Skip to main content

2017 | OriginalPaper | Buchkapitel

Memristor and Inverse Memristor: Modeling, Implementation and Experiments

verfasst von : Mohammed E. Fouda, Ahmed G. Radwan, Ahmed Elwakil

Erschienen in: Advances in Memristors, Memristive Devices and Systems

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Pinched hysteresis is considered to be a signature of the existence of memristive behavior. However, this is not completely accurate. In this chapter, we are discussing a general equation taking into consideration all possible cases to model all known elements including memristor. Based on this equation, it is found that an opposite behavior to the memristor can exist in a nonlinear inductor or a nonlinear capacitor (both with quadratic nonlinearity) or a derivative-controlled nonlinear resistor/transconductor which we refer to as the inverse memristor. We discuss the behavior of this new element and introduce an emulation circuit to mimic its behavior. Connecting the conventional elements with the memristor and/or with inverse memeristor either in series or parallel affects the pinched hysteresis lobes where the pinch point moves from the origin and lobes’ area shrinks or widens. Different cases of connecting different elements are discussed clearly especially connecting the memristor and the inverse memristor together either in series or in parallel. New observations and conditions on the memristive behavior are introduced and discussed in detail with different illustrative examples based on numerical, and circuit simulations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adamatzky, A., & Chua, L. (2013). Memristor Networks. Springer Science & Business Media. Adamatzky, A., & Chua, L. (2013). Memristor Networks. Springer Science & Business Media.
Zurück zum Zitat Adhikari, S. P., Sah, M. P., Kim, H., & Chua, L. O. (2013). Three fingerprints of memristor. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(11), 3008–3021.CrossRef Adhikari, S. P., Sah, M. P., Kim, H., & Chua, L. O. (2013). Three fingerprints of memristor. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(11), 3008–3021.CrossRef
Zurück zum Zitat Alharbi, A. G., Fouda, M. E., & Chowdhury, M. H. (2015a). Memristor emulator based on practical current controlled model. In 2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS) (pp. 1–4). IEEE. Alharbi, A. G., Fouda, M. E., & Chowdhury, M. H. (2015a). Memristor emulator based on practical current controlled model. In 2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS) (pp. 1–4). IEEE.
Zurück zum Zitat Alharbi, A. G., Fouda, M. E., & Chowdhury, M. H. (2015b). A novel memristor emulator based only on an exponential amplifier and ccii+. In 2015 IEEE International Conference on Electronics, Circuits, and Systems (ICECS) (pp. 376–379). IEEE. Alharbi, A. G., Fouda, M. E., & Chowdhury, M. H. (2015b). A novel memristor emulator based only on an exponential amplifier and ccii+. In 2015 IEEE International Conference on Electronics, Circuits, and Systems (ICECS) (pp. 376–379). IEEE.
Zurück zum Zitat Alharbi, A. G., Khalifa, Z. J., Fouda, M. E., & Chowdhury, M. H. (2015c). Memristor emulator based on single ccii. In 2015 27th International Conference on Microelectronics (ICM) (pp. 174–177). IEEE. Alharbi, A. G., Khalifa, Z. J., Fouda, M. E., & Chowdhury, M. H. (2015c). Memristor emulator based on single ccii. In 2015 27th International Conference on Microelectronics (ICM) (pp. 174–177). IEEE.
Zurück zum Zitat Biolek, D., Biolek, Z., & Biolkova, V. (2011). Pinched hysteretic loops of ideal memristors, memcapacitors and meminductors must be ‘self-crossing’. Electronics Letters, 47(25), 1385–1387.CrossRef Biolek, D., Biolek, Z., & Biolkova, V. (2011). Pinched hysteretic loops of ideal memristors, memcapacitors and meminductors must be ‘self-crossing’. Electronics Letters, 47(25), 1385–1387.CrossRef
Zurück zum Zitat Biolek, Z., Biolek, D., & Biolková, V. (2015). Specification of one classical fingerprint of ideal memristor. Microelectronics Journal, 46(4), 298–300.CrossRef Biolek, Z., Biolek, D., & Biolková, V. (2015). Specification of one classical fingerprint of ideal memristor. Microelectronics Journal, 46(4), 298–300.CrossRef
Zurück zum Zitat Chua, L. (1971). Memristor-the missing circuit element. IEEE Transactions on Circuit Theory, 18(5), 507–519.CrossRef Chua, L. (1971). Memristor-the missing circuit element. IEEE Transactions on Circuit Theory, 18(5), 507–519.CrossRef
Zurück zum Zitat ElSlehdar, A., Fouad, A., & Radwan, A. (2015). Memristor based n-bits redundant binary adder. Microelectronics Journal, 46, 207–213.CrossRef ElSlehdar, A., Fouad, A., & Radwan, A. (2015). Memristor based n-bits redundant binary adder. Microelectronics Journal, 46, 207–213.CrossRef
