Skip to main content
Erschienen in: Mechanics of Composite Materials 3/2021

19.07.2021

Increasing the Bearing Capacity of Composite Plates in the Zone of Bolted Joints by Using Curvilinear Trajectories and a Variable Fiber Volume Fraction

verfasst von: A. V. Malakhov, A. N. Polilov, D. Li, X. Tian

Erschienen in: Mechanics of Composite Materials | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Curved continuous fiber trajectories for composite plates with a bolted joint corresponding to the lines of maximum principal stresses were designed using the iterative finite-element modeling. On their basis, variable stiffness composite structures were modeled by the finite-element method, when each element was assigned variable material properties depending on the distribution of fiber trajectories. To simulate the progressive failure of the plates, a material property degradation method was employed. An analysis of progressive failure showed that it is possible to significantly increase the ultimate load and reliability of bolted joints of composite structural elements by transition from the unidirectional to a curvilinear reinforcement.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H. Ghiasi, D. Pasini, and L. Lessard, “Optimum stacking sequence design of composite materials. Part I: Constant stiffness design,” Compos. Struct., Vol. 90, 1-11 (2009).CrossRef H. Ghiasi, D. Pasini, and L. Lessard, “Optimum stacking sequence design of composite materials. Part I: Constant stiffness design,” Compos. Struct., Vol. 90, 1-11 (2009).CrossRef
2.
Zurück zum Zitat A. Pramanik, A. K. Basak, Y. Dong, P. K. Sarker, M. S. Uddin, G. Littlefair, A. R. Dixit, and S. Chattopadhyaya, “Joining of carbon fibre reinforced polymer (CFRP) composites and aluminium alloys. A review,” Composites: Part A, 101, 1-29 (2017).CrossRef A. Pramanik, A. K. Basak, Y. Dong, P. K. Sarker, M. S. Uddin, G. Littlefair, A. R. Dixit, and S. Chattopadhyaya, “Joining of carbon fibre reinforced polymer (CFRP) composites and aluminium alloys. A review,” Composites: Part A, 101, 1-29 (2017).CrossRef
3.
Zurück zum Zitat P. Pedersen, “On optimal shapes in materials and structures,” Struct. Multidiscip. Optim., 19, 169-182 (2000).CrossRef P. Pedersen, “On optimal shapes in materials and structures,” Struct. Multidiscip. Optim., 19, 169-182 (2000).CrossRef
4.
Zurück zum Zitat K. Katagiri, S. Honda, S. Minami, Y. Tomizawa, D. Kimu, S. Yamaguchi, T. Ehiro, T. Ozaki, H. Sonomura, S. Kawakita, M. Takemura, Y. Yoshioka, and K. Sasaki, “CFRP manufacturing method by using electro-activated deposition and the effect of reinforcement with carbon fiber circumferentially around the hole,” Compos. Struct., 207, 658-664 (2019).CrossRef K. Katagiri, S. Honda, S. Minami, Y. Tomizawa, D. Kimu, S. Yamaguchi, T. Ehiro, T. Ozaki, H. Sonomura, S. Kawakita, M. Takemura, Y. Yoshioka, and K. Sasaki, “CFRP manufacturing method by using electro-activated deposition and the effect of reinforcement with carbon fiber circumferentially around the hole,” Compos. Struct., 207, 658-664 (2019).CrossRef
5.
Zurück zum Zitat R. O. Ritchie, “The conflicts between strength and toughness,” Natur. Mater., 10, 817-822 (2011).CrossRef R. O. Ritchie, “The conflicts between strength and toughness,” Natur. Mater., 10, 817-822 (2011).CrossRef
6.
Zurück zum Zitat U. G. K. Wegst, H. Bai, E. Saiz, A. P. Tomsia, and R. O. Ritchie, “Bioinspired structural materials,” Natur. Mater., 14, 23-36 (2015).CrossRef U. G. K. Wegst, H. Bai, E. Saiz, A. P. Tomsia, and R. O. Ritchie, “Bioinspired structural materials,” Natur. Mater., 14, 23-36 (2015).CrossRef
7.
Zurück zum Zitat Z. Liu, M. A. Meyers, Z. Zhang, and R. O. Ritchie, “Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications,” Progr. Mater. Sci., 88, 467-498 (2017).CrossRef Z. Liu, M. A. Meyers, Z. Zhang, and R. O. Ritchie, “Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications,” Progr. Mater. Sci., 88, 467-498 (2017).CrossRef
8.
