Skip to main content
Erschienen in: Meccanica 4/2022

03.08.2021

Excluded volume effects and fractional viscoelasticity in polymers

verfasst von: Somayeh Mashayekhi, Eugenia Stanisauskis, Mahdi Hassani, William Oates

Erschienen in: Meccanica | Ausgabe 4/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The excluded volume effect is added to a fractional viscoelastic model for modeling fractal polymers. This reveals a physical connection between the fractional time derivative, fractal geometry, and excluded volume effect. This derivation is a general theoretical framework based on the Scott-Blair fractional model of viscoelasticity when the excluded volume and the hydrodynamic interaction are explicitly taken into account to derive the microscopic stress within the molecular theory of Rouse and Zimm. The methodology extends the generalized molecular theory of Zimm by adding the effect of excluded volume where the new relaxation formulation contains internal state variables that naturally depend on the fractional time derivative of deformation. The modified distribution of the end-to-end vector of a monomer contained within a polymer network is used for pre-averaging approximations of the mobility matrix in the Zimm model. The pre-averaging approximation is important since the mobility matrix is a nonlinear function and it is difficult to explicitly calculate. Through application of thermodynamic laws, we derive the linear fractional model of viscoelasticity based on its spectral dimension, fractal dimension, and the excluded volume parameter for fractal media. This derivation shows how the order of the fractional derivative in the linear fractional model of viscoelasticity is strongly correlated with fractal structure and excluded volume effects.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Thakre AK, Padding J, den Otter WK, Briels WJ (2008) Finite system size effects in the interfacial dynamics of binary liquid films. The J Chem Phys 129(4):044701CrossRef Thakre AK, Padding J, den Otter WK, Briels WJ (2008) Finite system size effects in the interfacial dynamics of binary liquid films. The J Chem Phys 129(4):044701CrossRef
2.
Zurück zum Zitat Doi M, Edwards SF, Edwards SF (1988) The theory of polymer dynamics, vol 73. Oxford university press Doi M, Edwards SF, Edwards SF (1988) The theory of polymer dynamics, vol 73. Oxford university press
3.
Zurück zum Zitat Mashayekhi S, Hussaini MY, Oates W (2019) A physical interpretation of fractional viscoelasticity based on the fractal structure of media: theory and experimental validation. J Mech Phys Solids 128:137–150MathSciNetCrossRef Mashayekhi S, Hussaini MY, Oates W (2019) A physical interpretation of fractional viscoelasticity based on the fractal structure of media: theory and experimental validation. J Mech Phys Solids 128:137–150MathSciNetCrossRef
5.
Zurück zum Zitat Tarasov VE (2005) Continuous medium model for fractal media. Phys Lett A 336(2–3):167–174CrossRef Tarasov VE (2005) Continuous medium model for fractal media. Phys Lett A 336(2–3):167–174CrossRef
6.
Zurück zum Zitat Balankin AS (2015) A continuum framework for mechanics of fractal materials i: from fractional space to continuum with fractal metric. The Eur Phys J B 88(4):90MathSciNetCrossRef Balankin AS (2015) A continuum framework for mechanics of fractal materials i: from fractional space to continuum with fractal metric. The Eur Phys J B 88(4):90MathSciNetCrossRef
7.
Zurück zum Zitat Li J, Ostoja-Starzewski M (2020) Thermo-poromechanics of fractal media. Philos Trans Royal Soc A 378(2172):20190288MathSciNetCrossRef Li J, Ostoja-Starzewski M (2020) Thermo-poromechanics of fractal media. Philos Trans Royal Soc A 378(2172):20190288MathSciNetCrossRef
8.
Zurück zum Zitat Mainardi F (2012) An historical perspective on fractional calculus in linear viscoelasticity. Fract Calc Appl Anal 15(4):712–717MathSciNetCrossRef Mainardi F (2012) An historical perspective on fractional calculus in linear viscoelasticity. Fract Calc Appl Anal 15(4):712–717MathSciNetCrossRef
9.
Zurück zum Zitat Mashayekhi S, Miles P, Hussaini MY, Oates WS (2018) Fractional viscoelasticity in fractal and non-fractal media: theory, experimental validation, and uncertainty analysis. J Mech Phys Solids 111:134–156MathSciNetCrossRef Mashayekhi S, Miles P, Hussaini MY, Oates WS (2018) Fractional viscoelasticity in fractal and non-fractal media: theory, experimental validation, and uncertainty analysis. J Mech Phys Solids 111:134–156MathSciNetCrossRef