Zurück zum Zitat Elwakil, A. S., Fouda, M. E., & Radwan, A. G. (2013). A simple model of double-loop hysteresis behavior in memristive elements. IEEE Transactions on Circuits and Systems, 60(8), 487–491. Elwakil, A. S., Fouda, M. E., & Radwan, A. G. (2013). A simple model of double-loop hysteresis behavior in memristive elements. IEEE Transactions on Circuits and Systems, 60(8), 487–491.
Zurück zum Zitat Fouda, M., Elwakil, A., & Radwan, A. (2015). Pinched hysteresis with inverse-memristor frequency characteristics in some nonlinear circuit elements. Microelectronics Journal, 46(9), 834–838.CrossRef Fouda, M., Elwakil, A., & Radwan, A. (2015). Pinched hysteresis with inverse-memristor frequency characteristics in some nonlinear circuit elements. Microelectronics Journal, 46(9), 834–838.CrossRef
Zurück zum Zitat Fouda, M. E., Khatib, M. A., Mosad, A. G., & Radwan, A. G. (2013). Generalized analysis of symmetric and asymmetric memristive two-gate relaxation oscillators. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(10), 2701–2708.MathSciNetCrossRef Fouda, M. E., Khatib, M. A., Mosad, A. G., & Radwan, A. G. (2013). Generalized analysis of symmetric and asymmetric memristive two-gate relaxation oscillators. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(10), 2701–2708.MathSciNetCrossRef
Zurück zum Zitat Fouda, M. E., & Radwan, A. G. (2015a). Power dissipation of memristor-based relaxation oscillators. Radioengineering. Fouda, M. E., & Radwan, A. G. (2015a). Power dissipation of memristor-based relaxation oscillators. Radioengineering.
Zurück zum Zitat Fouda, M. E., & Radwan, A. G. (2015b). Fractional-order memristor response under dc and periodic signals. Circuits, Systems, and Signal Processing, 34(3), 961–970.CrossRef Fouda, M. E., & Radwan, A. G. (2015b). Fractional-order memristor response under dc and periodic signals. Circuits, Systems, and Signal Processing, 34(3), 961–970.CrossRef
Zurück zum Zitat Fouda, M. E., & Radwan, A. G. (2015c). Resistive-less memcapacitor-based relaxation oscillator. International Journal of Circuit Theory and Applications, 43(7), 959–965.CrossRef Fouda, M. E., & Radwan, A. G. (2015c). Resistive-less memcapacitor-based relaxation oscillator. International Journal of Circuit Theory and Applications, 43(7), 959–965.CrossRef
Zurück zum Zitat Gambuzza, L. V., Fortuna, L., Frasca, M., & Gale, E. (2015). Experimental evidence of chaos from memristors. International Journal of Bifurcation and Chaos, 25(08), 1550101.CrossRef Gambuzza, L. V., Fortuna, L., Frasca, M., & Gale, E. (2015). Experimental evidence of chaos from memristors. International Journal of Bifurcation and Chaos, 25(08), 1550101.CrossRef
Zurück zum Zitat Hussein, A. I. & Fouda, M. E. (2013). A simple mos realization of current controlled memristor emulator. In 2013 25th International Conference on Microelectronics (ICM) (pp. 1–4). IEEE. Hussein, A. I. & Fouda, M. E. (2013). A simple mos realization of current controlled memristor emulator. In 2013 25th International Conference on Microelectronics (ICM) (pp. 1–4). IEEE.
Zurück zum Zitat Joglekar, Y. N., & Wolf, S. J. (2009). The elusive memristor: properties of basic electrical circuits. European Journal of Physics, 30(4), 661.CrossRefMATH Joglekar, Y. N., & Wolf, S. J. (2009). The elusive memristor: properties of basic electrical circuits. European Journal of Physics, 30(4), 661.CrossRefMATH
Zurück zum Zitat Khatib, M. A., Fouda, M. E., Mosad, A. G., Salama, K. N., & Radwan, A. (2012). Memristor-based relaxation oscillators using digital gates. In 2012 Seventh International Conference on Computer Engineering & Systems (ICCES) (pp. 98–102). IEEE. Khatib, M. A., Fouda, M. E., Mosad, A. G., Salama, K. N., & Radwan, A. (2012). Memristor-based relaxation oscillators using digital gates. In 2012 Seventh International Conference on Computer Engineering & Systems (ICCES) (pp. 98–102). IEEE.
Zurück zum Zitat Kozma, R., Pino, R. E., & Pazienza, G. E. (2012). Advances in neuromorphic memristor science and applications (Vol. 4). Springer Science & Business Media. Kozma, R., Pino, R. E., & Pazienza, G. E. (2012). Advances in neuromorphic memristor science and applications (Vol. 4). Springer Science & Business Media.
Zurück zum Zitat Pickett, M. D., Strukov, D. B., Borghetti, J. L., Yang, J. J., Snider, G. S., Stewart, D. R., et al. (2009). Switching dynamics in titanium dioxide memristive devices. Journal of Applied Physics, 106(7), 074508.CrossRef Pickett, M. D., Strukov, D. B., Borghetti, J. L., Yang, J. J., Snider, G. S., Stewart, D. R., et al. (2009). Switching dynamics in titanium dioxide memristive devices. Journal of Applied Physics, 106(7), 074508.CrossRef
