Skip to main content
Erschienen in: Journal of Engineering Thermophysics 2/2022

01.06.2022

Evaluation of Multistage Centrifugal Chiller Performance Metrics with Different Low Global Warming Potential Refrigerants

verfasst von: G. Li

Erschienen in: Journal of Engineering Thermophysics | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With a raising concern about climate change and global warming, various environmental regulations such as Kigali Amendment and EU Directive 517/2014 have already set the target to gradually phase out R134a and R123 refrigerants. In the current study, both the medium-pressure refrigerants (R134a and its alternatives R513A and R1234ze(E)) and low-pressure refrigerants (R123 and its alternatives R514A and R1233zd(E)) have been theoretically investigated for multistage chiller systems with a fixed cooling capacity. Compared with a single-stage chiller, a multistage chiller gives a \(\sim 4\)%–8% COP enhancement for medium-pressure refrigerants and \(\sim 4\)%–6% COP increase for low pressure refrigerants. Multistage systems can help to downsize the evaporator and provide more than 5% lifetime emission reductions. A two-stage chiller system is more preferable than the others for its high operating energy saving potential with limited additional component cost increase. In addition, R134a exhibits a better heat transfer performance than its candidates, while R123 exhibits a reverse behavior. R513A can exhibit a \(\sim 9\)% emission reduction as compared with R134a, and R1234ze(E) can provide a \(\sim 18\)% emission drop benefit as compared with R134a. R513A and R134a have a close compressor impeller diameter, and a similar trend can also be exhibited between R514A and R123. Accordingly, R513A is more preferred to replace R134a, and R514A to replace R123 for drop-in considerations due to their close compressor size, close COP, and reduced lifetime emissions. With approaching more strict refrigerant regulations and laws in the future, R1234ze(E) can be the ultimate option to replace R134a.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat IPCC, 2013: Summary for Policymakers, in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker, T.F., D. Qin, G.-K. Plattner, et al., Eds., Cambridge, New York: Cambridge Univ. Press, 2013. IPCC, 2013: Summary for Policymakers, in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker, T.F., D. Qin, G.-K. Plattner, et al., Eds., Cambridge, New York: Cambridge Univ. Press, 2013.
2.
Zurück zum Zitat Rissman, J., Bataille, C., Masanet, E., Aden, N., Morrow, W.R., Zhou, N., Elliott, N., Dell, R., Heeren, N., Huckestein, B., Cresko, J., Miller, S.A., Roy, J., Fennell, P., Cremmins, B., Koch, B., Hone, T.D., Williams, E.D., Can, S., Sisson, B., Williams, M., Katzenberger, J., Burtraw, D., Sethi, G., Ping, H., Danielson, D., Lu, H., Lorber, T., Dinkel, J., and Helseth, J., Technologies and Policies to Decarbonize Global Industry: Review and Assessment of Mitigation Drivers through 2070, Appl. Energy, 2020, vol. 266, p. 114848.CrossRef Rissman, J., Bataille, C., Masanet, E., Aden, N., Morrow, W.R., Zhou, N., Elliott, N., Dell, R., Heeren, N., Huckestein, B., Cresko, J., Miller, S.A., Roy, J., Fennell, P., Cremmins, B., Koch, B., Hone, T.D., Williams, E.D., Can, S., Sisson, B., Williams, M., Katzenberger, J., Burtraw, D., Sethi, G., Ping, H., Danielson, D., Lu, H., Lorber, T., Dinkel, J., and Helseth, J., Technologies and Policies to Decarbonize Global Industry: Review and Assessment of Mitigation Drivers through 2070, Appl. Energy, 2020, vol. 266, p. 114848.CrossRef
3.
Zurück zum Zitat Kang, J.N., Wei, Y.M., Liu, L.C., Han, R., Yu., B.Y., and Wang, J.W., Energy Systems for Climate Change Mitigation: A Systematic Review, Appl. Energy, 2020, vol. 263, p. 114602.CrossRef Kang, J.N., Wei, Y.M., Liu, L.C., Han, R., Yu., B.Y., and Wang, J.W., Energy Systems for Climate Change Mitigation: A Systematic Review, Appl. Energy, 2020, vol. 263, p. 114602.CrossRef
4.
