Skip to main content
Erschienen in: Medical & Biological Engineering & Computing 7/2013

01.07.2013 | Original Article

Estimation of impulse response between electromyogram signals for use in conduction delay distribution estimation

verfasst von: Tahsin Hassan, Kyle C. D. McIntosh, David A. Gabriel, Edward A. Clancy

Erschienen in: Medical & Biological Engineering & Computing | Ausgabe 7/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The time delay between two surface electromyograms (EMGs) acquired along the conduction path is used to estimate mean action potential conduction velocity. Modeling the linear impulse response between “upstream” and “downstream” EMG signals permits an estimate of the distribution of velocities, providing more information. In this work, we analyzed EMG from bipolar electrodes placed on the tibialis anterior of 36 subjects, using an inter-electrode distance of 10 mm. Regularized least squares was used to fit the coefficients of a finite impulse response model. We trained the model on one recording, then tested on two others. The optimum correlation between the model-predicted and actual EMG averaged 0.70. We also compared estimation of the mean conduction delay from the peak time of the impulse response to the “gold standard” peak time of the cross-correlation between the upstream and downstream EMG signals. Optimal models differed from the gold standard by 0.02 ms, on average. Model performance was influenced by the regularization parameters. The impulse responses, however, incorrectly contained substantive power at very low time delays, causing delay distribution estimates to exhibit high probabilities at very short conduction delays. Unrealistic distribution estimates resulted. Larger inter-electrode spacing may be required to alleviate this limitation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Blijham PJ, Hengstman GJD, Ter Laak HJ, Van Engelen BGM, Zwarts MJ (2004) Muscle-fiber conduction velocity and electromyography as diagnostic tools in patients with suspected inflammatory myopathy: a prospective study. Muscle Nerve 29:46–50PubMedCrossRef Blijham PJ, Hengstman GJD, Ter Laak HJ, Van Engelen BGM, Zwarts MJ (2004) Muscle-fiber conduction velocity and electromyography as diagnostic tools in patients with suspected inflammatory myopathy: a prospective study. Muscle Nerve 29:46–50PubMedCrossRef
2.
Zurück zum Zitat Blijham PJ, Ter Laak HJ, Schelhaas HJ, Van Engelen BGM, Stegeman DF, Zwarts MJ (2006) Relation between muscle fiber conduction velocity and fiber size in neuromuscular disorders. J Appl Physiol 100:1837–1841PubMedCrossRef Blijham PJ, Ter Laak HJ, Schelhaas HJ, Van Engelen BGM, Stegeman DF, Zwarts MJ (2006) Relation between muscle fiber conduction velocity and fiber size in neuromuscular disorders. J Appl Physiol 100:1837–1841PubMedCrossRef
3.
Zurück zum Zitat Broman H, Bilotto G, DeLuca CJ (1985) A note on the noninvasive estimation of muscle fiber conduction velocity. IEEE Trans Biomed Eng 32:341–344PubMedCrossRef Broman H, Bilotto G, DeLuca CJ (1985) A note on the noninvasive estimation of muscle fiber conduction velocity. IEEE Trans Biomed Eng 32:341–344PubMedCrossRef
4.
Zurück zum Zitat Chaffin DB (1973) Localized muscle fatigue—definition and measurement. J Occup Environ Med 15:346–354 Chaffin DB (1973) Localized muscle fatigue—definition and measurement. J Occup Environ Med 15:346–354
5.
Zurück zum Zitat Davies SW, Parker PA (1987) Estimation of myoelectric conduction velocity distribution. IEEE Trans Biomed Eng 34:365–374PubMedCrossRef Davies SW, Parker PA (1987) Estimation of myoelectric conduction velocity distribution. IEEE Trans Biomed Eng 34:365–374PubMedCrossRef
6.
