Skip to main content
Erschienen in: Acta Mechanica 3/2024

16.12.2022 | Original Paper

Experimental characterization and mechanical modeling of additively manufactured TPU components of innovative seismic isolators

verfasst von: Julia de Castro Motta, Saeedeh Qaderi, Ilenia Farina, Narinder Singh, Ada Amendola, Fernando Fraternali

Erschienen in: Acta Mechanica | Ausgabe 3/2024

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work presents an experimental and mechanical study on the tensile response of 3D-printed thermoplastic polyurethane membranes, to be used as stretchable members of novel seismic isolators. The examined specimens have been 3D-printed by fused deposition modeling at the Rapid Prototyping Laboratory of the University of Salerno. Cyclic tests performed at different strain rates are employed to characterize the mechanical response of such members and the dependence of preconditioning effects on the recovery time and the initial pretension of the specimens. The presented results show a marked hysteretic response, the fast recovery of residual strains with time, and an appreciable increase of the tangent tensile modulus along the loading phase of the stress–strain curve with growing values of the applied strain rate.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Kasmi, S., Ginoux, G., Labbé, E., Alix, S.: Multi-physics properties of thermoplastic polyurethane at various fused filament fabrication parameters. Rapid Prototyp. J. 28(5), 895–906 (2022)CrossRef Kasmi, S., Ginoux, G., Labbé, E., Alix, S.: Multi-physics properties of thermoplastic polyurethane at various fused filament fabrication parameters. Rapid Prototyp. J. 28(5), 895–906 (2022)CrossRef
2.
Zurück zum Zitat Ali, M.M., Maddipatla, D., Narakathu, B.B., Chlaihawi, A.A., Emamian, S., Janabi, F., Bazuin, B.J., Atashbar, M.Z.: Printed strain sensor based on silver nanowire/silver flake composite on flexible and stretchable TPU substrate. Sens. Actuators, A 274, 109–115 (2018)CrossRef Ali, M.M., Maddipatla, D., Narakathu, B.B., Chlaihawi, A.A., Emamian, S., Janabi, F., Bazuin, B.J., Atashbar, M.Z.: Printed strain sensor based on silver nanowire/silver flake composite on flexible and stretchable TPU substrate. Sens. Actuators, A 274, 109–115 (2018)CrossRef
3.
Zurück zum Zitat Kim, K., Park, J., Suh, J.H., Kim, M., Jeong, Y., Park, I.: 3D printing of multiaxial force sensors using carbon nanotube (CNT)/thermoplastic polyurethane (TPU) filaments. Sens. Actuators, A 263, 493–500 (2017)CrossRef Kim, K., Park, J., Suh, J.H., Kim, M., Jeong, Y., Park, I.: 3D printing of multiaxial force sensors using carbon nanotube (CNT)/thermoplastic polyurethane (TPU) filaments. Sens. Actuators, A 263, 493–500 (2017)CrossRef
4.
Zurück zum Zitat Joshi, M., Adak, B., Butola, B.S.: Polyurethane nanocomposite based gas barrier films, membranes and coatings: a review on synthesis, characterization and potential applications. Prog. Mater Sci. 97, 230–282 (2018)CrossRef Joshi, M., Adak, B., Butola, B.S.: Polyurethane nanocomposite based gas barrier films, membranes and coatings: a review on synthesis, characterization and potential applications. Prog. Mater Sci. 97, 230–282 (2018)CrossRef
5.
Zurück zum Zitat Pokharel, P., Pant, B., Pokhrel, K., Pant, H.R., Lim, J.G., Kim, H.Y., Choi, S.: Effects of functional groups on the graphene sheet for improving the thermomechanical properties of polyurethane nanocomposites. Compos. B Eng. 78, 192–201 (2015)CrossRef Pokharel, P., Pant, B., Pokhrel, K., Pant, H.R., Lim, J.G., Kim, H.Y., Choi, S.: Effects of functional groups on the graphene sheet for improving the thermomechanical properties of polyurethane nanocomposites. Compos. B Eng. 78, 192–201 (2015)CrossRef
6.
