Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 4/2018

29.10.2018 | Original Article

Exhaustive characterization on chemical and thermal treatment of sawdust for improved biogas production

verfasst von: Renu Bala, Monoj Kumar Mondal

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work is aimed to the effective chemical pretreatment of sawdust hydrolysis for enhanced biogas production. Various chemical reagents were used for sawdust hydrolysis. NaOH was found to be the best among all in order to produce highest yield of soluble chemical oxygen demand (sCOD) and phenolic compounds. Therefore, NaOH prospective on delignification and rupture of cell wall of sawdust was determined experimentally using different approaches (NaOH addition, NaOH-microwave, and NaOH-autoclave). The NaOH-autoclave pretreatment showed pronounced effect on cellulose, hemicellulose, and lignin content of sawdust. XRD analysis revealed that 10% increase in crystallinity was observed after NaOH-autoclave treatment. SEM micrographs also depicted that cell wall surface was highly affected by NaOH-autoclave pretreatment. Optimum condition for highest lignin solubilization of 58.6% was found at 10% NaOH concentration and 90-min autoclaving time. Biogas yield was increased by 50.8% at optimum pretreatment condition in comparison to native sawdust. Rate constant and order of bioconversion into biogas was also increased after pretreatment. The maximum methane content in biogas for treated sawdust was found to be 62%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Alexandropoulou M, Antonopoulou G, Fragkou E, Ntaikou I, Lyberatos G (2017) Fungal pretreatment of willow sawdust and its combination with alkaline treatment for enhancing biogas production. J Environ Manag 203:704–713CrossRef Alexandropoulou M, Antonopoulou G, Fragkou E, Ntaikou I, Lyberatos G (2017) Fungal pretreatment of willow sawdust and its combination with alkaline treatment for enhancing biogas production. J Environ Manag 203:704–713CrossRef
2.
Zurück zum Zitat Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy CombusSci 42:35–53CrossRef Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy CombusSci 42:35–53CrossRef
3.
Zurück zum Zitat Zhao X, Zhang L, Liu D (2012) Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels Bioprod Biorefin 6:465–482CrossRef Zhao X, Zhang L, Liu D (2012) Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels Bioprod Biorefin 6:465–482CrossRef
5.
Zurück zum Zitat Nanda S, Mohammad J, Reddy SN, Kozinski JA, Dalai AK (2014) Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Conv Bioref 4:157–191CrossRef Nanda S, Mohammad J, Reddy SN, Kozinski JA, Dalai AK (2014) Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Conv Bioref 4:157–191CrossRef
6.
Zurück zum Zitat Lo’pez MJ, Sua’rez-Estrella F, Vargas-Garcı’a MC, Lo’pez-Gonza’lez JA, Verstichel S, Debeer L, Wierinck I, Moreno J (2013) Biodelignification of agricultural and forest wastes: effect on anaerobic digestion. Biomass Bioenergy 58:343–349CrossRef Lo’pez MJ, Sua’rez-Estrella F, Vargas-Garcı’a MC, Lo’pez-Gonza’lez JA, Verstichel S, Debeer L, Wierinck I, Moreno J (2013) Biodelignification of agricultural and forest wastes: effect on anaerobic digestion. Biomass Bioenergy 58:343–349CrossRef
7.
Zurück zum Zitat Lizasoain J, Rincon M, Theuretzbacher F, Enguídanos R, Nielsen PJ, Potthast A, Zweckmair T, Gronauer A, Bauer A (2016) Biogas production from reed biomass: effect of pretreatment using different steam explosion conditions. Biomass Bioenergy 95:84–91CrossRef Lizasoain J, Rincon M, Theuretzbacher F, Enguídanos R, Nielsen PJ, Potthast A, Zweckmair T, Gronauer A, Bauer A (2016) Biogas production from reed biomass: effect of pretreatment using different steam explosion conditions. Biomass Bioenergy 95:84–91CrossRef
8.
Zurück zum Zitat Pellera FM, Santori S, Pomi R, Polettini A, Gidarakos E (2016) Effect of alkaline pretreatment on anaerobic digestion of olive mill solid waste. Waste Manag 58:160–168CrossRef Pellera FM, Santori S, Pomi R, Polettini A, Gidarakos E (2016) Effect of alkaline pretreatment on anaerobic digestion of olive mill solid waste. Waste Manag 58:160–168CrossRef
9.