Zurück zum Zitat S. Khan, K. Fayazbakhsh, Z. Fawaz, and M. A. Nik, “Curvilinear variable stiffness 3D printing technology for improved open-hole tensile strength,” Addit. Manuf., 24, 378-385 (2018). S. Khan, K. Fayazbakhsh, Z. Fawaz, and M. A. Nik, “Curvilinear variable stiffness 3D printing technology for improved open-hole tensile strength,” Addit. Manuf., 24, 378-385 (2018).
9.
Zurück zum Zitat A. V. Malakhov and A. N. Polilov, “Construction of trajectories of the fibers which bypass a hole and their comparison with the structure of wood in the vicinity of a knot,” J. Mach. Manuf. Reliab., 42, 306-311 (2013).CrossRef A. V. Malakhov and A. N. Polilov, “Construction of trajectories of the fibers which bypass a hole and their comparison with the structure of wood in the vicinity of a knot,” J. Mach. Manuf. Reliab., 42, 306-311 (2013).CrossRef
10.
Zurück zum Zitat H. Zhang, D. Yang, and Y. Sheng, “Performance-driven 3D printing of continuous curved carbon fibre reinforced polymer composites: A preliminary numerical study,” Composites: Part B, 151, 256-264 (2018).CrossRef H. Zhang, D. Yang, and Y. Sheng, “Performance-driven 3D printing of continuous curved carbon fibre reinforced polymer composites: A preliminary numerical study,” Composites: Part B, 151, 256-264 (2018).CrossRef
11.
Zurück zum Zitat A. V. Malakhov, A. N. Polilov, J. Zhang, Z. Hou, and X. Tian, “A modeling method of continuous fiber paths for additive manufacturing (3D printing) of variable stiffness composite structures,” Appl. Compos. Mater., 27, 185-208 (2020).CrossRef A. V. Malakhov, A. N. Polilov, J. Zhang, Z. Hou, and X. Tian, “A modeling method of continuous fiber paths for additive manufacturing (3D printing) of variable stiffness composite structures,” Appl. Compos. Mater., 27, 185-208 (2020).CrossRef
12.
Zurück zum Zitat M. W. Hyer and R. F. Charette, “Use of curvilinear fiber format in composite structure design,” AIAA J., 29, 1011-1015 (1991).CrossRef M. W. Hyer and R. F. Charette, “Use of curvilinear fiber format in composite structure design,” AIAA J., 29, 1011-1015 (1991).CrossRef
13.
Zurück zum Zitat A. V. Malakhov and A. N. Polilov, “Design of composite structures reinforced curvilinear fibres using FEM,” Composites: Part A, 87, 23-28 (2016).CrossRef A. V. Malakhov and A. N. Polilov, “Design of composite structures reinforced curvilinear fibres using FEM,” Composites: Part A, 87, 23-28 (2016).CrossRef
14.
Zurück zum Zitat Y. Zhu, J. Liu, D. Liu, H. Xu, C. Yan, B. Huang, and D. Hui, “Fiber path optimization based on a family of curves in composite laminate with a center hole,” Composites: Part B, 111, 91-102 (2017).CrossRef Y. Zhu, J. Liu, D. Liu, H. Xu, C. Yan, B. Huang, and D. Hui, “Fiber path optimization based on a family of curves in composite laminate with a center hole,” Composites: Part B, 111, 91-102 (2017).CrossRef
15.
Zurück zum Zitat A. Crosky, D. Kelly, R. Li, X. Legrand, N. Huong, and R. Ujjin, “Improvement of bearing strength of laminated composites,” Compos. Struct., 76, 260-271 (2006).CrossRef A. Crosky, D. Kelly, R. Li, X. Legrand, N. Huong, and R. Ujjin, “Improvement of bearing strength of laminated composites,” Compos. Struct., 76, 260-271 (2006).CrossRef
16.
Zurück zum Zitat T. Shafighfard, E. Demir, and M. Yildiz, “Design of fiber-reinforced variable-stiffness composites for different openhole geometries with fiber continuity and curvature constraints,” Compos. Struct., 226, 111280 (2019).CrossRef T. Shafighfard, E. Demir, and M. Yildiz, “Design of fiber-reinforced variable-stiffness composites for different openhole geometries with fiber continuity and curvature constraints,” Compos. Struct., 226, 111280 (2019).CrossRef
17.
