Skip to main content

2017 | OriginalPaper | Buchkapitel

Experimental Analogue Implementation of Memristor Based Chaotic Oscillators

verfasst von : R. Jothimurugan, S. Sabarathinam, K. Suresh, K. Thamilmaran

Erschienen in: Advances in Memristors, Memristive Devices and Systems

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The theory of memristor was postulated in the year of 1971 by Leon O. Chua. The intensive interest on memristive systems is given by the researchers since after the physical realization of the hysteresis behavior in a nanoscale TiO\(_{\mathrm {2}}\) memristor in 2008 by a group of researchers at HP Labs lead by Stanley Williams. Research on memristive systems has been carried out on various capacities such as understanding the mathematics of memristor, finding new materials which have memristive properties, studying the underlying dynamics of memristive systems and revisiting the existing concepts with memristor as a nonlinear element. As a result, memristors have potential applications in various domains. It ranges from neural networks, memory devices, artificial intelligence, high speed computing, nano batteries and human skin modeling, etc. In the recent times, much attention is given to explore the nonlinear dynamics of memristor based circuits. In this chapter, we consider a smooth continuous cubic memristor as nonlinear element. It is applied to (a) an autonomous and (b) a non-autonomous dynamical systems namely, the Chua’s circuit and Duffing Oscillator, to study the associated dynamics of these systems. The numerical simulation of the circuit systems as well as its hardware experimental studies are performed in the laboratory. An inductor free realization and volume expanded period doubling scenario in a memristive Chua’s circuit is studied. The complex behaviors, like, bifurcations and chaos, three-tori, transient chaos and intermittency in a memristive Duffing oscillator are described. In addition, “0–1 test” for the experimental time series data characterizing the regular and chaotic dynamics of the proposed circuits are also discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Banerjee, T. (2012). Single amplifier biquad based inductor-free Chua’s circuit. Nonlinear Dynamics, 68, 565–573.MathSciNetCrossRef Banerjee, T. (2012). Single amplifier biquad based inductor-free Chua’s circuit. Nonlinear Dynamics, 68, 565–573.MathSciNetCrossRef
Zurück zum Zitat Bao, B.-C., Xu, J.-P., & Liu, Z. (2010). Initial state dependent dynamical behviours in a memristor based chaotic circuit. Chinese Physics Letters, 27(7), 070504.CrossRef Bao, B.-C., Xu, J.-P., & Liu, Z. (2010). Initial state dependent dynamical behviours in a memristor based chaotic circuit. Chinese Physics Letters, 27(7), 070504.CrossRef
Zurück zum Zitat Bao, B.-C., Fei, F., Wei, D., & Pan, S.-H. (2013). The voltage-current relationship and equivalent circuit implementation of parallel flux-controlled memristive circuits. Chinese Physics B, 22(6), 068401.CrossRef Bao, B.-C., Fei, F., Wei, D., & Pan, S.-H. (2013). The voltage-current relationship and equivalent circuit implementation of parallel flux-controlled memristive circuits. Chinese Physics B, 22(6), 068401.CrossRef
Zurück zum Zitat Bharathwaj, M., Blain, T., & Sundqvist, K. (2009). A synthetic inductor implementation of Chua’s circuit. EECS Department, University of California, Berkeley. UCB/EECS-2009-20. Bharathwaj, M., Blain, T., & Sundqvist, K. (2009). A synthetic inductor implementation of Chua’s circuit. EECS Department, University of California, Berkeley. UCB/EECS-2009-20.
Zurück zum Zitat Botta, V. A., Nespoli, C., & Messias, M. (2011). Mathematical analysis of a third order memristor based Chua’s oscillator. TEMA Tendencias em Matematica Aplicada e Computacional, 12(2), 91–99.MathSciNetMATH Botta, V. A., Nespoli, C., & Messias, M. (2011). Mathematical analysis of a third order memristor based Chua’s oscillator. TEMA Tendencias em Matematica Aplicada e Computacional, 12(2), 91–99.MathSciNetMATH
Zurück zum Zitat Chua, L. O. (1971). Memristor-the missing circuit element. IEEE Transactions on Circuit Theory, 18, 507–519. Chua, L. O. (1971). Memristor-the missing circuit element. IEEE Transactions on Circuit Theory, 18, 507–519.