10.
Zurück zum Zitat Havlin S, Ben-Avraham D (1987) Diffusion in disordered media. Adv Phys 36(6):695–798CrossRef Havlin S, Ben-Avraham D (1987) Diffusion in disordered media. Adv Phys 36(6):695–798CrossRef
11.
Zurück zum Zitat Balankin AS, Mena B, Martinez-Gonzalez C, Matamoros DM (2012) Random walk in chemical space of cantor dust as a paradigm of superdiffusion. Phys Rev E 86(5):052101CrossRef Balankin AS, Mena B, Martinez-Gonzalez C, Matamoros DM (2012) Random walk in chemical space of cantor dust as a paradigm of superdiffusion. Phys Rev E 86(5):052101CrossRef
12.
Zurück zum Zitat Alexander S, Orbach R (1982) Density of states on fractals: fractons. J de Phys Lett 43(17):625–631CrossRef Alexander S, Orbach R (1982) Density of states on fractals: fractons. J de Phys Lett 43(17):625–631CrossRef
13.
Zurück zum Zitat Lu D, Liang J, Du X, Ma C, Gao Z (2019) Fractional elastoplastic constitutive model for soils based on a novel 3d fractional plastic flow rule. Comput Geotech 105:277–290CrossRef Lu D, Liang J, Du X, Ma C, Gao Z (2019) Fractional elastoplastic constitutive model for soils based on a novel 3d fractional plastic flow rule. Comput Geotech 105:277–290CrossRef
14.
Zurück zum Zitat Li C, Guo H, Tian X, He T (2019) Generalized thermoviscoelastic analysis with fractional order strain in a thick viscoelastic plate of infinite extent. J Therm Stress 42(8):1051–1070CrossRef Li C, Guo H, Tian X, He T (2019) Generalized thermoviscoelastic analysis with fractional order strain in a thick viscoelastic plate of infinite extent. J Therm Stress 42(8):1051–1070CrossRef
15.
Zurück zum Zitat Li C, Guo H, Tian X, He T (2019) Generalized thermoelastic diffusion problems with fractional order strain. Eur J Mech A/Solids 78:103827MathSciNetCrossRef Li C, Guo H, Tian X, He T (2019) Generalized thermoelastic diffusion problems with fractional order strain. Eur J Mech A/Solids 78:103827MathSciNetCrossRef
17.
Zurück zum Zitat Lu B, Liu X, Dong P, Tick GR, Zheng C, Zhang Y, Mahmood-UI-Hassan M, Bai H, Lamy E (2020) Quantifying fate and transport of nitrate in saturated soil systems using fractional derivative model. Appl Math Modell 81:279–295MathSciNetCrossRef Lu B, Liu X, Dong P, Tick GR, Zheng C, Zhang Y, Mahmood-UI-Hassan M, Bai H, Lamy E (2020) Quantifying fate and transport of nitrate in saturated soil systems using fractional derivative model. Appl Math Modell 81:279–295MathSciNetCrossRef
18.
Zurück zum Zitat Li C, Tian X, He T (2020) Transient thermomechanical responses of multilayered viscoelastic composite structure with non-idealized interfacial conditions in the context of generalized thermoviscoelasticity theory with time-fractional order strain. J Therm Stress 43(7):895–928CrossRef Li C, Tian X, He T (2020) Transient thermomechanical responses of multilayered viscoelastic composite structure with non-idealized interfacial conditions in the context of generalized thermoviscoelasticity theory with time-fractional order strain. J Therm Stress 43(7):895–928CrossRef
19.
Zurück zum Zitat Failla G, Zingales M (2020) Advanced materials modelling via fractional calculus: challenges and perspectives Failla G, Zingales M (2020) Advanced materials modelling via fractional calculus: challenges and perspectives
20.
Zurück zum Zitat Peterlin A (1955) Excluded volume effect on light scattering of the coiled linear macromolecule. The J Chem Phys 23(12):2464–2465CrossRef Peterlin A (1955) Excluded volume effect on light scattering of the coiled linear macromolecule. The J Chem Phys 23(12):2464–2465CrossRef
21.
Zurück zum Zitat Mainardi F (2010) Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models. World Scientific, SingaporeCrossRef Mainardi F (2010) Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models. World Scientific, SingaporeCrossRef
22.
Zurück zum Zitat Tarasov VE (2011) Fractional dynamics: applications of fractional calculus to dynamics of particles, fields and media. Springer, New Year Tarasov VE (2011) Fractional dynamics: applications of fractional calculus to dynamics of particles, fields and media. Springer, New Year
23.
Zurück zum Zitat Li J, Ostoja-Starzewski M (2009) Fractal solids, product measures and fractional wave equations. Proc Royal Soc A Math Phys Eng Sci 465(2108):2521–2536MathSciNetMATH Li J, Ostoja-Starzewski M (2009) Fractal solids, product measures and fractional wave equations. Proc Royal Soc A Math Phys Eng Sci 465(2108):2521–2536MathSciNetMATH