Zurück zum Zitat Jalaly, S., Vahdani, M., Shahabadi, M., Sadeghi, G.M.M.: Design, fabrication, and measurement of a polymer-based anti-reflection coating for improved performance of a solar panel under a specific incident angle. Sol. Energy Mater. Sol. Cells 189, 175–180 (2019)CrossRef Jalaly, S., Vahdani, M., Shahabadi, M., Sadeghi, G.M.M.: Design, fabrication, and measurement of a polymer-based anti-reflection coating for improved performance of a solar panel under a specific incident angle. Sol. Energy Mater. Sol. Cells 189, 175–180 (2019)CrossRef
7.
Zurück zum Zitat Bao, J.J., Zou, B.K., Cheng, Q., Huang, Y.P., Wu, F., Xu, G.W., Chen, C.H.: Flexible and free-standing LiFePO4/TPU/SP cathode membrane prepared via phase separation process for lithium ion batteries. J. Membr. Sci. 541, 633–640 (2017)CrossRef Bao, J.J., Zou, B.K., Cheng, Q., Huang, Y.P., Wu, F., Xu, G.W., Chen, C.H.: Flexible and free-standing LiFePO4/TPU/SP cathode membrane prepared via phase separation process for lithium ion batteries. J. Membr. Sci. 541, 633–640 (2017)CrossRef
8.
Zurück zum Zitat Li, H., Oh, J.S., Sinha, T.K., Kim, J.K.: Synergistic influence of Keratin and TPU: An approach towards bioinspired artificial skin. Mater. Chem. Phys. 223, 196–201 (2019)CrossRef Li, H., Oh, J.S., Sinha, T.K., Kim, J.K.: Synergistic influence of Keratin and TPU: An approach towards bioinspired artificial skin. Mater. Chem. Phys. 223, 196–201 (2019)CrossRef
9.
Zurück zum Zitat Bek, M., Betjes, J., von Bernstorff, B.S., Emri, I.: Viscoelasticity of new generation thermoplastic polyurethane vibration isolators. Phys. Fluids 29(12), 121614 (2017)CrossRef Bek, M., Betjes, J., von Bernstorff, B.S., Emri, I.: Viscoelasticity of new generation thermoplastic polyurethane vibration isolators. Phys. Fluids 29(12), 121614 (2017)CrossRef
10.
Zurück zum Zitat Drobny, J.G.: Handbook of Thermoplastic Elastomers. Elsevier, Norwich (2007) Drobny, J.G.: Handbook of Thermoplastic Elastomers. Elsevier, Norwich (2007)
11.
Zurück zum Zitat Szycher, H.: Biostability of polyurethane elastomers: a critical review. J. Biomater. Appl. 3(2), 297–402 (1988)CrossRef Szycher, H.: Biostability of polyurethane elastomers: a critical review. J. Biomater. Appl. 3(2), 297–402 (1988)CrossRef
12.
Zurück zum Zitat Aurilia, M., Piscitelli, F., Sorrentino, L., Lavorgna, M., Iannace, S.: Detailed analysis of dynamic mechanical properties of TPU nanocomposite: The role of the interfaces. Eur. Polymer J. 47(5), 925–936 (2011)CrossRef Aurilia, M., Piscitelli, F., Sorrentino, L., Lavorgna, M., Iannace, S.: Detailed analysis of dynamic mechanical properties of TPU nanocomposite: The role of the interfaces. Eur. Polymer J. 47(5), 925–936 (2011)CrossRef
13.
Zurück zum Zitat Barick, A.K., Tripathy, D.K.: Thermal and dynamic mechanical characterization of thermoplastic polyurethane/organoclay nanocomposites prepared by melt compounding. Mater. Sci. Eng., A 527(3), 812–823 (2010)CrossRef Barick, A.K., Tripathy, D.K.: Thermal and dynamic mechanical characterization of thermoplastic polyurethane/organoclay nanocomposites prepared by melt compounding. Mater. Sci. Eng., A 527(3), 812–823 (2010)CrossRef
14.
Zurück zum Zitat Dan, C.H., Kim, Y.D., Lee, M., Min, B.H., Kim, J.H.: Effect of solvent on the properties of thermoplastic polyurethane/clay nanocomposites prepared by solution mixing. J. Appl. Polym. Sci. 108(4), 2128–2138 (2008)CrossRef Dan, C.H., Kim, Y.D., Lee, M., Min, B.H., Kim, J.H.: Effect of solvent on the properties of thermoplastic polyurethane/clay nanocomposites prepared by solution mixing. J. Appl. Polym. Sci. 108(4), 2128–2138 (2008)CrossRef
15.
Zurück zum Zitat Stan, F., Nicoleta-Violeta, S., Adriana-Madalina, C., Catalin, F.: 3D Printing of Flexible and Stretchable Parts Using Multiwall Carbon Nanotube/Polyester-Based Thermoplastic Polyurethane. Journal of Manufacturing Science and Engineering 143(5), (2021) Stan, F., Nicoleta-Violeta, S., Adriana-Madalina, C., Catalin, F.: 3D Printing of Flexible and Stretchable Parts Using Multiwall Carbon Nanotube/Polyester-Based Thermoplastic Polyurethane. Journal of Manufacturing Science and Engineering 143(5), (2021)