Zurück zum Zitat S. Honda, T. Y. Igarashi, and Y. Narita, “Multi-objective optimization of curvilinear fiber shapes for laminated composite plates by using NSGA-II,” Composites: Part B, 45, 1071-1078 (2013).CrossRef S. Honda, T. Y. Igarashi, and Y. Narita, “Multi-objective optimization of curvilinear fiber shapes for laminated composite plates by using NSGA-II,” Composites: Part B, 45, 1071-1078 (2013).CrossRef
18.
Zurück zum Zitat R. T. L. Ferreira, and I. A. Ashcroft, “Optimal orientation of fibre composites for strength based on Hashin’s criteria optimality conditions,” Struct. Multidisc. Optim., 61, 2155-2176 (2020).CrossRef R. T. L. Ferreira, and I. A. Ashcroft, “Optimal orientation of fibre composites for strength based on Hashin’s criteria optimality conditions,” Struct. Multidisc. Optim., 61, 2155-2176 (2020).CrossRef
19.
Zurück zum Zitat N. V. Banichuk, V. V. Saurin, and A. A. Barsuk, “Optimal orientation of orthotropic materials for plates designed against buckling,” Struct. Optim., 10, 191-196 (1995).CrossRef N. V. Banichuk, V. V. Saurin, and A. A. Barsuk, “Optimal orientation of orthotropic materials for plates designed against buckling,” Struct. Optim., 10, 191-196 (1995).CrossRef
20.
Zurück zum Zitat H. Nopour, A. Kabiri Ataabadi, and M. M. Shokrieh, “Fiber path optimization in a variable-stiffness cylinder to maximize its buckling load under external hydrostatic pressure,” Mech. Compos. Mater., 54, 765-774 (2019).CrossRef H. Nopour, A. Kabiri Ataabadi, and M. M. Shokrieh, “Fiber path optimization in a variable-stiffness cylinder to maximize its buckling load under external hydrostatic pressure,” Mech. Compos. Mater., 54, 765-774 (2019).CrossRef
21.
Zurück zum Zitat N. Li, G. Link, T. Wang, V. Ramopoulos, D. Neumaier, J. Hofele, M. Walter, and J. Jelonnek, “Path-designed 3D printing for topological optimized continuous carbon fibre reinforced composite structures,” Composites: Part B, 182, 107612 (2020).CrossRef N. Li, G. Link, T. Wang, V. Ramopoulos, D. Neumaier, J. Hofele, M. Walter, and J. Jelonnek, “Path-designed 3D printing for topological optimized continuous carbon fibre reinforced composite structures,” Composites: Part B, 182, 107612 (2020).CrossRef
22.
Zurück zum Zitat J. H. S. Almeida Jr., L. Bittrich, T. Nomura, and A. Spickenheuer, “Cross-section optimization of topologically-optimized variable-axial anisotropic composite structures,” Compos. Struct., 225, 111150 (2019).CrossRef J. H. S. Almeida Jr., L. Bittrich, T. Nomura, and A. Spickenheuer, “Cross-section optimization of topologically-optimized variable-axial anisotropic composite structures,” Compos. Struct., 225, 111150 (2019).CrossRef
23.
Zurück zum Zitat V. S. Papapetrou, C. Patel, and A. Y. Tamijani, “Stiffness-based optimization framework for the topology and fiber paths of continuous fiber composites,” Composites: Part B, 183, 107681 (2020).CrossRef V. S. Papapetrou, C. Patel, and A. Y. Tamijani, “Stiffness-based optimization framework for the topology and fiber paths of continuous fiber composites,” Composites: Part B, 183, 107681 (2020).CrossRef
24.
Zurück zum Zitat A. A. Safonov, “3D topology optimization of continuous fiber-reinforced structures via natural evolution method,” Compos. Struct., 215, 289-297 (2019).CrossRef A. A. Safonov, “3D topology optimization of continuous fiber-reinforced structures via natural evolution method,” Compos. Struct., 215, 289-297 (2019).CrossRef
25.
Zurück zum Zitat J. H. S. Almeida Jr., L. Bittrich, and A. Spickenheuer, “Improving the open-hole tension characteristics with variableaxial composite laminates: Optimization, progressive damage modeling and experimental observations,” Compos. Sci. Technol., 185, 107889 (2020).CrossRef J. H. S. Almeida Jr., L. Bittrich, and A. Spickenheuer, “Improving the open-hole tension characteristics with variableaxial composite laminates: Optimization, progressive damage modeling and experimental observations,” Compos. Sci. Technol., 185, 107889 (2020).CrossRef
26.
