Skip to main content
Erschienen in: Mechanics of Composite Materials 3/2021

20.07.2021

Experimental and Finite-Element Analysis of Metal-Inserted Filament-Wound Composite Tubes

verfasst von: Y. D. Li, H. B. Luo, Y. Yan, J. X. Ye, F. L. Guo

Erschienen in: Mechanics of Composite Materials | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To meet the aviation and aerospace requirements for detachability and load-carrying capacity, a novel connecting structure — a carbon-fiber-filament-wound composite tube with grooved metal inserts has been developed. The tensile behavior of the structure was investigated experimentally and by the finite-element method. The finite-element method was used to simulate the damage process. The failure load of the structure was found to be 37% higher than that of an ordinary bonded tube without grooved metal inserts. A stress analysis showed that the structural failure was not caused by the failure of adhesive, but was determined by the tensile strength of the ±30° wound layers and the shear strength of interlayer

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat P. P. Camanho and F. L. Matthews, “A progressive damage model for mechanically fastened joints in composite laminates,” J. Compos. Mater., 33, No. 24, 2248-2280 (1999).CrossRef P. P. Camanho and F. L. Matthews, “A progressive damage model for mechanically fastened joints in composite laminates,” J. Compos. Mater., 33, No. 24, 2248-2280 (1999).CrossRef
2.
Zurück zum Zitat P. P. Camanho and M. Lambert, “A design methodology for mechanically fastened joints in laminated composite materials,” Composites Science and Technology, 66, No.15, 3004-3020 (2006).CrossRef P. P. Camanho and M. Lambert, “A design methodology for mechanically fastened joints in laminated composite materials,” Composites Science and Technology, 66, No.15, 3004-3020 (2006).CrossRef
3.
Zurück zum Zitat B. Kolesnikov, L. Herbeck, and A. Fink, “CFRP/titanium hybrid material for improving composite bolted joints,” Composite Structures, 83, No.4, 368-380 (2008).CrossRef B. Kolesnikov, L. Herbeck, and A. Fink, “CFRP/titanium hybrid material for improving composite bolted joints,” Composite Structures, 83, No.4, 368-380 (2008).CrossRef
4.
Zurück zum Zitat B. Aidi and S. W. Case, “Experimental and numerical analysis of notched composites under tension loading,” Applied Composite Materials, 22, No. 6, (2015). B. Aidi and S. W. Case, “Experimental and numerical analysis of notched composites under tension loading,” Applied Composite Materials, 22, No. 6, (2015).
5.
Zurück zum Zitat C. Xiaoquan, “Evaluation of tensile properties of a composite-metal joint with a novel metal insert design by experimental and numerical methods,” Chinese Journal of Aeronautics, 30, No. 3, 1004-1011 (2017).CrossRef C. Xiaoquan, “Evaluation of tensile properties of a composite-metal joint with a novel metal insert design by experimental and numerical methods,” Chinese Journal of Aeronautics, 30, No. 3, 1004-1011 (2017).CrossRef
6.
Zurück zum Zitat D. G. dos Santos and R. J. C. Carbas, “Reinforcement of CFRP joints with fibre metal laminates and additional adhesive layers,” Composite Part B, 165, 386-396(2019).CrossRef D. G. dos Santos and R. J. C. Carbas, “Reinforcement of CFRP joints with fibre metal laminates and additional adhesive layers,” Composite Part B, 165, 386-396(2019).CrossRef
7.
Zurück zum Zitat A. Parashar and P. Mertiny, “Effect of FRP pipe scaling on its adhesive bonding strength,” Journal of Adhesion, 88, No.10, 866-880 (2012).CrossRef A. Parashar and P. Mertiny, “Effect of FRP pipe scaling on its adhesive bonding strength,” Journal of Adhesion, 88, No.10, 866-880 (2012).CrossRef
8.
Zurück zum Zitat H. Tang and L. Liu, “A novel metal-composite joint and its structural performance,” Composite Structures, 206, No. DEC, 33-41 (2018). H. Tang and L. Liu, “A novel metal-composite joint and its structural performance,” Composite Structures, 206, No. DEC, 33-41 (2018).
9.
Zurück zum Zitat W. Tu, “Comeld™ joints: optimisation of geometric parameters of the protrusions,” Queen Mary University of London (2011). W. Tu, “Comeld™ joints: optimisation of geometric parameters of the protrusions,” Queen Mary University of London (2011).
10.