16.
Zurück zum Zitat Liu, L.C., Liang, W.C., Chen, C.M.: Manufacture of recyclable thermoplastic polyurethane (TPU)/Silicone blends and their mechanical properties. Manufact. Lett. 31, 1–5 (2022)CrossRef Liu, L.C., Liang, W.C., Chen, C.M.: Manufacture of recyclable thermoplastic polyurethane (TPU)/Silicone blends and their mechanical properties. Manufact. Lett. 31, 1–5 (2022)CrossRef
17.
Zurück zum Zitat Qi, H.J., Boyce, M.C.: Stress-strain behavior of thermoplastic polyurethanes. Mech. Mater. 37(8), 817–839 (2005)CrossRef Qi, H.J., Boyce, M.C.: Stress-strain behavior of thermoplastic polyurethanes. Mech. Mater. 37(8), 817–839 (2005)CrossRef
18.
Zurück zum Zitat Sain, T., Meaud, J., Yeom, B., Waas, A.M., Arruda, E.M.: Rate dependent finite strain constitutive modeling of polyurethane and polyurethane-clay nanocomposites. Int. J. Solids Struct. 54, 147–155 (2015)CrossRef Sain, T., Meaud, J., Yeom, B., Waas, A.M., Arruda, E.M.: Rate dependent finite strain constitutive modeling of polyurethane and polyurethane-clay nanocomposites. Int. J. Solids Struct. 54, 147–155 (2015)CrossRef
19.
Zurück zum Zitat Sui, T., Salvati, E., Ying, S., Sun, G., Dolbnya, I.P., Dragnevski, K., Prisacariu, C., Korsunsky, A.M.: Strain softening of nano-scale fuzzy interfaces causes Mullins effect in thermoplastic polyurethane. Sci. Rep. 7(1), 1–9 (2017)CrossRef Sui, T., Salvati, E., Ying, S., Sun, G., Dolbnya, I.P., Dragnevski, K., Prisacariu, C., Korsunsky, A.M.: Strain softening of nano-scale fuzzy interfaces causes Mullins effect in thermoplastic polyurethane. Sci. Rep. 7(1), 1–9 (2017)CrossRef
20.
Zurück zum Zitat Chen, H., Trivedi, A.R., Siviour, C.R.: Application of linear viscoelastic continuum damage theory to the low and high strain rate response of thermoplastic polyurethane. Exp. Mech. 60(7), 925–936 (2020)CrossRef Chen, H., Trivedi, A.R., Siviour, C.R.: Application of linear viscoelastic continuum damage theory to the low and high strain rate response of thermoplastic polyurethane. Exp. Mech. 60(7), 925–936 (2020)CrossRef
21.
Zurück zum Zitat Kim, K., Park, J., Suh, J.H., Kim, M., Jeong, Y., Park, I.: 3D printing of multiaxial force sensors using carbon nanotube (CNT)/thermoplastic polyurethane (TPU) filaments. Sens. Actuators, A 263, 493–500 (2017)CrossRef Kim, K., Park, J., Suh, J.H., Kim, M., Jeong, Y., Park, I.: 3D printing of multiaxial force sensors using carbon nanotube (CNT)/thermoplastic polyurethane (TPU) filaments. Sens. Actuators, A 263, 493–500 (2017)CrossRef
22.
Zurück zum Zitat Christ, J.F., Aliheidari, N., Pötschke, P., Ameli, A.: Bidirectional and stretchable piezoresistive sensors enabled by multimaterial 3D printing of carbon nanotube/thermoplastic polyurethane nanocomposites. Polymers 11(1), 11 (2019)CrossRef Christ, J.F., Aliheidari, N., Pötschke, P., Ameli, A.: Bidirectional and stretchable piezoresistive sensors enabled by multimaterial 3D printing of carbon nanotube/thermoplastic polyurethane nanocomposites. Polymers 11(1), 11 (2019)CrossRef
23.
Zurück zum Zitat Kim, M., Jaebong Jung, J., Sungmook, J., Young, H.M., Dae-Hyeong, K., Ji, H.K.: Piezoresistive behaviour of additively manufactured multi-walled carbon nanotube/thermoplastic polyurethane nanocomposites. Materials 12(16), 2613 (2019) Kim, M., Jaebong Jung, J., Sungmook, J., Young, H.M., Dae-Hyeong, K., Ji, H.K.: Piezoresistive behaviour of additively manufactured multi-walled carbon nanotube/thermoplastic polyurethane nanocomposites. Materials 12(16), 2613 (2019)
24.