Zurück zum Zitat Li, G., Comprehensive Investigation of Transport Refrigeration Life Cycle Climate Performance, Sustain. Energy Technol. Assess., 2017, vol. 21, pp. 33–49.CrossRef Li, G., Comprehensive Investigation of Transport Refrigeration Life Cycle Climate Performance, Sustain. Energy Technol. Assess., 2017, vol. 21, pp. 33–49.CrossRef
5.
Zurück zum Zitat Li, G., Investigations of Life Cycle Climate Performance and Material Life Cycle Assessment of Packaged Air Conditioners for Residential Application, Sust. Energy Technol. Assess., 2015, vol. 11, pp. 114–125.CrossRef Li, G., Investigations of Life Cycle Climate Performance and Material Life Cycle Assessment of Packaged Air Conditioners for Residential Application, Sust. Energy Technol. Assess., 2015, vol. 11, pp. 114–125.CrossRef
6.
Zurück zum Zitat Cheng, Z., Wang, B., Shi, W., and Li, X., Performance Evaluation of Novel Double Internal Auto-Cascade Two-Stage Compression System Using Refrigerant Mixtures, Appl. Thermal Engin., 2020, vol. 168, p. 114898.CrossRef Cheng, Z., Wang, B., Shi, W., and Li, X., Performance Evaluation of Novel Double Internal Auto-Cascade Two-Stage Compression System Using Refrigerant Mixtures, Appl. Thermal Engin., 2020, vol. 168, p. 114898.CrossRef
7.
Zurück zum Zitat Kornhauser, A.A., The Use of an as a Refrigerant Expander, Proceedings of USNC/IIR-Purdue Refrigeration Conference, USA, 1990. Kornhauser, A.A., The Use of an as a Refrigerant Expander, Proceedings of USNC/IIR-Purdue Refrigeration Conference, USA, 1990.
8.
Zurück zum Zitat Yari, M., Exergetic Analysis of The Vapor Compression Refrigeration Cycle Using Ejector as an Expander, Int. J. Exergy, 2008, vol. 5, pp. 326–340.CrossRef Yari, M., Exergetic Analysis of The Vapor Compression Refrigeration Cycle Using Ejector as an Expander, Int. J. Exergy, 2008, vol. 5, pp. 326–340.CrossRef
9.
Zurück zum Zitat Ma, G., Chai, Q., and Jiang, Y., Experimental Investigation of Air-Source Heat Pump for Cold Regions, Int. J. Refrig., 2003, vol. 26, pp. 12–18.CrossRef Ma, G., Chai, Q., and Jiang, Y., Experimental Investigation of Air-Source Heat Pump for Cold Regions, Int. J. Refrig., 2003, vol. 26, pp. 12–18.CrossRef
10.
Zurück zum Zitat Heo, J., Jeong, M.W., and Kim, Y., Effects of Flash Tank Vapor Injection on the Heating Performance of an Inverter-Driven Heat Pump for Cold Regions. Int. J. Refrig., 2010, vol. 33, pp. 848–855.CrossRef Heo, J., Jeong, M.W., and Kim, Y., Effects of Flash Tank Vapor Injection on the Heating Performance of an Inverter-Driven Heat Pump for Cold Regions. Int. J. Refrig., 2010, vol. 33, pp. 848–855.CrossRef
11.
Zurück zum Zitat Wei, W., Ni, L., Zhou, C., Yao, Y., Xu, L., Yang, Y., Performance Analysis of a Quasi-Two Stage Compression Air Source Heat Pump in Severe Cold Region with a New Control Strategy, Appl. Therm. Eng., 2020, vol. 174, p. 115317.CrossRef Wei, W., Ni, L., Zhou, C., Yao, Y., Xu, L., Yang, Y., Performance Analysis of a Quasi-Two Stage Compression Air Source Heat Pump in Severe Cold Region with a New Control Strategy, Appl. Therm. Eng., 2020, vol. 174, p. 115317.CrossRef
12.