Zurück zum Zitat Farina D, Merletti R (2003) A novel approach for estimating muscle fiber conduction velocity by spatial and temporal filtering of surface EMG signals. IEEE Trans Biomed Eng 50:1340–1351PubMedCrossRef Farina D, Merletti R (2003) A novel approach for estimating muscle fiber conduction velocity by spatial and temporal filtering of surface EMG signals. IEEE Trans Biomed Eng 50:1340–1351PubMedCrossRef
7.
Zurück zum Zitat Farina D, Merletti R (2004) Methods for estimating muscle fibre conduction velocity from surface electromyographic signals. Med Biol Eng Comput 42:432–445PubMedCrossRef Farina D, Merletti R (2004) Methods for estimating muscle fibre conduction velocity from surface electromyographic signals. Med Biol Eng Comput 42:432–445PubMedCrossRef
8.
Zurück zum Zitat Farina D, Mesin L (2005) Sensitivity of surface EMG-based conduction velocity estimates to local tissue in-homogeneities—influence of the number of channels and inter-channel distance. J Neurosci Meth 142:83–89CrossRef Farina D, Mesin L (2005) Sensitivity of surface EMG-based conduction velocity estimates to local tissue in-homogeneities—influence of the number of channels and inter-channel distance. J Neurosci Meth 142:83–89CrossRef
9.
Zurück zum Zitat Farina D, Negro F (2007) Estimation of muscle fiber conduction velocity with a spectral multidip approach. IEEE Trans Biomed Eng 54:1583–1589PubMedCrossRef Farina D, Negro F (2007) Estimation of muscle fiber conduction velocity with a spectral multidip approach. IEEE Trans Biomed Eng 54:1583–1589PubMedCrossRef
10.
Zurück zum Zitat Farina D, Fortunato E, Merletti R (2000) Noninvasive estimation of motor unit conduction velocity distribution using linear electrode arrays. IEEE Trans Biomed Eng 47:380–388PubMedCrossRef Farina D, Fortunato E, Merletti R (2000) Noninvasive estimation of motor unit conduction velocity distribution using linear electrode arrays. IEEE Trans Biomed Eng 47:380–388PubMedCrossRef
11.
Zurück zum Zitat Farina D, Muhammad W, Fortunato E, Meste O, Merletti R, Rix H (2001) Estimation of single motor unit conduction velocity from surface electromyogram signals detected with linear electrode arrays. Med Biol Eng Comput 39:225–236PubMedCrossRef Farina D, Muhammad W, Fortunato E, Meste O, Merletti R, Rix H (2001) Estimation of single motor unit conduction velocity from surface electromyogram signals detected with linear electrode arrays. Med Biol Eng Comput 39:225–236PubMedCrossRef
12.
Zurück zum Zitat Farina D, Arendt-Nielsen L, Merletti R, Graven-Nielsen T (2002) Assessment of single motor unit conduction velocity during sustained contractions of the tibialis anterior muscle with advanced spike triggered averaging. J Neurosci Meth 115:1–12CrossRef Farina D, Arendt-Nielsen L, Merletti R, Graven-Nielsen T (2002) Assessment of single motor unit conduction velocity during sustained contractions of the tibialis anterior muscle with advanced spike triggered averaging. J Neurosci Meth 115:1–12CrossRef
13.
Zurück zum Zitat Farina D, Zagari D, Gazzoni M, Merletti R (2004) Reproducibility of muscle-fiber conduction velocity estimates using multichannel surface EMG techniques. Muscle Nerve 29:282–291PubMedCrossRef Farina D, Zagari D, Gazzoni M, Merletti R (2004) Reproducibility of muscle-fiber conduction velocity estimates using multichannel surface EMG techniques. Muscle Nerve 29:282–291PubMedCrossRef
14.
Zurück zum Zitat Gazzoni M, Farina D, Merletti R (2004) A new method for the extraction and classification of single motor unit action potentials from surface EMG signals. J Neurosci Meth 136:165–177CrossRef Gazzoni M, Farina D, Merletti R (2004) A new method for the extraction and classification of single motor unit action potentials from surface EMG signals. J Neurosci Meth 136:165–177CrossRef
15.