Zurück zum Zitat Fraternali, F., Singh, N., Amendola, A., Benzoni, G., Milton, G.W.: A biomimetic sliding-stretching approach to seismic isolation. Nonlinear Dyn. 106(4), 3147–3159 (2021)CrossRef Fraternali, F., Singh, N., Amendola, A., Benzoni, G., Milton, G.W.: A biomimetic sliding-stretching approach to seismic isolation. Nonlinear Dyn. 106(4), 3147–3159 (2021)CrossRef
25.
Zurück zum Zitat Fraternali, F., Singh, N., Amendola, A., Benzoni, G., Milton, G. W.: The 3D print job that keeps quake damage at bay. Nature, Research Highlight, 600(7887), 10 (2021) Fraternali, F., Singh, N., Amendola, A., Benzoni, G., Milton, G. W.: The 3D print job that keeps quake damage at bay. Nature, Research Highlight, 600(7887), 10 (2021)
26.
Zurück zum Zitat Dorfmann, A., Ogden, R.W.: A pseudo-elastic model for loading, partial unloading and reloading of particle-reinforced rubber. Int. J. Solids Struct. 40(11), 2699–2714 (2003)CrossRef Dorfmann, A., Ogden, R.W.: A pseudo-elastic model for loading, partial unloading and reloading of particle-reinforced rubber. Int. J. Solids Struct. 40(11), 2699–2714 (2003)CrossRef
27.
Zurück zum Zitat Dorfmann, A., Ogden, Ray W.: A constitutive model for the Mullins effect with permanent set in particle-reinforced rubber. Int. J. Solids Struct. 41(7), 1855–1878 (2004)CrossRef Dorfmann, A., Ogden, Ray W.: A constitutive model for the Mullins effect with permanent set in particle-reinforced rubber. Int. J. Solids Struct. 41(7), 1855–1878 (2004)CrossRef
28.
Zurück zum Zitat Mohotti, D., Ali, M., Ngo, T., Lu, J., Mendis, P.: Strain rate dependent constitutive model for predicting the material behaviour of polyurea under high strain rate tensile loading. Mater. Design 53, 830–837 (2014)CrossRef Mohotti, D., Ali, M., Ngo, T., Lu, J., Mendis, P.: Strain rate dependent constitutive model for predicting the material behaviour of polyurea under high strain rate tensile loading. Mater. Design 53, 830–837 (2014)CrossRef
29.
Zurück zum Zitat Saedniya, M., Talaeitaba, S.B.: Numerical modeling of elastomeric seismic isolators for determining force-displacement curve from cyclic loading. Int. J. Adv. Struct. Eng. 11(3), 361–376 (2019)CrossRef Saedniya, M., Talaeitaba, S.B.: Numerical modeling of elastomeric seismic isolators for determining force-displacement curve from cyclic loading. Int. J. Adv. Struct. Eng. 11(3), 361–376 (2019)CrossRef
30.
Zurück zum Zitat Reese, S., Govindjee, S.: A theory of finite viscoelasticity and numerical aspects. Int. J. Solids Struct. 35(26–27), 3455–3482 (1998)CrossRef Reese, S., Govindjee, S.: A theory of finite viscoelasticity and numerical aspects. Int. J. Solids Struct. 35(26–27), 3455–3482 (1998)CrossRef
31.
Zurück zum Zitat Amendola, A., Fraternali, F.: Incremental auxetic response of composite lattices under isotropic prestress. Compos. Struct. 191, 145–153 (2018) Amendola, A., Fraternali, F.: Incremental auxetic response of composite lattices under isotropic prestress. Compos. Struct. 191, 145–153 (2018)
32.
Zurück zum Zitat Miniaci, M., Mazzotti, M., Amendola, A., Fraternali, F.: Effect of prestress on phononic band gaps induced by inertial amplification. Int. J. Solids Struct. 216, 156–166 (2021) Miniaci, M., Mazzotti, M., Amendola, A., Fraternali, F.: Effect of prestress on phononic band gaps induced by inertial amplification. Int. J. Solids Struct. 216, 156–166 (2021)
Metadaten
Titel
Experimental characterization and mechanical modeling of additively manufactured TPU components of innovative seismic isolators
verfasst von
Julia de Castro Motta
Saeedeh Qaderi
Ilenia Farina
Narinder Singh
Ada Amendola
Fernando Fraternali
Publikationsdatum
16.12.2022
Verlag
Springer Vienna
Erschienen in
Acta Mechanica / Ausgabe 3/2024
Print ISSN: 0001-5970
Elektronische ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-022-03447-5

Weitere Artikel der Ausgabe 3/2024

Acta Mechanica 3/2024 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.