Zurück zum Zitat Deymi-Dashtebayaz, M., Maddah, S., and Fallahi, E., Thermo-Economic-Environmental Optimization of Injection Mass Flow Rate in the Two-Stage Compression Refrigeration Cycle (Case Study: Mobarakeh Steel Company in Isfahan, Iran), Int. J. Refrig., 2019, vol. 106, pp. 7–17.CrossRef Deymi-Dashtebayaz, M., Maddah, S., and Fallahi, E., Thermo-Economic-Environmental Optimization of Injection Mass Flow Rate in the Two-Stage Compression Refrigeration Cycle (Case Study: Mobarakeh Steel Company in Isfahan, Iran), Int. J. Refrig., 2019, vol. 106, pp. 7–17.CrossRef
13.
Zurück zum Zitat Yang, J.L., Ma, Y.T., and Liu, S.C., Performance Investigation of Transcritical Carbon Dioxide Two-Stage Compression Cycle with Expander, Energy, 2007, vol. 32, no. 3, pp. 237–245.CrossRef Yang, J.L., Ma, Y.T., and Liu, S.C., Performance Investigation of Transcritical Carbon Dioxide Two-Stage Compression Cycle with Expander, Energy, 2007, vol. 32, no. 3, pp. 237–245.CrossRef
14.
Zurück zum Zitat Wang, X.D., Hwang, Y., and Radermacher, R., Two-Stage Heat Pump System with Vapor-Injected Scroll Compressor Using R410A as a Refrigerant, Int. J. Refrig., 2009, vol. 32, pp. 1442–1451.CrossRef Wang, X.D., Hwang, Y., and Radermacher, R., Two-Stage Heat Pump System with Vapor-Injected Scroll Compressor Using R410A as a Refrigerant, Int. J. Refrig., 2009, vol. 32, pp. 1442–1451.CrossRef
15.
Zurück zum Zitat Cavallini, A., Cecchinato, L., Corradi, M., Fornasieri, E., and Zilio, C., Two-Stage Transcritical Carbon Dioxide Cycle Optimisation: A Theoretical and Experimental Analysis, Int. J. Refrig., 2005, vol. 28, pp. 1274–1283.CrossRef Cavallini, A., Cecchinato, L., Corradi, M., Fornasieri, E., and Zilio, C., Two-Stage Transcritical Carbon Dioxide Cycle Optimisation: A Theoretical and Experimental Analysis, Int. J. Refrig., 2005, vol. 28, pp. 1274–1283.CrossRef
16.
Zurück zum Zitat Ko, Y., Park, S., Jin, S., Kim, B., and Jeong, J.H., The Selection of Volume Ratio of Two-Stage Rotary Compressor and Its Effects on Air-to-Water Heat Pump with Flash Tank Cycle, Appl. Energy, 2013, vol. 104, pp. 187–196.CrossRef Ko, Y., Park, S., Jin, S., Kim, B., and Jeong, J.H., The Selection of Volume Ratio of Two-Stage Rotary Compressor and Its Effects on Air-to-Water Heat Pump with Flash Tank Cycle, Appl. Energy, 2013, vol. 104, pp. 187–196.CrossRef
17.
Zurück zum Zitat Jin, X., Zhang, K., Liu, Z.Y., Li, X.Y., and Jiang, S., Numerical Research on Coupling Performance of Inter-Stage Parameters for Two-Stage Compression System with Injection, Appl. Therm. Eng., 2018, vol. 128, p. 1430–1445.CrossRef Jin, X., Zhang, K., Liu, Z.Y., Li, X.Y., and Jiang, S., Numerical Research on Coupling Performance of Inter-Stage Parameters for Two-Stage Compression System with Injection, Appl. Therm. Eng., 2018, vol. 128, p. 1430–1445.CrossRef
18.