Zurück zum Zitat B. Larry and B. Victor, “Effectiveness of z-pins in preventing delamination of co-cured composite joints on the example of a double cantilever test,” Composites Part B Engineering, 37, No. 4-5, 365-378(2006).CrossRef B. Larry and B. Victor, “Effectiveness of z-pins in preventing delamination of co-cured composite joints on the example of a double cantilever test,” Composites Part B Engineering, 37, No. 4-5, 365-378(2006).CrossRef
11.
Zurück zum Zitat J. Hun, J. H. Kweon, and J. H. Choi, “Fatigue characteristics of stainless steel pin-reinforced composite hat joints,” Composite Structures, 108, No. feb, 49-56 (2014). J. Hun, J. H. Kweon, and J. H. Choi, “Fatigue characteristics of stainless steel pin-reinforced composite hat joints,” Composite Structures, 108, No. feb, 49-56 (2014).
12.
Zurück zum Zitat S. Liyang and C. Mantell, “Finite element modeling of the filament winding process,” Composite Structures, 52, No. 3, 499-510 (2001). S. Liyang and C. Mantell, “Finite element modeling of the filament winding process,” Composite Structures, 52, No. 3, 499-510 (2001).
13.
Zurück zum Zitat H. Hernández-Moreno, et al., “Influence of winding pattern on the mechanical behavior of filament wound composite cylinders under external pressure,” Composites Science & Technology, 68, No. 3-4, 1015-1024 (2008).CrossRef H. Hernández-Moreno, et al., “Influence of winding pattern on the mechanical behavior of filament wound composite cylinders under external pressure,” Composites Science & Technology, 68, No. 3-4, 1015-1024 (2008).CrossRef
14.
Zurück zum Zitat M. Menshykova and I. A. Guz, “Stress analysis of layered thick-walled composite pipes subjected to bending loading,” International Journal of Mechanical Sciences, 88, 289-299 (2014).CrossRef M. Menshykova and I. A. Guz, “Stress analysis of layered thick-walled composite pipes subjected to bending loading,” International Journal of Mechanical Sciences, 88, 289-299 (2014).CrossRef
15.
Zurück zum Zitat V. V. Bolotin, et al., “Analysis of the technological stresses in wound components made out of composites during the whole duration of the preparation process,” Mechanics of Composite Materials, 16, No. 3361-368 (1980). V. V. Bolotin, et al., “Analysis of the technological stresses in wound components made out of composites during the whole duration of the preparation process,” Mechanics of Composite Materials, 16, No. 3361-368 (1980).
16.
Zurück zum Zitat R. A. Turusov, et al., “Technological monolithic character of shells formed from polymeric composition materials,” Mechanics of Composite Materials, 23, No. 6, 773-777 (1987).CrossRef R. A. Turusov, et al., “Technological monolithic character of shells formed from polymeric composition materials,” Mechanics of Composite Materials, 23, No. 6, 773-777 (1987).CrossRef
17.
Zurück zum Zitat H. Altenbach, et al., “Prediction of accumulation of technological stresses in pipeline upon its repair by a composite band,” Mechanics of Composites Materials, 51, No.2, 139-156 (2015).CrossRef H. Altenbach, et al., “Prediction of accumulation of technological stresses in pipeline upon its repair by a composite band,” Mechanics of Composites Materials, 51, No.2, 139-156 (2015).CrossRef
18.
Zurück zum Zitat A. Yu. Sergeyev, et al., “Stresses arising during cure of the composite wound on the cylindrical surface of an element of exhaust system,” Mechanics of Composite Materials, 51, No.3, 321, 332 (2015). A. Yu. Sergeyev, et al., “Stresses arising during cure of the composite wound on the cylindrical surface of an element of exhaust system,” Mechanics of Composite Materials, 51, No.3, 321, 332 (2015).
19.
Zurück zum Zitat Z. Hashin, “Failure criteria for unidirectional fiber composites,” Journal of Applied Mechanics, 47, 329-34 (1980).CrossRef Z. Hashin, “Failure criteria for unidirectional fiber composites,” Journal of Applied Mechanics, 47, 329-34 (1980).CrossRef
20.
Zurück zum Zitat C. H. Huang and Y. J. Lee, “Experiments and simulation of the static contact crush of composite end frame structure,” Composites structures, 61, No. 3, 265-70 (2003)CrossRef C. H. Huang and Y. J. Lee, “Experiments and simulation of the static contact crush of composite end frame structure,” Composites structures, 61, No. 3, 265-70 (2003)CrossRef
21.