Zurück zum Zitat Gydikov A (1981) Spreading of potentials along the muscle, investigated by averaging of the summated EMG. Electromyogr Clin Neurophysiol 21:525–538PubMed Gydikov A (1981) Spreading of potentials along the muscle, investigated by averaging of the summated EMG. Electromyogr Clin Neurophysiol 21:525–538PubMed
16.
Zurück zum Zitat Hunter I, Kearney R (1983) Two-sided linear filter identification. Med Biol Eng Comput 21:203–209PubMedCrossRef Hunter I, Kearney R (1983) Two-sided linear filter identification. Med Biol Eng Comput 21:203–209PubMedCrossRef
17.
Zurück zum Zitat Hunter I, Kearney R, Jones L (1987) Estimation of the conduction velocity of muscle action potentials using phase and impulse response function techniques. Med Biol Eng Comput 25:121–126PubMedCrossRef Hunter I, Kearney R, Jones L (1987) Estimation of the conduction velocity of muscle action potentials using phase and impulse response function techniques. Med Biol Eng Comput 25:121–126PubMedCrossRef
18.
Zurück zum Zitat Lindstrom LH, Magnusson RI (1977) Interpretation of myoelectric power spectra: a model and its applications. Proc IEEE 65:653–662CrossRef Lindstrom LH, Magnusson RI (1977) Interpretation of myoelectric power spectra: a model and its applications. Proc IEEE 65:653–662CrossRef
19.
Zurück zum Zitat Lynn PA (1979) Direct on-line estimation of muscle fiber conduction velocity by surface electromyography. IEEE Trans Biomed Eng 26:564–571PubMedCrossRef Lynn PA (1979) Direct on-line estimation of muscle fiber conduction velocity by surface electromyography. IEEE Trans Biomed Eng 26:564–571PubMedCrossRef
20.
Zurück zum Zitat Masuda T, Miyano H, Sadoyama T (1982) The measurement of muscle fiber conduction velocity using a gradient threshold zero-crossing method. IEEE Trans Biomed Eng 29:673–678PubMedCrossRef Masuda T, Miyano H, Sadoyama T (1982) The measurement of muscle fiber conduction velocity using a gradient threshold zero-crossing method. IEEE Trans Biomed Eng 29:673–678PubMedCrossRef
21.
Zurück zum Zitat McIntosh KCD (2009) Reliability of muscle fibres conduction velocity in the tibialis anterior. M.S. thesis, Brock University, Ontario, Canada McIntosh KCD (2009) Reliability of muscle fibres conduction velocity in the tibialis anterior. M.S. thesis, Brock University, Ontario, Canada
22.
Zurück zum Zitat McIntosh K, Gabriel D (2012) Reliability of a simple method for determining muscle fiber conduction velocity. Muscle Nerve 45:257–265PubMedCrossRef McIntosh K, Gabriel D (2012) Reliability of a simple method for determining muscle fiber conduction velocity. Muscle Nerve 45:257–265PubMedCrossRef
23.
Zurück zum Zitat Mesin L, Tizzani F, Farina D (2006) Estimation of motor unit conduction velocity from surface EMG recordings by signal-based selection of the spatial filters. IEEE Trans Biomed Eng 53:1963–1971PubMedCrossRef Mesin L, Tizzani F, Farina D (2006) Estimation of motor unit conduction velocity from surface EMG recordings by signal-based selection of the spatial filters. IEEE Trans Biomed Eng 53:1963–1971PubMedCrossRef
24.
Zurück zum Zitat Naeije M, Zorn H (1982) Relation between EMG power spectrum shifts and muscle fibre action potential conduction velocity changes during local muscular fatigue in man. Eur J Appl Physiol 50:23–33CrossRef Naeije M, Zorn H (1982) Relation between EMG power spectrum shifts and muscle fibre action potential conduction velocity changes during local muscular fatigue in man. Eur J Appl Physiol 50:23–33CrossRef
25.
Zurück zum Zitat Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1994) Numerical recipes in C, 2nd edn. Cambridge University Press, New York, pp 671–681 Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1994) Numerical recipes in C, 2nd edn. Cambridge University Press, New York, pp 671–681
26.