Zurück zum Zitat Lee, S.H., Jeon, Y., Kim, B., Yun, S., and Kim, Y., Simulation-Based Comparative Seasonal Performance Evaluation of Single-Stage Heat Pump and Modulated Two-Stage Injection Heat Pump Using Rotary Compressors with Various Cylinder Volume Ratios, Appl. Therm. Eng., 2019, vol. 59, p. 113892.CrossRef Lee, S.H., Jeon, Y., Kim, B., Yun, S., and Kim, Y., Simulation-Based Comparative Seasonal Performance Evaluation of Single-Stage Heat Pump and Modulated Two-Stage Injection Heat Pump Using Rotary Compressors with Various Cylinder Volume Ratios, Appl. Therm. Eng., 2019, vol. 59, p. 113892.CrossRef
19.
Zurück zum Zitat Wang, J., Qv, D., Ni, L., and Yao, Y., Experimental Study on an Injection-Assisted Air Source Heat Pump with a Novel Two-Stage Variable-Speed Scroll Compressor, Appl. Therm. Eng., 2020, vol. 176, p. 115415.CrossRef Wang, J., Qv, D., Ni, L., and Yao, Y., Experimental Study on an Injection-Assisted Air Source Heat Pump with a Novel Two-Stage Variable-Speed Scroll Compressor, Appl. Therm. Eng., 2020, vol. 176, p. 115415.CrossRef
20.
Zurück zum Zitat Kang, D., Jeong, J.H., and Ryu, B., Heating Performance of a VRF Heat Pump System Incorporating Double Vapor Injection in Scroll Compressor, Int. J. Refrig., 2018, vol. 96, pp. 50–62.CrossRef Kang, D., Jeong, J.H., and Ryu, B., Heating Performance of a VRF Heat Pump System Incorporating Double Vapor Injection in Scroll Compressor, Int. J. Refrig., 2018, vol. 96, pp. 50–62.CrossRef
21.
Zurück zum Zitat Cao, X.Q., Yang, W.W., Zhou, F., and He, Y.L., Performance Analysis of Different High-Temperature Heat Pump Systems for Low-Grade Waste Heat Recovery, Appl. Therm. Eng., 2014, vol. 71, pp. 291–300.CrossRef Cao, X.Q., Yang, W.W., Zhou, F., and He, Y.L., Performance Analysis of Different High-Temperature Heat Pump Systems for Low-Grade Waste Heat Recovery, Appl. Therm. Eng., 2014, vol. 71, pp. 291–300.CrossRef
22.
Zurück zum Zitat UNEP Ozone Secretariat 2000. The Montreal Protocol on Substances that Deplete the Ozone Layer as Either Adjusted and/or Amended in London 1990, Copenhagen 1992, Vienna 1995, Montreal 1997, Beijing 1999. UNEP Ozone Secretariat 2000. The Montreal Protocol on Substances that Deplete the Ozone Layer as Either Adjusted and/or Amended in London 1990, Copenhagen 1992, Vienna 1995, Montreal 1997, Beijing 1999.
23.
Zurück zum Zitat UN. The Kigali Amendment to the Montreal Protocol: Another Global Commitment to Stop Climate Change; https://www.unenvironment.org/news-and-stories/news/kigali-amendment-montreal-protocol-another-global-commitment-stop-climate (accessed on March 2020). UN. The Kigali Amendment to the Montreal Protocol: Another Global Commitment to Stop Climate Change; https://​www.​unenvironment.​org/​news-and-stories/​news/​kigali-amendment-montreal-protocol-another-global-commitment-stop-climate (accessed on March 2020).
24.
Zurück zum Zitat AGENCY, E.P. Summary Guide to the HFC Phase Down, 2015; Available online: https://www.epa.ie (accessed on March 2020). AGENCY, E.P. Summary Guide to the HFC Phase Down, 2015; Available online: https://​www.​epa.​ie (accessed on March 2020).