Zurück zum Zitat Saritha M, Arora A, Lata (2012) Biological pretreatment of lignocellulosic substrates for enhanced delignification and enzymatic digestibility. Indian J Microbiol 52(2):122–130CrossRef Saritha M, Arora A, Lata (2012) Biological pretreatment of lignocellulosic substrates for enhanced delignification and enzymatic digestibility. Indian J Microbiol 52(2):122–130CrossRef
10.
Zurück zum Zitat Hu Y, Hao X, Wang J, Cao Y (2016) Enhancing anaerobic digestion of lignocellulosic materials in excess sludge by bioaugmentation and pre-treatment. Waste Manag 49:55–63CrossRef Hu Y, Hao X, Wang J, Cao Y (2016) Enhancing anaerobic digestion of lignocellulosic materials in excess sludge by bioaugmentation and pre-treatment. Waste Manag 49:55–63CrossRef
11.
Zurück zum Zitat Behera S, Arora R, Nandhagopal N, Kumar S (2014) Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew Sust Energ Rev 36:91–106CrossRef Behera S, Arora R, Nandhagopal N, Kumar S (2014) Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew Sust Energ Rev 36:91–106CrossRef
12.
Zurück zum Zitat Chiaramonti D, Prussi M, Ferrero S, Oriani L, Ottonello P, Torre P, Cherchi F (2012) Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method. Biomass Bioenergy 46:25–35CrossRef Chiaramonti D, Prussi M, Ferrero S, Oriani L, Ottonello P, Torre P, Cherchi F (2012) Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method. Biomass Bioenergy 46:25–35CrossRef
14.
Zurück zum Zitat Zhou S, Weimer PJ, Hatfield RD, Runge TM, Digman M (2014) Improving ethanol production from alfalfa stems via ambient-temperature acid pretreatment and washing. Bioresour Technol 170:286–292CrossRef Zhou S, Weimer PJ, Hatfield RD, Runge TM, Digman M (2014) Improving ethanol production from alfalfa stems via ambient-temperature acid pretreatment and washing. Bioresour Technol 170:286–292CrossRef
15.
Zurück zum Zitat Xu H, Li B, Mu X (2016) Review of alkali-based pretreatment to enhance enzymatic saccharification for lignocellulosic biomass conversion. Ind Eng Chem Res 55:8691–8705CrossRef Xu H, Li B, Mu X (2016) Review of alkali-based pretreatment to enhance enzymatic saccharification for lignocellulosic biomass conversion. Ind Eng Chem Res 55:8691–8705CrossRef
16.
Zurück zum Zitat Jaffar M, Pang Y, Yuan H, Zou D, Liu Y, Zhu B, Korai RM, Li X (2016) Wheat straw pretreatment with KOH for enhancing biomethane production and fertilizer value in anaerobic digestion. Chinese J Chem Eng 24:404–409CrossRef Jaffar M, Pang Y, Yuan H, Zou D, Liu Y, Zhu B, Korai RM, Li X (2016) Wheat straw pretreatment with KOH for enhancing biomethane production and fertilizer value in anaerobic digestion. Chinese J Chem Eng 24:404–409CrossRef
17.
Zurück zum Zitat Chandra R, Takeuchi H, Hasegawa T, Kumar R (2012) Improving biodegradability and biogas production of wheat straw substrates using sodium hydroxide and hydrothermal pretreatments. Energ 43:273–282CrossRef Chandra R, Takeuchi H, Hasegawa T, Kumar R (2012) Improving biodegradability and biogas production of wheat straw substrates using sodium hydroxide and hydrothermal pretreatments. Energ 43:273–282CrossRef
18.
Zurück zum Zitat Carlsson M, Lagerkvist A, Morgan-Sagastume F (2012) The effects of substrate pretreatment on anaerobic digestion: a review. Waste Manag 32:1634–1650CrossRef Carlsson M, Lagerkvist A, Morgan-Sagastume F (2012) The effects of substrate pretreatment on anaerobic digestion: a review. Waste Manag 32:1634–1650CrossRef
19.
Zurück zum Zitat Zawawi AZ, Gaik LP, Sebran NH, Othman J, Shah A (2018) An optimisation study on biomass delignification process using alkaline wash. Biomass Conv Bioref 8:59–68CrossRef Zawawi AZ, Gaik LP, Sebran NH, Othman J, Shah A (2018) An optimisation study on biomass delignification process using alkaline wash. Biomass Conv Bioref 8:59–68CrossRef
20.