Zurück zum Zitat K. Sugiyama, R. Matsuzaki, A. V. Malakhov, A. N. Polilov, M. Ueda, A. Todoroki, and Y. Hirano, “3D printing of optimized composites with variable fiber volume fraction and stiffness using continuous fiber,” Compos. Sci. Technol., 186, 107905 (2020).CrossRef K. Sugiyama, R. Matsuzaki, A. V. Malakhov, A. N. Polilov, M. Ueda, A. Todoroki, and Y. Hirano, “3D printing of optimized composites with variable fiber volume fraction and stiffness using continuous fiber,” Compos. Sci. Technol., 186, 107905 (2020).CrossRef
27.
Zurück zum Zitat Z. Hou, X. Tian, J. Zhang, Z. Zheng, L. Zhe, D. Li, A. V. Malakhov, and A. N. Polilov, “Optimization design and 3D printing of curvilinear fiber reinforced variable stiffness composites,” Compos. Sci. Technol., 201, 108502 (2021).CrossRef Z. Hou, X. Tian, J. Zhang, Z. Zheng, L. Zhe, D. Li, A. V. Malakhov, and A. N. Polilov, “Optimization design and 3D printing of curvilinear fiber reinforced variable stiffness composites,” Compos. Sci. Technol., 201, 108502 (2021).CrossRef
28.
Zurück zum Zitat A. Nakai, T. Ohki, N. Takeda, and H. Hamada, “Mechanical properties and micro-failure behaviors of flat braided composites with a circular hole,” Compos. Struct., 52, 315-322 (2001).CrossRef A. Nakai, T. Ohki, N. Takeda, and H. Hamada, “Mechanical properties and micro-failure behaviors of flat braided composites with a circular hole,” Compos. Struct., 52, 315-322 (2001).CrossRef
29.
Zurück zum Zitat H. Zhang, A. N. Dickson, Y Sheng., T. McGrail, D. P. Dowling, C. Wang, A. Neville, and D. Yang, “Failure analysis of 3D printed woven composite plates with holes under tensile and shear loading,” Composites: Part B, 186, 107835 (2020). H. Zhang, A. N. Dickson, Y Sheng., T. McGrail, D. P. Dowling, C. Wang, A. Neville, and D. Yang, “Failure analysis of 3D printed woven composite plates with holes under tensile and shear loading,” Composites: Part B, 186, 107835 (2020).
30.
Zurück zum Zitat M. W. Hyer, E. C. Klang, and D. E. Cooper, “The effects of pin elasticity, clearance, and friction on the stresses in a pin-loaded orthotropic plate,” J. Compos. Mater., 21, 190-206 (1987).CrossRef M. W. Hyer, E. C. Klang, and D. E. Cooper, “The effects of pin elasticity, clearance, and friction on the stresses in a pin-loaded orthotropic plate,” J. Compos. Mater., 21, 190-206 (1987).CrossRef
31.
Zurück zum Zitat R. M. Jones, Mechanics of Composite Materials, Taylor & Francis (1999). R. M. Jones, Mechanics of Composite Materials, Taylor & Francis (1999).
32.
Zurück zum Zitat S. C. Tan, “A progressive failure model for composite laminates containing openings,” J. Compos. Mater., 25, 556-577 (1991).CrossRef S. C. Tan, “A progressive failure model for composite laminates containing openings,” J. Compos. Mater., 25, 556-577 (1991).CrossRef
33.
Zurück zum Zitat S. C. Tan and J. Perez, “Progressive failure of laminated composites with a hole under compressive loading,” J. Reinf. Plast. Comp., 12, 1043-1057 (1993).CrossRef S. C. Tan and J. Perez, “Progressive failure of laminated composites with a hole under compressive loading,” J. Reinf. Plast. Comp., 12, 1043-1057 (1993).CrossRef
34.
Zurück zum Zitat P. P. Camanho and F. L. Matthews, “A progressive damage model for mechanically fastened joints in composite laminates,” J. Compos. Mater., 33, 2248-2280 (1999).CrossRef P. P. Camanho and F. L. Matthews, “A progressive damage model for mechanically fastened joints in composite laminates,” J. Compos. Mater., 33, 2248-2280 (1999).CrossRef
35.