25.
Zurück zum Zitat EU Directive 517/2014; Available online: https://www.eea.europa.eu/policy-documents/regulation-eu-no-517-2014 (accessed on March 2020). EU Directive 517/2014; Available online: https://​www.​eea.​europa.​eu/​policy-documents/​regulation-eu-no-517-2014 (accessed on March 2020).
26.
Zurück zum Zitat Andrew Pon Abraham, J.D. and Mohanraj, M., Thermodynamic Performance of Automobile Air Conditioners Working with R430A as a Drop-In Substitute to R134a, J. Therm. An. Calorim., 2019, vol. 136, pp. 2071–2086.CrossRef Andrew Pon Abraham, J.D. and Mohanraj, M., Thermodynamic Performance of Automobile Air Conditioners Working with R430A as a Drop-In Substitute to R134a, J. Therm. An. Calorim., 2019, vol. 136, pp. 2071–2086.CrossRef
27.
Zurück zum Zitat Johnson, P. and Kasai, K., System Drop-In Test of R134a Alternative Fluids R-1234ze(E) and D4Y in a 200 RT Air-Cooled Screw Chiller, AHRI low-GWP AREP Report 25, August 2013. Johnson, P. and Kasai, K., System Drop-In Test of R134a Alternative Fluids R-1234ze(E) and D4Y in a 200 RT Air-Cooled Screw Chiller, AHRI low-GWP AREP Report 25, August 2013.
28.
Zurück zum Zitat Mota-Babiloni, A., Navarro-Esbrı́, J., Barragan, A., Moles, F., and Peris, B., Drop-In Energy Performance Evaluation of R1234yf and R1234ze (E) in a Vapor Compression System as R134a Replacements, Appl. Therm. Eng., 2014, vol. 71, pp. 259–265.CrossRef Mota-Babiloni, A., Navarro-Esbrı́, J., Barragan, A., Moles, F., and Peris, B., Drop-In Energy Performance Evaluation of R1234yf and R1234ze (E) in a Vapor Compression System as R134a Replacements, Appl. Therm. Eng., 2014, vol. 71, pp. 259–265.CrossRef
29.
Zurück zum Zitat Kondou, C., Nagata, R., Nii, N., Koyama, S., and Higashi, Y., Surface Tension of Low GWP Refrigerants R1243zf, R1234ze(Z), and R1233zd(E), Int. J. Refrig., 2015, vol. 53, pp. 80–89.CrossRef Kondou, C., Nagata, R., Nii, N., Koyama, S., and Higashi, Y., Surface Tension of Low GWP Refrigerants R1243zf, R1234ze(Z), and R1233zd(E), Int. J. Refrig., 2015, vol. 53, pp. 80–89.CrossRef
30.
Zurück zum Zitat Romeo, R., Giuliano Albo, P.A., Lago, S., and Brown, J.S., Experimental Liquid Densities of cis-1,3,3,3-tetrafluoroprop-1-ene (R1234ze(Z)) and trans-1-chloro-3,3,3-trifluoropropene (R1233zd(E)), In. J. Refrig., 2017, vol. 79, pp. 176–182.CrossRef Romeo, R., Giuliano Albo, P.A., Lago, S., and Brown, J.S., Experimental Liquid Densities of cis-1,3,3,3-tetrafluoroprop-1-ene (R1234ze(Z)) and trans-1-chloro-3,3,3-trifluoropropene (R1233zd(E)), In. J. Refrig., 2017, vol. 79, pp. 176–182.CrossRef
31.
Zurück zum Zitat Fedele, L., Bobbo, S., Scattolini, M., Zilio, C., and Akasaka, R., HCFO Refrigerant cis-1-chloro-2,3,3,3 tetrafluoropropene [R1224yd(Z)]: Experimental Assessment and Correlation of the Liquid Density, Int. J. Refrig., 2020, vol. 118, pp. 139–145.CrossRef Fedele, L., Bobbo, S., Scattolini, M., Zilio, C., and Akasaka, R., HCFO Refrigerant cis-1-chloro-2,3,3,3 tetrafluoropropene [R1224yd(Z)]: Experimental Assessment and Correlation of the Liquid Density, Int. J. Refrig., 2020, vol. 118, pp. 139–145.CrossRef
32.