Zurück zum Zitat Radwan, A., & Fouda, M. (2014). Simple floating voltage-controlled memductor emulator for analog applications. Radioengineering. Radwan, A., & Fouda, M. (2014). Simple floating voltage-controlled memductor emulator for analog applications. Radioengineering.
Zurück zum Zitat Radwan, A. G. & Fouda, M. E. (2015). On the mathematical modeling of memristor, memcapacitor, and meminductor (Vol. 26). Springer. Radwan, A. G. & Fouda, M. E. (2015). On the mathematical modeling of memristor, memcapacitor, and meminductor (Vol. 26). Springer.
Zurück zum Zitat Radwan, A. G., Moaddy, K., & Momani, S. (2011). Stability and nonstandard finite difference method of the generalized chua’s circuit. Computers and Mathematics with Applications, 62, 961–970.MathSciNetCrossRefMATH Radwan, A. G., Moaddy, K., & Momani, S. (2011). Stability and nonstandard finite difference method of the generalized chua’s circuit. Computers and Mathematics with Applications, 62, 961–970.MathSciNetCrossRefMATH
Zurück zum Zitat Radwan, A. G., Zidan, M., & Salama, K. N. (2010a). Hp memristor mathematical model for periodic signals and dc. In 53rd IEEE International Midwest Symposium on Circuits and Systems (MWSCAS) (pp. 861–864). Radwan, A. G., Zidan, M., & Salama, K. N. (2010a). Hp memristor mathematical model for periodic signals and dc. In 53rd IEEE International Midwest Symposium on Circuits and Systems (MWSCAS) (pp. 861–864).
Zurück zum Zitat Radwan, A. G., Zidan, M., & Salama K. N. (2010b). On the mathematical modeling of memristors. In 22nd IEEE International Conference on Microelectronics (ICM) (pp. 284–287). Radwan, A. G., Zidan, M., & Salama K. N. (2010b). On the mathematical modeling of memristors. In 22nd IEEE International Conference on Microelectronics (ICM) (pp. 284–287).
Zurück zum Zitat Semiconductor, N. (2000). Lm13700 dual operational transconductance amplifiers with linearizing diodes and buffers. Semiconductor, N. (2000). Lm13700 dual operational transconductance amplifiers with linearizing diodes and buffers.
Zurück zum Zitat Talukdar, A., Radwan, A., & Salama, K. N. (2011a). Generalized model for memristor-based wien-family oscillators. Microelectronics Journal, 1032–1038. Talukdar, A., Radwan, A., & Salama, K. N. (2011a). Generalized model for memristor-based wien-family oscillators. Microelectronics Journal, 1032–1038.
Zurück zum Zitat Talukdar, A., Radwan, A., & Salama, K. N. (2011b). Memristor-based third order oscillator: beyond oscillation. Applied Nanoscience, 1, 143–145.CrossRef Talukdar, A., Radwan, A., & Salama, K. N. (2011b). Memristor-based third order oscillator: beyond oscillation. Applied Nanoscience, 1, 143–145.CrossRef
Zurück zum Zitat Talukdar, A., Radwan, A., & Salama, K. N. (2012). Nonlinear dynamics of memristor based 3rd order oscillatory system. Microelectronics Journal, 169–175. Talukdar, A., Radwan, A., & Salama, K. N. (2012). Nonlinear dynamics of memristor based 3rd order oscillatory system. Microelectronics Journal, 169–175.
Zurück zum Zitat Vaidyanathan, S., & Volos, C. (2016a). Advances and applications in chaotic systems (Vol. 636). Springer. Vaidyanathan, S., & Volos, C. (2016a). Advances and applications in chaotic systems (Vol. 636). Springer.
Zurück zum Zitat Vaidyanathan, S., & Volos, C. (2016b). Advances and applications in nonlinear control systems (Vol. 635). Springer. Vaidyanathan, S., & Volos, C. (2016b). Advances and applications in nonlinear control systems (Vol. 635). Springer.
Zurück zum Zitat Zidan, M., Omran, H., Radwan, A. G., & Salama, K. N. (2011). Memristor-based reactance-less oscillator. Electronics Letters, 47(22), 1220–1221.CrossRef Zidan, M., Omran, H., Radwan, A. G., & Salama, K. N. (2011). Memristor-based reactance-less oscillator. Electronics Letters, 47(22), 1220–1221.CrossRef
Zurück zum Zitat Zidan, M., Omran, H., Smith, C., Syed, A., Radwan, A. G., & Salama, K. N. (2014). A family of memristor-based reactance-less oscillators. International Journal Circuit Theory and Applications, 42(22), 1103–1122.CrossRef Zidan, M., Omran, H., Smith, C., Syed, A., Radwan, A. G., & Salama, K. N. (2014). A family of memristor-based reactance-less oscillators. International Journal Circuit Theory and Applications, 42(22), 1103–1122.CrossRef
Metadaten
Titel
Memristor and Inverse Memristor: Modeling, Implementation and Experiments
verfasst von
Mohammed E. Fouda
Ahmed G. Radwan
Ahmed Elwakil
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-51724-7_15

Premium Partner