Zurück zum Zitat Mancini G, Papirio S, Lens PNL, Esposito G (2018) Increased biogas production from wheat straw by chemical pretreatments. Renew Energy 119:608–614CrossRef Mancini G, Papirio S, Lens PNL, Esposito G (2018) Increased biogas production from wheat straw by chemical pretreatments. Renew Energy 119:608–614CrossRef
21.
Zurück zum Zitat Mustafa AM, Li H, Radwan AA, Sheng K, Chen X (2018) Effect of hydrothermal and Ca(OH)2 pretreatments on anaerobic digestion of sugarcane bagasse for biogas production. Bioresour Technol 259:54–60CrossRef Mustafa AM, Li H, Radwan AA, Sheng K, Chen X (2018) Effect of hydrothermal and Ca(OH)2 pretreatments on anaerobic digestion of sugarcane bagasse for biogas production. Bioresour Technol 259:54–60CrossRef
22.
Zurück zum Zitat Kaur K, Phutela UG (2016) Enhancement of paddy straw digestibility and biogas production by sodium hydroxide-microwave pretreatment. Renew Energ 92:178–184CrossRef Kaur K, Phutela UG (2016) Enhancement of paddy straw digestibility and biogas production by sodium hydroxide-microwave pretreatment. Renew Energ 92:178–184CrossRef
23.
Zurück zum Zitat Jin S, Zhang G, Zhang P, Li F, Wang S, Fan S, Zhou S (2016) Microwave assisted alkaline pretreatment to enhance enzymatic saccharification of catalpa sawdust. Bioresour Technol 221:26–30CrossRef Jin S, Zhang G, Zhang P, Li F, Wang S, Fan S, Zhou S (2016) Microwave assisted alkaline pretreatment to enhance enzymatic saccharification of catalpa sawdust. Bioresour Technol 221:26–30CrossRef
26.
Zurück zum Zitat APHA AWWA (1998) Standard methods for the examination of water and wastewater, 14th edn. APHA, Washington DC APHA AWWA (1998) Standard methods for the examination of water and wastewater, 14th edn. APHA, Washington DC
27.
Zurück zum Zitat Singleton VL, Rossi JA (1965) Colorimetry of total phenolic with phosphomolybdicphosphotungstic acid reagent. Am J End Vitic 16:144–158 Singleton VL, Rossi JA (1965) Colorimetry of total phenolic with phosphomolybdicphosphotungstic acid reagent. Am J End Vitic 16:144–158
28.
Zurück zum Zitat Van Soest PJ, Wine RH (1968) Determination of lignin and cellulose in acid detergent fiber with permanganate. J AssocOff Anal Chem 51:750–785 Van Soest PJ, Wine RH (1968) Determination of lignin and cellulose in acid detergent fiber with permanganate. J AssocOff Anal Chem 51:750–785
29.
Zurück zum Zitat Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794CrossRef Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794CrossRef
30.
Zurück zum Zitat Pellera FM, Gidarakos E (2018) Chemical pretreatment of lignocellulosic agroindustrial waste for methane production. Waste Manag 71:689–703CrossRef Pellera FM, Gidarakos E (2018) Chemical pretreatment of lignocellulosic agroindustrial waste for methane production. Waste Manag 71:689–703CrossRef
31.
Zurück zum Zitat Michalska K, Bizukoj M, Ledakowicz S (2015) Pretreatment of energy crops with sodium hydroxide and cellulolytic enzymes to increase biogas production. Biomass Bioenergy 80:213–221CrossRef Michalska K, Bizukoj M, Ledakowicz S (2015) Pretreatment of energy crops with sodium hydroxide and cellulolytic enzymes to increase biogas production. Biomass Bioenergy 80:213–221CrossRef
32.
Zurück zum Zitat Wang D, Ai P, Yu L, Tan Z, Zhang Y (2015) Comparing the hydrolysis and biogas production performance of alkali and acid pretreatments of rice straw using two stage anaerobic fermentation. BiosystEng 132:47–55 Wang D, Ai P, Yu L, Tan Z, Zhang Y (2015) Comparing the hydrolysis and biogas production performance of alkali and acid pretreatments of rice straw using two stage anaerobic fermentation. BiosystEng 132:47–55
33.
Zurück zum Zitat Loow YL, Wu TY, Jahim JM, Mohammad AW, Teoh WH (2016) Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment. Cellulose 23:1491–1520CrossRef Loow YL, Wu TY, Jahim JM, Mohammad AW, Teoh WH (2016) Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment. Cellulose 23:1491–1520CrossRef
34.