Zurück zum Zitat J. Ye, et al., “3D explicit finite element analysis of tensile failure behavior in adhesive-bonded composite single-lap joints,” Composite Structures, 201, No. OCT, 261-275 (2018). J. Ye, et al., “3D explicit finite element analysis of tensile failure behavior in adhesive-bonded composite single-lap joints,” Composite Structures, 201, No. OCT, 261-275 (2018).
22.
Zurück zum Zitat J. Ye, et al., “An integrated constitutive model for tensile failure analysis and overlap design of adhesive-bonded composite joints,” Composite Structures, 223, No. SEP, 110986 (2019). J. Ye, et al., “An integrated constitutive model for tensile failure analysis and overlap design of adhesive-bonded composite joints,” Composite Structures, 223, No. SEP, 110986 (2019).
23.
Zurück zum Zitat M. L. Benzeggagh and M. Kenane, “Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus,” Composites Science & Technology, 56, No. 4, 439-449 (1996).CrossRef M. L. Benzeggagh and M. Kenane, “Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus,” Composites Science & Technology, 56, No. 4, 439-449 (1996).CrossRef
24.
Zurück zum Zitat P. P. Camanho and C. G. Davila, “Mixed-Mode Decohesion Finite Elements for the Simulation of Delamination in Composite Materials,” NASA Technical Report, 2002-211737(2002). P. P. Camanho and C. G. Davila, “Mixed-Mode Decohesion Finite Elements for the Simulation of Delamination in Composite Materials,” NASA Technical Report, 2002-211737(2002).
25.
Zurück zum Zitat P. M. Wild and G. W. Vickers, “Analysis of filament-wound cylindrical shells under combined centrifugal, pressure and axial loading,” 28, No. 1, 0-55 (1997). P. M. Wild and G. W. Vickers, “Analysis of filament-wound cylindrical shells under combined centrifugal, pressure and axial loading,” 28, No. 1, 0-55 (1997).
26.
Zurück zum Zitat J. S. Park, C. S. Hong, and C. G. Kim, “Analysis of filament wound composite structures considering the change of winding angles through the thickness direction,” Composite Structures 55, No. 1, 63-71 (2002).CrossRef J. S. Park, C. S. Hong, and C. G. Kim, “Analysis of filament wound composite structures considering the change of winding angles through the thickness direction,” Composite Structures 55, No. 1, 63-71 (2002).CrossRef
27.
Zurück zum Zitat J. C. Velosa, et al., “Development of a new generation of filament wound composite pressure cylinders,” Composites Science & Technology, 69, No. 9, 1348-1353 (2009).CrossRef J. C. Velosa, et al., “Development of a new generation of filament wound composite pressure cylinders,” Composites Science & Technology, 69, No. 9, 1348-1353 (2009).CrossRef
28.
Zurück zum Zitat F. G. Yuan, W. Yang, and H. Kim, “Analysis of axisymmetrically-loaded filament wound composite cylindrical shells,” Composite Structures, 50, No. 2, 115-130 (2000).CrossRef F. G. Yuan, W. Yang, and H. Kim, “Analysis of axisymmetrically-loaded filament wound composite cylindrical shells,” Composite Structures, 50, No. 2, 115-130 (2000).CrossRef
29.
Zurück zum Zitat C. U. Kim, et al., “Optimal design of filament wound structures under internal pressure based on the semi-geodesic path algorithm,” Composite Structures, 67, No. 4, 443-452 (2005).CrossRef C. U. Kim, et al., “Optimal design of filament wound structures under internal pressure based on the semi-geodesic path algorithm,” Composite Structures, 67, No. 4, 443-452 (2005).CrossRef
30.
Zurück zum Zitat Z. Changliang, et al., “Delamination prediction of composite filament wound vessel with metal liner under low velocity impact,” Composite Structures, 75, No. 1/4, 387-392 (2006).CrossRef Z. Changliang, et al., “Delamination prediction of composite filament wound vessel with metal liner under low velocity impact,” Composite Structures, 75, No. 1/4, 387-392 (2006).CrossRef
Metadaten
Titel
Experimental and Finite-Element Analysis of Metal-Inserted Filament-Wound Composite Tubes
verfasst von
Y. D. Li
H. B. Luo
Y. Yan
J. X. Ye
F. L. Guo
Publikationsdatum
20.07.2021
Verlag
Springer US
Erschienen in
Mechanics of Composite Materials / Ausgabe 3/2021
Print ISSN: 0191-5665
Elektronische ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-021-09961-2

Weitere Artikel der Ausgabe 3/2021

Mechanics of Composite Materials 3/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.