Zurück zum Zitat Majurin, J., Sorenson, E., Steinke, D., and Herried, M., Chemical Stability Assessments of R-514A and R-1233zd(E), ASHRAE Winter Conf., Las Vegas, 2016. Majurin, J., Sorenson, E., Steinke, D., and Herried, M., Chemical Stability Assessments of R-514A and R-1233zd(E), ASHRAE Winter Conf., Las Vegas, 2016.
33.
Zurück zum Zitat Majurin, J., Staats, S., Sorenson, E., and Steinke, D., Material and Lubricant Compatibility Assessments of R-1233zd(E) and R-514A, ASHRAE Winter Conf., Las Vegas, 2016. Majurin, J., Staats, S., Sorenson, E., and Steinke, D., Material and Lubricant Compatibility Assessments of R-1233zd(E) and R-514A, ASHRAE Winter Conf., Las Vegas, 2016.
34.
Zurück zum Zitat Lemmon, E., Huber, M., and Mclinden, M., NIST Reference Fluid Thermodynamic and Transport Properties REFPROP, version 10.0, The National Institute of Standards and Technology (NIST), 2020. Lemmon, E., Huber, M., and Mclinden, M., NIST Reference Fluid Thermodynamic and Transport Properties REFPROP, version 10.0, The National Institute of Standards and Technology (NIST), 2020.
35.
Zurück zum Zitat Engineering Equation Solver (2020) F-Chart Software, Academic Processional Version, V10.990. Engineering Equation Solver (2020) F-Chart Software, Academic Processional Version, V10.990.
36.
Zurück zum Zitat Kern, D.Q., Process Heat Transfer, Tata McGraw-Hill Education, 1950. Kern, D.Q., Process Heat Transfer, Tata McGraw-Hill Education, 1950.
37.
Zurück zum Zitat Çengel, Y.A., Heat and Mass Transfer, 2nd ed., McGraw-Hill, 2002. Çengel, Y.A., Heat and Mass Transfer, 2nd ed., McGraw-Hill, 2002.
38.
Zurück zum Zitat Green, D. and Perry, R., Perry’s Chemical Engineers’ Handbook, vol. 8, New York: McGraw-Hill, 2007. Green, D. and Perry, R., Perry’s Chemical Engineers’ Handbook, vol. 8, New York: McGraw-Hill, 2007.
39.
Zurück zum Zitat McAdams, W.H., Heat Transmission, New York: McGraw-Hill, 1958, pp. 276–280. McAdams, W.H., Heat Transmission, New York: McGraw-Hill, 1958, pp. 276–280.
40.
Zurück zum Zitat Tinker, T., Shell Side Characteristics of Shell and Tube Heat Exchangers. General Discuss Heat Transfer, 1951, pp. 89–116. Tinker, T., Shell Side Characteristics of Shell and Tube Heat Exchangers. General Discuss Heat Transfer, 1951, pp. 89–116.
41.
Zurück zum Zitat Hewitt, G.F., Hemisphere Handbook of Heat Exchanger Design, New York: Hemisphere, 1990. Hewitt, G.F., Hemisphere Handbook of Heat Exchanger Design, New York: Hemisphere, 1990.
42.
Zurück zum Zitat Boyko, L.D. and Kruzhilin, G.N., Heat Transfer and Hydraulic Resistance during Condensation of Steam in a Horizontal Tube and in a Bundle of Tubes, Int. J. Heat Mass Transfer, 1967, vol. 10, pp. 361–373.CrossRef Boyko, L.D. and Kruzhilin, G.N., Heat Transfer and Hydraulic Resistance during Condensation of Steam in a Horizontal Tube and in a Bundle of Tubes, Int. J. Heat Mass Transfer, 1967, vol. 10, pp. 361–373.CrossRef
43.