Zurück zum Zitat Chandra RP, Bura R, Mabee WE, Berlin A, Pan X, Saddler JN (2007) Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics. Adv Biochem Eng Biotechnol 108:67–93 Chandra RP, Bura R, Mabee WE, Berlin A, Pan X, Saddler JN (2007) Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics. Adv Biochem Eng Biotechnol 108:67–93
35.
Zurück zum Zitat Xu F, Yu J, Tesso T, Dowell F, Wang D (2013) Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: a mini-review. Appl Energy 104:801–809CrossRef Xu F, Yu J, Tesso T, Dowell F, Wang D (2013) Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: a mini-review. Appl Energy 104:801–809CrossRef
36.
Zurück zum Zitat Taherdanak M, Zilouei H (2014) Improving biogas production from wheat plant using alkaline pretreatment. Fuel 115:714–719CrossRef Taherdanak M, Zilouei H (2014) Improving biogas production from wheat plant using alkaline pretreatment. Fuel 115:714–719CrossRef
37.
Zurück zum Zitat Fougere D, Nanda S, Clarke K, Kozinski JA, Li K (2016) Effect of acidic pretreatment on the chemistry and distribution of lignin in aspen wood and wheat straw substrates. Biomass Bioenergy 91:56–68CrossRef Fougere D, Nanda S, Clarke K, Kozinski JA, Li K (2016) Effect of acidic pretreatment on the chemistry and distribution of lignin in aspen wood and wheat straw substrates. Biomass Bioenergy 91:56–68CrossRef
38.
Zurück zum Zitat Lei M, Zhang H, Zheng H, Li Y, Huang H, Xu R (2013) Characterization of lignins isolated from alkali treated prehydrolysate of corn stover. Chinese J ChemEng 21(4):427–433CrossRef Lei M, Zhang H, Zheng H, Li Y, Huang H, Xu R (2013) Characterization of lignins isolated from alkali treated prehydrolysate of corn stover. Chinese J ChemEng 21(4):427–433CrossRef
39.
Zurück zum Zitat Jiangtao S, Dong X, Jian L (2012) FTIR studies of the changes in wood chemistry from wood forming tissue under inclined treatment. Energy Procedia 16:758–762CrossRef Jiangtao S, Dong X, Jian L (2012) FTIR studies of the changes in wood chemistry from wood forming tissue under inclined treatment. Energy Procedia 16:758–762CrossRef
40.
Zurück zum Zitat Ang TN, Ngoh GC, Chua ASM, Lee MG (2012) Elucidation of the effect of ionic liquid pretreatment on rice husk via structural analyses. Biotechnol Biofuels 5(67):1–10 Ang TN, Ngoh GC, Chua ASM, Lee MG (2012) Elucidation of the effect of ionic liquid pretreatment on rice husk via structural analyses. Biotechnol Biofuels 5(67):1–10
41.
Zurück zum Zitat Sua Y, Dua R, Guo H, Cao M, Wua Q, Sua R, Qi W, He Z (2015) Fractional pretreatment of lignocellulose by alkaline hydrogen peroxide: characterization of its major components. Food Bioprod Process 94:322–330CrossRef Sua Y, Dua R, Guo H, Cao M, Wua Q, Sua R, Qi W, He Z (2015) Fractional pretreatment of lignocellulose by alkaline hydrogen peroxide: characterization of its major components. Food Bioprod Process 94:322–330CrossRef
42.
Zurück zum Zitat Pandeya KK, Pitman AJ (2003) FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int Bio Deterior Biodegrad 52:150–160 Pandeya KK, Pitman AJ (2003) FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int Bio Deterior Biodegrad 52:150–160
43.
Zurück zum Zitat Zhang Q, Huang H, Han H, Qiu Z, Achal V (2017) Stimulatory effect of in-situ detoxification on bioethanol production by rice straw. Energy 135:32–39CrossRef Zhang Q, Huang H, Han H, Qiu Z, Achal V (2017) Stimulatory effect of in-situ detoxification on bioethanol production by rice straw. Energy 135:32–39CrossRef
44.
Zurück zum Zitat Chen G, Chang Z, Zheng Z (2014) Feasibility of NaOH-treatment for improving biogas production of digested Spartina alterniflora. Int Biodeter Biodegrad 93:131–137CrossRef Chen G, Chang Z, Zheng Z (2014) Feasibility of NaOH-treatment for improving biogas production of digested Spartina alterniflora. Int Biodeter Biodegrad 93:131–137CrossRef
45.