Zurück zum Zitat Corinto, F., & Ascoli, A. (2012). Memristive diode bridge with LCR filter. Electronics Letters, 48(14), 824–825.CrossRef Corinto, F., & Ascoli, A. (2012). Memristive diode bridge with LCR filter. Electronics Letters, 48(14), 824–825.CrossRef
Zurück zum Zitat Dhamala, M., & Lai, Y.-C. (1999). Controlling transient chaos in deterministic flows with applications to electrical power systems and ecology. Physical Review E, 59, 1646.CrossRef Dhamala, M., & Lai, Y.-C. (1999). Controlling transient chaos in deterministic flows with applications to electrical power systems and ecology. Physical Review E, 59, 1646.CrossRef
Zurück zum Zitat Fouda, M. E., & Radwan, M. G. (2014). Memristor-based voltage-controlled relaxation oscillators. International Journal of Circuit Theory and Applications, 42, 1092–1102.CrossRef Fouda, M. E., & Radwan, M. G. (2014). Memristor-based voltage-controlled relaxation oscillators. International Journal of Circuit Theory and Applications, 42, 1092–1102.CrossRef
Zurück zum Zitat George, D. (1918). Erzwungene schwingung bei vernderlicher eigenfrequenz und ihre technische bedeutung. Vieweg. George, D. (1918). Erzwungene schwingung bei vernderlicher eigenfrequenz und ihre technische bedeutung. Vieweg.
Zurück zum Zitat Gopal, R., Venkatesan, A., & Lakshmanan, M. (2013). Applicability of 0–1 test for strange nonchaotic attractors. Chaos, 23, 023123.MathSciNetCrossRefMATH Gopal, R., Venkatesan, A., & Lakshmanan, M. (2013). Applicability of 0–1 test for strange nonchaotic attractors. Chaos, 23, 023123.MathSciNetCrossRefMATH
Zurück zum Zitat Gottwald, G. A., & Melbourne, I. (2004). A new test for chaos in deterministic systems. Proceedings of the Royal Society of London A, 460, 603–611.MathSciNetCrossRefMATH Gottwald, G. A., & Melbourne, I. (2004). A new test for chaos in deterministic systems. Proceedings of the Royal Society of London A, 460, 603–611.MathSciNetCrossRefMATH
Zurück zum Zitat Ishaq Ahamed, I., & Lakshmanan, M. (2013). Nonsmooth bifurcations, transient hyperchaos and hyperchaotic beats in a memristive Murali-Lakshmanan-Chua’s circuit. International Journal of Bifurcation and Chaos, 23(6), 1350098. Ishaq Ahamed, I., & Lakshmanan, M. (2013). Nonsmooth bifurcations, transient hyperchaos and hyperchaotic beats in a memristive Murali-Lakshmanan-Chua’s circuit. International Journal of Bifurcation and Chaos, 23(6), 1350098.
Zurück zum Zitat Ishaq Ahamed, I., Srinivasan, K., Murali, K., & Lakshmanan, M. (2011). Observation of chaotic beats in a driven memristive Chua’s circuit. International Journal of Bifurcation and Chaos, 21(3), 737–757. Ishaq Ahamed, I., Srinivasan, K., Murali, K., & Lakshmanan, M. (2011). Observation of chaotic beats in a driven memristive Chua’s circuit. International Journal of Bifurcation and Chaos, 21(3), 737–757.
Zurück zum Zitat Jothimurugan, R., Suresh, K., Ezhilarasu, M., & Thamilmaran, K. (2014). Improved realization of canonical Chua’s circuit with synthetic inductor using current feedback operational amplifiers. AEU—International Journal of Electronics and Communications, 68(5), 413–421. Jothimurugan, R., Suresh, K., Ezhilarasu, M., & Thamilmaran, K. (2014). Improved realization of canonical Chua’s circuit with synthetic inductor using current feedback operational amplifiers. AEU—International Journal of Electronics and Communications, 68(5), 413–421.
Zurück zum Zitat Jung, C., Tél, T., & Ziemniak, E. (1993). Application of scattering chaos to particle transport in a hydrodynamical flow. Chaos: An Interdisciplinary Journal of Nonlinear Science, 3, 555–568.CrossRef Jung, C., Tél, T., & Ziemniak, E. (1993). Application of scattering chaos to particle transport in a hydrodynamical flow. Chaos: An Interdisciplinary Journal of Nonlinear Science, 3, 555–568.CrossRef
Zurück zum Zitat Kim, H., Sah, M., Yang, C., Cho, S., & Chua, L. (2012). Memristor emulator for memristor circuit applications. IEEE Transactions on CAS, I(59), 2422–2431.MathSciNet Kim, H., Sah, M., Yang, C., Cho, S., & Chua, L. (2012). Memristor emulator for memristor circuit applications. IEEE Transactions on CAS, I(59), 2422–2431.MathSciNet
Zurück zum Zitat Kovacic, I., & Brennan, M. J. (2011). The Duffing equation: Nonlinear oscillators and their behaviour. Wiley. Kovacic, I., & Brennan, M. J. (2011). The Duffing equation: Nonlinear oscillators and their behaviour. Wiley.