Zurück zum Zitat K. I. Tserpes, G. Labeas, P. Papanikos, and Th. Kermanidis, “Strength prediction of bolted joints in graphite/epoxy composite laminates,” Composites: Part B, 33, 521-529 (2002).CrossRef K. I. Tserpes, G. Labeas, P. Papanikos, and Th. Kermanidis, “Strength prediction of bolted joints in graphite/epoxy composite laminates,” Composites: Part B, 33, 521-529 (2002).CrossRef
36.
Zurück zum Zitat M. V. Kozlov and S. V. Sheshenin, “Modeling the progressive failure of laminated composites,” Mech. Compos. Mater., 51, 695-706 (2016).CrossRef M. V. Kozlov and S. V. Sheshenin, “Modeling the progressive failure of laminated composites,” Mech. Compos. Mater., 51, 695-706 (2016).CrossRef
37.
Zurück zum Zitat I. Lapczyk and J. A. Hurtado, “Progressive damage modeling in fiber-reinforced materials,” Composites: Part A, 38, 2333-2341 (2007).CrossRef I. Lapczyk and J. A. Hurtado, “Progressive damage modeling in fiber-reinforced materials,” Composites: Part A, 38, 2333-2341 (2007).CrossRef
38.
Zurück zum Zitat H. Zhu, Z. X. Guo, M. Zhu, J. J. Cui, Q. He, and Y. C. Li, “A Progressive FE failure model for laminates under biaxial loading,” Mech. Compos. Mater., 56, 207-214 (2020).CrossRef H. Zhu, Z. X. Guo, M. Zhu, J. J. Cui, Q. He, and Y. C. Li, “A Progressive FE failure model for laminates under biaxial loading,” Mech. Compos. Mater., 56, 207-214 (2020).CrossRef
39.
Zurück zum Zitat Z. Hashin, “Failure criteria for unidirectional fiber composites,” J. Appl. Mech., 47, 329-334 (1980).CrossRef Z. Hashin, “Failure criteria for unidirectional fiber composites,” J. Appl. Mech., 47, 329-334 (1980).CrossRef
40.
Zurück zum Zitat C. Lee and W. Hwang, “Modified rule of mixtures for prediction of tensile strength of unidirectional fiber- reinforced composites,” J. Mater. Sci. Lett., 17, 1601-1603 (1998).CrossRef C. Lee and W. Hwang, “Modified rule of mixtures for prediction of tensile strength of unidirectional fiber- reinforced composites,” J. Mater. Sci. Lett., 17, 1601-1603 (1998).CrossRef
41.
Zurück zum Zitat Y. Xiao and T. Ishikawa, “Bearing strength and failure behavior of bolted composite joints (part I: Experimental investigation),” Compos. Sci. Technol., 65, 1022-1031 (2005).CrossRef Y. Xiao and T. Ishikawa, “Bearing strength and failure behavior of bolted composite joints (part I: Experimental investigation),” Compos. Sci. Technol., 65, 1022-1031 (2005).CrossRef
42.
Zurück zum Zitat H. Zhang, C. Li, W. Dai, Y. Liu, S. Tian, W. Huang, D. Jia, D. He, and Y. Zhang, “Static compression testing CFRP single-lap composited joints using X-ray μCT,” Compos. Struct., 234, 111667 (2020).CrossRef H. Zhang, C. Li, W. Dai, Y. Liu, S. Tian, W. Huang, D. Jia, D. He, and Y. Zhang, “Static compression testing CFRP single-lap composited joints using X-ray μCT,” Compos. Struct., 234, 111667 (2020).CrossRef
43.
Zurück zum Zitat Q. Wang, X. Tian, L. Huang, D. Li, A. V. Malakhov, and A. N. Polilov, “Programmable morphing composites with embedded continuous fibers by 4D printing,” Mater. Des., 155, 404-413 (2018).CrossRef Q. Wang, X. Tian, L. Huang, D. Li, A. V. Malakhov, and A. N. Polilov, “Programmable morphing composites with embedded continuous fibers by 4D printing,” Mater. Des., 155, 404-413 (2018).CrossRef
44.