Zurück zum Zitat Rababy N, Kearney R, Hunter I (1989) Method for EMG conduction velocity estimation which accounts for input and output noise. Med Biol Eng Comput 27:125–129PubMedCrossRef Rababy N, Kearney R, Hunter I (1989) Method for EMG conduction velocity estimation which accounts for input and output noise. Med Biol Eng Comput 27:125–129PubMedCrossRef
27.
Zurück zum Zitat Schulte E, Farina D, Rau G, Merletti R, Disselhorst-Klug C (2003) Single motor unit analysis from spatially filtered surface electromyogram signals. Part 2: conduction velocity estimation. Med Biol Eng Comput 41:338–345PubMedCrossRef Schulte E, Farina D, Rau G, Merletti R, Disselhorst-Klug C (2003) Single motor unit analysis from spatially filtered surface electromyogram signals. Part 2: conduction velocity estimation. Med Biol Eng Comput 41:338–345PubMedCrossRef
28.
Zurück zum Zitat Viitasalo JHT, Komi PV (1977) Signal characteristics of EMG during fatigue. Eur J Appl Physiol 37:111–121CrossRef Viitasalo JHT, Komi PV (1977) Signal characteristics of EMG during fatigue. Eur J Appl Physiol 37:111–121CrossRef
29.
Zurück zum Zitat Westwick DT, Kearney RE (1997) Identification of physiological systems: a robust method for non-parametric impulse response estimation. Med Biol Eng Comput 35:83–90PubMedCrossRef Westwick DT, Kearney RE (1997) Identification of physiological systems: a robust method for non-parametric impulse response estimation. Med Biol Eng Comput 35:83–90PubMedCrossRef
30.
Zurück zum Zitat Williams WJ (1972) Transfer characteristics of dispersive nerve bundles. IEEE Trans Sys Man Cyber 2:72–85 Williams WJ (1972) Transfer characteristics of dispersive nerve bundles. IEEE Trans Sys Man Cyber 2:72–85
31.
Zurück zum Zitat Zwarts MJ, Stegeman DF (2003) Multichannel surface EMG: basic aspects and clinical utility. Muscle Nerve 28:1–17PubMedCrossRef Zwarts MJ, Stegeman DF (2003) Multichannel surface EMG: basic aspects and clinical utility. Muscle Nerve 28:1–17PubMedCrossRef
32.
Zurück zum Zitat Zwarts MJ, Van Weerden TW, Haenen HTM (1987) Relationship between average muscle fibre conduction velocity and EMG power spectra during isometric contraction, recovery and applied ischemia. Eur J Appl Physiol 56:212–216CrossRef Zwarts MJ, Van Weerden TW, Haenen HTM (1987) Relationship between average muscle fibre conduction velocity and EMG power spectra during isometric contraction, recovery and applied ischemia. Eur J Appl Physiol 56:212–216CrossRef
33.
Zurück zum Zitat Zwarts MJ, Drost G, Stegeman DF (2000) Recent progress in the diagnostic use of surface EMG for neurological diseases. J Electromyogr Kinesiol 10:287–291PubMedCrossRef Zwarts MJ, Drost G, Stegeman DF (2000) Recent progress in the diagnostic use of surface EMG for neurological diseases. J Electromyogr Kinesiol 10:287–291PubMedCrossRef
Metadaten
Titel
Estimation of impulse response between electromyogram signals for use in conduction delay distribution estimation
verfasst von
Tahsin Hassan
Kyle C. D. McIntosh
David A. Gabriel
Edward A. Clancy
Publikationsdatum
01.07.2013
Verlag
Springer-Verlag
Erschienen in
Medical & Biological Engineering & Computing / Ausgabe 7/2013
Print ISSN: 0140-0118
Elektronische ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-013-1042-9

Weitere Artikel der Ausgabe 7/2013

Medical & Biological Engineering & Computing 7/2013 Zur Ausgabe