Zurück zum Zitat Kulp, C. W., & Smith, S. (2011). Characterization of noisy symbolic time series. Physical Review E, 83, 026201.CrossRef Kulp, C. W., & Smith, S. (2011). Characterization of noisy symbolic time series. Physical Review E, 83, 026201.CrossRef
Zurück zum Zitat Kyriakides, E., & Georgiou, J. (2014). A compact, low-frequency, memristor-based oscillator. International Journal of Circuit Theory and Applications. Kyriakides, E., & Georgiou, J. (2014). A compact, low-frequency, memristor-based oscillator. International Journal of Circuit Theory and Applications.
Zurück zum Zitat Lai, Y.-C., & Tél, T. (2011). Transient chaos: Complex dynamics on finite time scales (Vol. 173). Springer Science & Business Media. Lai, Y.-C., & Tél, T. (2011). Transient chaos: Complex dynamics on finite time scales (Vol. 173). Springer Science & Business Media.
Zurück zum Zitat Li, Y., Huang, X., & Guo, M. (2013). The generation, analysis, and circuit implementation of a new memristor based chaotic system. Mathematical Problems in Engineering, 398306. Li, Y., Huang, X., & Guo, M. (2013). The generation, analysis, and circuit implementation of a new memristor based chaotic system. Mathematical Problems in Engineering, 398306.
Zurück zum Zitat Li, H., Wang, L., & Duan, S. (2014). A memristor-based scroll chaotic system—design, analysis and circuit implementation. International Journal of Bifurcation and Chaos, 24, 1450099.CrossRefMATH Li, H., Wang, L., & Duan, S. (2014). A memristor-based scroll chaotic system—design, analysis and circuit implementation. International Journal of Bifurcation and Chaos, 24, 1450099.CrossRefMATH
Zurück zum Zitat Martinsen, O. G., Grimnes, S., Lütken, C. A., & Johnsen, G. K. (2010). Memristance in human skin. Journal of Physics: Conference Series, 224, 012071. Martinsen, O. G., Grimnes, S., Lütken, C. A., & Johnsen, G. K. (2010). Memristance in human skin. Journal of Physics: Conference Series, 224, 012071.
Zurück zum Zitat Morgül, Ö. (1995). Inductorless realization of Chua’s oscillator. Electronics Letters, 31, 1424–1430. Morgül, Ö. (1995). Inductorless realization of Chua’s oscillator. Electronics Letters, 31, 1424–1430.
Zurück zum Zitat Muthuswamy, B. (2010). Implementing memristor based Chaotic circuits. International Journal of Bifurcation and Chaos, 20(5), 1335–1350.CrossRefMATH Muthuswamy, B. (2010). Implementing memristor based Chaotic circuits. International Journal of Bifurcation and Chaos, 20(5), 1335–1350.CrossRefMATH
Zurück zum Zitat Sabarathinam, S., & Thamilmaran, K. (2015). Transient chaos in a globally coupled system of nearly conservative Hamiltonian duffing oscillators. Chaos, Solitons & Fractals, 73, 129–140.MathSciNetCrossRefMATH Sabarathinam, S., & Thamilmaran, K. (2015). Transient chaos in a globally coupled system of nearly conservative Hamiltonian duffing oscillators. Chaos, Solitons & Fractals, 73, 129–140.MathSciNetCrossRefMATH
Zurück zum Zitat Sánchez-Lópeza, C., Carrasco-Aguilara, M., & Muñiz-Montero, C. (2015). A 16 Hz-160 kHz memristor emulator circuit. International Journal of Electronics and Communications (AEU), 69, 1208–1219.CrossRef Sánchez-Lópeza, C., Carrasco-Aguilara, M., & Muñiz-Montero, C. (2015). A 16 Hz-160 kHz memristor emulator circuit. International Journal of Electronics and Communications (AEU), 69, 1208–1219.CrossRef
Zurück zum Zitat Secco, J., Biey, M., Corinto, F., Ascoli, A., & Tetzlaff, R. (2015). Complex behavior in memristor circuits based on static nonlinear two-ports and dynamic bipole. IEEE—European Conference on Circuit Theory and Design (ECCTD), 1–4. Secco, J., Biey, M., Corinto, F., Ascoli, A., & Tetzlaff, R. (2015). Complex behavior in memristor circuits based on static nonlinear two-ports and dynamic bipole. IEEE—European Conference on Circuit Theory and Design (ECCTD), 1–4.