Zurück zum Zitat Kristiania A, Effendib N, Aristiawana Y, Auliaa F, Sudiyania Y (2015) Effect of combining chemical and irradiation pretreatment process to characteristic of oil palm’s empty fruit bunches as raw material for second generation bioethanol. Energy Procedia 68:195–204CrossRef Kristiania A, Effendib N, Aristiawana Y, Auliaa F, Sudiyania Y (2015) Effect of combining chemical and irradiation pretreatment process to characteristic of oil palm’s empty fruit bunches as raw material for second generation bioethanol. Energy Procedia 68:195–204CrossRef
46.
Zurück zum Zitat Lima MA, Lavorente GB, da Silva HKP et al (2013) Effects of pretreatment on morphology, chemical composition and enzymatic digestibility of eucalyptus bark: a potentially valuable source of fermentable sugars for biofuel production—part 1. Biotechnol Biofuels 6(75):1–17 Lima MA, Lavorente GB, da Silva HKP et al (2013) Effects of pretreatment on morphology, chemical composition and enzymatic digestibility of eucalyptus bark: a potentially valuable source of fermentable sugars for biofuel production—part 1. Biotechnol Biofuels 6(75):1–17
48.
Zurück zum Zitat Mohtar SS, Busu TNZTM, Noor AMM, Shaari N, Mat H (2017) An ionic liquid treatment and fractionation of cellulose, hemicellulose and lignin from oil palm empty fruit bunch. Carbohydr Polym 166:291–299CrossRef Mohtar SS, Busu TNZTM, Noor AMM, Shaari N, Mat H (2017) An ionic liquid treatment and fractionation of cellulose, hemicellulose and lignin from oil palm empty fruit bunch. Carbohydr Polym 166:291–299CrossRef
49.
Zurück zum Zitat Nargotra P, Sharma V, Gupta M, Kour S, Bajaj BK (2018) Application of ionic liquid and alkali pretreatment for enhancing saccharification of sunflower stalk biomass for potential biofuel-ethanol production. Bioresour Technol 267:560–568CrossRef Nargotra P, Sharma V, Gupta M, Kour S, Bajaj BK (2018) Application of ionic liquid and alkali pretreatment for enhancing saccharification of sunflower stalk biomass for potential biofuel-ethanol production. Bioresour Technol 267:560–568CrossRef
50.
Zurück zum Zitat Hesamia SM, Ziloueia H, Karimia K, Asadinezhadaa A (2015) Enhanced biogas production from sunflower stalks usinghydrothermal and organosolv pretreatment. Ind Crop Prod 76:449–455CrossRef Hesamia SM, Ziloueia H, Karimia K, Asadinezhadaa A (2015) Enhanced biogas production from sunflower stalks usinghydrothermal and organosolv pretreatment. Ind Crop Prod 76:449–455CrossRef
51.
Zurück zum Zitat Bjornsson L, Murto M, Mattiasson B (2000) Evaluation of parameters for monitoring an anaerobic co-digestion process. Appl Microbiol Biotechnol 54:844–849CrossRef Bjornsson L, Murto M, Mattiasson B (2000) Evaluation of parameters for monitoring an anaerobic co-digestion process. Appl Microbiol Biotechnol 54:844–849CrossRef
52.
Zurück zum Zitat Monte LS, Escócio VA, de Sousa ANF (2018) Study of time reaction on alkaline pretreatment applied to rice husk on biomass component extraction. Biomass Conv Bioref 8:189–197CrossRef Monte LS, Escócio VA, de Sousa ANF (2018) Study of time reaction on alkaline pretreatment applied to rice husk on biomass component extraction. Biomass Conv Bioref 8:189–197CrossRef
53.
Zurück zum Zitat Dabir S, Cao M, Prosser R, Tsotsis T (2017) Feasibility study of biogas reforming to improve energy efficiency and to reduce nitrogen oxide emissions. Ind Eng Chem Res 56(5):1186–1200CrossRef Dabir S, Cao M, Prosser R, Tsotsis T (2017) Feasibility study of biogas reforming to improve energy efficiency and to reduce nitrogen oxide emissions. Ind Eng Chem Res 56(5):1186–1200CrossRef
Metadaten
Titel
Exhaustive characterization on chemical and thermal treatment of sawdust for improved biogas production
verfasst von
Renu Bala
Monoj Kumar Mondal
Publikationsdatum
29.10.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 4/2018
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-018-0342-6

Weitere Artikel der Ausgabe 4/2018

Biomass Conversion and Biorefinery 4/2018 Zur Ausgabe