Zurück zum Zitat GB/T18430.1-2007: Water Chilling (Heat Pump) Packages Using the Vapor Compression Cycle-Part 1: Water Chilling (Heat Pump) Packages For Industrial & Commercial And Similar Application. GB/T18430.1-2007: Water Chilling (Heat Pump) Packages Using the Vapor Compression Cycle-Part 1: Water Chilling (Heat Pump) Packages For Industrial & Commercial And Similar Application.
44.
Zurück zum Zitat Balje, E.O., Turbomachines, A Guide to Design, Selection and Theory, New York: Wiley, 1981.CrossRef Balje, E.O., Turbomachines, A Guide to Design, Selection and Theory, New York: Wiley, 1981.CrossRef
45.
Zurück zum Zitat Turton, R., Bailie, R.C., Whiting, W.B., and Shaeiwitz, J.A., Analysis, Synthesis and Design of Chemical Processes, Pearson Education, 2008. Turton, R., Bailie, R.C., Whiting, W.B., and Shaeiwitz, J.A., Analysis, Synthesis and Design of Chemical Processes, Pearson Education, 2008.
46.
Zurück zum Zitat Chemical Engineering Plant Cost Index, 2020; http://www.chemengonline.com/pci-home Chemical Engineering Plant Cost Index, 2020; http://​www.​chemengonline.​com/​pci-home
47.
Zurück zum Zitat Schultz, K. and Kujak, S., System Drop-In Tests of R134a Alternative Refrigerants (ARM-42a, N-13a, N-13b, R-1234ze(E), and OpteonTM XP10) in a 230-RT Water-Cooled Water Chiller. Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Low-GWP Alternative Refrigerants Evaluation Program (Low-GWP AREP), Report, 2013. Schultz, K. and Kujak, S., System Drop-In Tests of R134a Alternative Refrigerants (ARM-42a, N-13a, N-13b, R-1234ze(E), and OpteonTM XP10) in a 230-RT Water-Cooled Water Chiller. Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Low-GWP Alternative Refrigerants Evaluation Program (Low-GWP AREP), Report, 2013.
48.
Zurück zum Zitat Zhang, M., Peng, F., and Shi, Z., Analysis and Calculation of Annual Electricity Consumption with Electric Chillersf Central Air-Conditioning, Refrig. Air-Cond., 2010, vol. 10, no. 6, pp. 11–13 (in Chinese). Zhang, M., Peng, F., and Shi, Z., Analysis and Calculation of Annual Electricity Consumption with Electric Chillersf Central Air-Conditioning, Refrig. Air-Cond., 2010, vol. 10, no. 6, pp. 11–13 (in Chinese).
49.
Zurück zum Zitat Brander, M., Sood, A., Wylie, C., Haughton, A., and Lovell, J., Electricity-Specific Emission Factors for Grid Electricity, Ecometrica, 2011; https://ecometrica.com/white-papers/electricity-specific-emission- factors-for-grid-electricity. Brander, M., Sood, A., Wylie, C., Haughton, A., and Lovell, J., Electricity-Specific Emission Factors for Grid Electricity, Ecometrica, 2011; https://​ecometrica.​com/​white-papers/​electricity-specific-emission- factors-for-grid-electricity.
Metadaten
Titel
Evaluation of Multistage Centrifugal Chiller Performance Metrics with Different Low Global Warming Potential Refrigerants
verfasst von
G. Li
Publikationsdatum
01.06.2022
Verlag
Pleiades Publishing
Erschienen in
Journal of Engineering Thermophysics / Ausgabe 2/2022
Print ISSN: 1810-2328
Elektronische ISSN: 1990-5432
DOI
https://doi.org/10.1134/S181023282202014X

Weitere Artikel der Ausgabe 2/2022

Journal of Engineering Thermophysics 2/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.