Zurück zum Zitat J. M. Chacón, M. A. Caminero, P. J. Núñez, E. García-Plaza, I. García-Moreno, and J. M. Reverte, “Additive manufacturing of continuous fibre reinforced thermoplastic composites using fused deposition modelling: effect of process parameters on mechanical properties,” Compos. Sci. Technol., 181, 107688 (2019).CrossRef J. M. Chacón, M. A. Caminero, P. J. Núñez, E. García-Plaza, I. García-Moreno, and J. M. Reverte, “Additive manufacturing of continuous fibre reinforced thermoplastic composites using fused deposition modelling: effect of process parameters on mechanical properties,” Compos. Sci. Technol., 181, 107688 (2019).CrossRef
45.
Zurück zum Zitat X. Tian, T. Liu, C. Yang, Q. Wang, and D. Li, “Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites,” Composites: Part A, 88, 198-205 (2016).CrossRef X. Tian, T. Liu, C. Yang, Q. Wang, and D. Li, “Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites,” Composites: Part A, 88, 198-205 (2016).CrossRef
46.
Zurück zum Zitat M. Ueda, S. Kishimoto, M. Yamawaki, R. Matsuzaki, A. Todoroki, Y. Hirano, and A. Le Duigou, “3D compaction printing of a continuous carbon fiber reinforced thermoplastic,” Composites: Part A, 137, 105985 (2020).CrossRef M. Ueda, S. Kishimoto, M. Yamawaki, R. Matsuzaki, A. Todoroki, Y. Hirano, and A. Le Duigou, “3D compaction printing of a continuous carbon fiber reinforced thermoplastic,” Composites: Part A, 137, 105985 (2020).CrossRef
47.
Zurück zum Zitat R. T. L. Ferreira, I. C. Amatte, T. A. Dutra, and D. Bürger, “Experimental characterization and micrography of 3D printed PLA and PLA reinforced with short carbon fibers,” Composites: Part B, 124, 88-100 (2017).CrossRef R. T. L. Ferreira, I. C. Amatte, T. A. Dutra, and D. Bürger, “Experimental characterization and micrography of 3D printed PLA and PLA reinforced with short carbon fibers,” Composites: Part B, 124, 88-100 (2017).CrossRef
48.
Zurück zum Zitat Z. Hou, X. Tian, J. Zhang, L. Zhe, Z. Zheng, D. Li, A. V. Malakhov, and A. N. Polilov, “Design and 3D printing of continuous fiber reinforced heterogeneous composites,” Compos. Struct., 237, 111945 (2020).CrossRef Z. Hou, X. Tian, J. Zhang, L. Zhe, Z. Zheng, D. Li, A. V. Malakhov, and A. N. Polilov, “Design and 3D printing of continuous fiber reinforced heterogeneous composites,” Compos. Struct., 237, 111945 (2020).CrossRef
49.
Zurück zum Zitat A. Todoroki, T. Oasada, Y. Mizutani, Y. Suzuki, M. Ueda, R. Matsuzaki, and Y. Hirano, “Tensile property evaluations of 3D printed continuous carbon fiber reinforced thermoplastic composites,” Adv. Compos. Mater., 29, 147-162 (2020).CrossRef A. Todoroki, T. Oasada, Y. Mizutani, Y. Suzuki, M. Ueda, R. Matsuzaki, and Y. Hirano, “Tensile property evaluations of 3D printed continuous carbon fiber reinforced thermoplastic composites,” Adv. Compos. Mater., 29, 147-162 (2020).CrossRef
50.
Zurück zum Zitat Z. Hou, X. Tian, Z. Zheng, J. Zhang, L. Zhe, D. Li, A. V. Malakhov, and A. N. Polilov, “A constitutive model for 3D printed continuous fiber reinforced composite structures with variable fiber content,” Composites: Part B, 189, 107893 (2020).CrossRef Z. Hou, X. Tian, Z. Zheng, J. Zhang, L. Zhe, D. Li, A. V. Malakhov, and A. N. Polilov, “A constitutive model for 3D printed continuous fiber reinforced composite structures with variable fiber content,” Composites: Part B, 189, 107893 (2020).CrossRef
Metadaten
Titel
Increasing the Bearing Capacity of Composite Plates in the Zone of Bolted Joints by Using Curvilinear Trajectories and a Variable Fiber Volume Fraction
verfasst von
A. V. Malakhov
A. N. Polilov
D. Li
X. Tian
Publikationsdatum
19.07.2021
Verlag
Springer US
Erschienen in
Mechanics of Composite Materials / Ausgabe 3/2021
Print ISSN: 0191-5665
Elektronische ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-021-09954-1

Weitere Artikel der Ausgabe 3/2021

Mechanics of Composite Materials 3/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.