24.
Zurück zum Zitat El-Nabulsi RA (2020) On a new fractional uncertainty relation and its implications in quantum mechanics and molecular physics. Proc Royal Soc A 476(2234):20190729MathSciNetCrossRef El-Nabulsi RA (2020) On a new fractional uncertainty relation and its implications in quantum mechanics and molecular physics. Proc Royal Soc A 476(2234):20190729MathSciNetCrossRef
25.
Zurück zum Zitat Bunde A, Havlin S (2012) Fractals and disordered systems. Springer, New YearMATH Bunde A, Havlin S (2012) Fractals and disordered systems. Springer, New YearMATH
26.
Zurück zum Zitat Likhtman AE, Sukumaran SK, Ramirez J (2007) Linear viscoelasticity from molecular dynamics simulation of entangled polymers. Macromolecules 40(18):6748–6757CrossRef Likhtman AE, Sukumaran SK, Ramirez J (2007) Linear viscoelasticity from molecular dynamics simulation of entangled polymers. Macromolecules 40(18):6748–6757CrossRef
27.
Zurück zum Zitat Sommer J-U, Schulz M, Trautenberg HL (1993) Dynamical properties of randomly cross-linked polymer melts: a monte carlo study. i. diffusion dynamics. The J Chem Phys 98(9):7515–7520CrossRef Sommer J-U, Schulz M, Trautenberg HL (1993) Dynamical properties of randomly cross-linked polymer melts: a monte carlo study. i. diffusion dynamics. The J Chem Phys 98(9):7515–7520CrossRef
28.
Zurück zum Zitat Schiessel H (1998) Unfold dynamics of generalized gaussian structures. Phys Rev E 57(5):57–75CrossRef Schiessel H (1998) Unfold dynamics of generalized gaussian structures. Phys Rev E 57(5):57–75CrossRef
29.
Zurück zum Zitat Holzapfel GA, Simo JC (1996) A new viscoelastic constitutive model for continuous media at finite thermomechanical changes. Int J Solids Struct 33(20–22):3019–3034CrossRef Holzapfel GA, Simo JC (1996) A new viscoelastic constitutive model for continuous media at finite thermomechanical changes. Int J Solids Struct 33(20–22):3019–3034CrossRef
30.
Zurück zum Zitat Holzapfel GA (2000) Nonlinear solid mechanics. Wiley, ChichesterMATH Holzapfel GA (2000) Nonlinear solid mechanics. Wiley, ChichesterMATH
31.
Zurück zum Zitat Chen W, Sun H, Zhang X, Korošak D (2010) Anomalous diffusion modeling by fractal and fractional derivatives. Comput Math Appl 59(5):1754–1758MathSciNetCrossRef Chen W, Sun H, Zhang X, Korošak D (2010) Anomalous diffusion modeling by fractal and fractional derivatives. Comput Math Appl 59(5):1754–1758MathSciNetCrossRef
32.
Zurück zum Zitat Peng S, Valanis K, Landel R (1977) Nonlinear viscoelasticity and relaxation phenomena of polymer solidsnichtlineare viskoelastizität und relaxationserscheinungen in festen polymeren. Acta Mech 25(3–4):229–240CrossRef Peng S, Valanis K, Landel R (1977) Nonlinear viscoelasticity and relaxation phenomena of polymer solidsnichtlineare viskoelastizität und relaxationserscheinungen in festen polymeren. Acta Mech 25(3–4):229–240CrossRef
33.
Zurück zum Zitat Weiner JH (2012) Statistical mechanics of elasticity, Courier Corporation Weiner JH (2012) Statistical mechanics of elasticity, Courier Corporation
34.
Zurück zum Zitat Park SY, Bera AK (2009) Maximum entropy autoregressive conditional heteroskedasticity model. J Economet 150(2):219–230MathSciNetCrossRef Park SY, Bera AK (2009) Maximum entropy autoregressive conditional heteroskedasticity model. J Economet 150(2):219–230MathSciNetCrossRef
35.
Zurück zum Zitat Rubinstein M, Colby RH et al (2003) Polymer physics, vol 23. Oxford University Press, New York Rubinstein M, Colby RH et al (2003) Polymer physics, vol 23. Oxford University Press, New York
36.
Zurück zum Zitat Balankin A, Tamayo P (1994) Fractal solid mechanics. Rev Mexicana de Física 40(4):506–532 Balankin A, Tamayo P (1994) Fractal solid mechanics. Rev Mexicana de Física 40(4):506–532
37.
Zurück zum Zitat Tarasov VE (2014) Anisotropic fractal media by vector calculus in non-integer dimensional space. J Math Phys 55(8):083510MathSciNetCrossRef Tarasov VE (2014) Anisotropic fractal media by vector calculus in non-integer dimensional space. J Math Phys 55(8):083510MathSciNetCrossRef
Metadaten
Titel
Excluded volume effects and fractional viscoelasticity in polymers
verfasst von
Somayeh Mashayekhi
Eugenia Stanisauskis
Mahdi Hassani
William Oates
Publikationsdatum
03.08.2021
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 4/2022
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-021-01415-2

Weitere Artikel der Ausgabe 4/2022

Meccanica 4/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.