum Zitat W.C. Oliver and J.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7(6), p 1564–1583CrossRef W.C. Oliver and J.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7(6), p 1564–1583CrossRef
43.
Zurück zum Zitat I.L. Singer and H. Pollock (eds.) Fundamentals of Friction: Macroscopic and Microscopic Processes, Springer Netherlands, 1992, p. 621 I.L. Singer and H. Pollock (eds.) Fundamentals of Friction: Macroscopic and Microscopic Processes, Springer Netherlands, 1992, p. 621
Metadaten
Titel
Estimating the Contact Endurance of the AISI 321 Stainless Steel Under Contact Gigacycle Fatigue Tests
verfasst von
R. A. Savrai
A. V. Makarov
A. L. Osintseva
I. Yu. Malygina
Publikationsdatum
19.01.2018
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 2/2018
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3154-8

Weitere Artikel der Ausgabe 2/2018

Journal of Materials Engineering and Performance 2/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.