Zurück zum Zitat Slipko, V. A., Pershin, Y. V., & Di Ventra, M. (2013). Changing the state of a memristive system with white noise. Physical Review E, 87, 042103.CrossRef Slipko, V. A., Pershin, Y. V., & Di Ventra, M. (2013). Changing the state of a memristive system with white noise. Physical Review E, 87, 042103.CrossRef
Zurück zum Zitat Strukov, D. B., Snider, G. S., Stewart, D. R., & Stanley Williams, R. (2008). The missing memristor found. Nature, 453, 80–83.CrossRef Strukov, D. B., Snider, G. S., Stewart, D. R., & Stanley Williams, R. (2008). The missing memristor found. Nature, 453, 80–83.CrossRef
Zurück zum Zitat Tél, T., & Lai, Y.-C. (2008). Chaotic transients in spatially extended systems. Physics Reports, 460, 245–275.MathSciNetCrossRef Tél, T., & Lai, Y.-C. (2008). Chaotic transients in spatially extended systems. Physics Reports, 460, 245–275.MathSciNetCrossRef
Zurück zum Zitat Teng, L., Iu, H. H. C., Wang, X., & Wang, X. (2014). Chaotic behavior in fractionalorder memristor-based simplest chaotic circuit using fourth degree polynomial. Nonlinear Dynamics, 77, 231–241. Teng, L., Iu, H. H. C., Wang, X., & Wang, X. (2014). Chaotic behavior in fractionalorder memristor-based simplest chaotic circuit using fourth degree polynomial. Nonlinear Dynamics, 77, 231–241.
Zurück zum Zitat Thomas, A. (2013). Memristor-based neural networks. Journal of Physics D: Applied Physics, 46, 093001. Thomas, A. (2013). Memristor-based neural networks. Journal of Physics D: Applied Physics, 46, 093001.
Zurück zum Zitat Tôrres, L., & Aguirre, L. (2000). Inductorless Chua’s circuit. Electronics Letters, 36, 1915–1916.CrossRef Tôrres, L., & Aguirre, L. (2000). Inductorless Chua’s circuit. Electronics Letters, 36, 1915–1916.CrossRef
Zurück zum Zitat Valov, I., Linn, E., Tappertzhofen, S., Schmelzer, S., van den Hurk, J., Lentz, F., et al. (2013). Nanobatteries in redox-based resistive switches require extension of memristor theory. Nature Communications, 4, 1771.CrossRef Valov, I., Linn, E., Tappertzhofen, S., Schmelzer, S., van den Hurk, J., Lentz, F., et al. (2013). Nanobatteries in redox-based resistive switches require extension of memristor theory. Nature Communications, 4, 1771.CrossRef
Zurück zum Zitat Valsa, J., Biolek, D., & Biolek, Z. (2011). An analogue model of the memristor. International Journal of Numerical Modelling, 24, 400–408. Valsa, J., Biolek, D., & Biolek, Z. (2011). An analogue model of the memristor. International Journal of Numerical Modelling, 24, 400–408.
Zurück zum Zitat Yang, J. J., Pickett, M. D., Li, X., Ohlberg, D. A. A., Stewart, D. R., & Stanley Williams, R. (2008). Memristive switching mechanism for metal/oxide/metal nanodevices. Nature Nanotechnology, 3, 429–433.CrossRef Yang, J. J., Pickett, M. D., Li, X., Ohlberg, D. A. A., Stewart, D. R., & Stanley Williams, R. (2008). Memristive switching mechanism for metal/oxide/metal nanodevices. Nature Nanotechnology, 3, 429–433.CrossRef
Zurück zum Zitat Zakhidov, A. A., Jung, B., Slinker, J. D., Abruña, H. D., & Malliaras, G. G. (2010). A light-emitting memristor. Organic Electronics, 11, 150–153. Zakhidov, A. A., Jung, B., Slinker, J. D., Abruña, H. D., & Malliaras, G. G. (2010). A light-emitting memristor. Organic Electronics, 11, 150–153.
Zurück zum Zitat Zidan, M. A., Omran, H., Smith, C., Syed, A., Radwan, A. G., & Salama, K. N. (2014). A family of memristorbased reactance-less oscillators. International Journal of Circuit Theory and Applications, 42, 1103–1122.CrossRef Zidan, M. A., Omran, H., Smith, C., Syed, A., Radwan, A. G., & Salama, K. N. (2014). A family of memristorbased reactance-less oscillators. International Journal of Circuit Theory and Applications, 42, 1103–1122.CrossRef
Metadaten
Titel
Experimental Analogue Implementation of Memristor Based Chaotic Oscillators
verfasst von
R. Jothimurugan
S. Sabarathinam
K. Suresh
K. Thamilmaran
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-51724-7_14

Premium Partner