Skip to main content
Erschienen in: Experimental Mechanics 2/2022

05.10.2021 | Research paper

Experimental Quantification and Validation of Modal Properties of Geometrically Nonlinear Structures by Using Response-Controlled Stepped-Sine Testing

verfasst von: T. Karaağaçlı, H. N. Özgüven

Erschienen in: Experimental Mechanics | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Background

Various nonlinear system identification methods applicable to distributed nonlinearities have been developed over the last decade. However, many of them are not eligible to accurately quantify a high degree of nonlinearity. Furthermore, there exist few studies that actually validate the identified nonlinear properties.

Objective

The main objective of this paper is the validation of a novel nonlinear system identification framework recently developed by the authors on a double-clamped thin beam structure that exhibits continuously distributed strong geometrical nonlinearity due to large amplitude oscillations and considerable damping nonlinearity due to micro-slip in the beam-base connections.

Methods

The identification framework consists of response-controlled stepped-sine testing (RCT) and the harmonic force surface (HFS) concept. The framework is implemented by using standard hardware and software in modal testing. The RCT approach is based on keeping the displacement amplitude of the driving point constant throughout the frequency sweep and its basic assumptions are well-separated modes and no internal resonance. Constant-force frequency response curves and backbone curves of the first nonlinear normal mode (NNM) are identified at multiple measurement points from HFSs constructed by using measured harmonic excitation force spectra. The NNM shapes of the first mode at various vibration levels are then constructed from the identified NNM backbone curves. On the other side, the response level-dependent modal parameters are identified by applying standard linear modal analysis techniques to frequency response functions (FRFs) measured at constant displacement amplitude levels throughout RCT.

Results

The RCT-HFS framework quantifies about a 20% shift of the natural frequency and an order of magnitude change of the modal damping ratio (from 0.5% to 4%) for the first mode of the double-clamped beam, which indicates a considerably high degree of stiffness and damping nonlinearities in the vibration range of interest. The identified nonlinear modal parameters are successfully validated by comparing near-resonant constant-force frequency response curves synthesized from these parameters with the ones measured by constant-force stepped-sine testing and with the ones extracted from the HFSs. The HFSs are determined for the first time in an experiment at multiple measurement points other than the driving point. The NNM shapes determined from HFSs are also validated by comparing them with the ones obtained from the identified nonlinear modal constants.

Conclusions

The RCT-HFS framework is successfully validated for the first time on a structure that exhibits continuously distributed geometrical nonlinearity. This study is a humble contribution towards making nonlinear experimental modal analysis a standard engineering practice.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Noël JP, Kerschen G (2017) Nonlinear system identification in structural dynamics: 10 more years of progress. Mech Syst Signal Process 83:2–35CrossRef Noël JP, Kerschen G (2017) Nonlinear system identification in structural dynamics: 10 more years of progress. Mech Syst Signal Process 83:2–35CrossRef
2.
3.
Zurück zum Zitat Rosenberg RM (1966) On nonlinear vibrations of systems with many degrees of freedom. Adv Appl Mech 9:155–242CrossRef Rosenberg RM (1966) On nonlinear vibrations of systems with many degrees of freedom. Adv Appl Mech 9:155–242CrossRef
4.
Zurück zum Zitat Setio S, Setio HD, Jezequel L (1992) A method of nonlinear modal identification from frequency response tests. J Sound Vib 158(3):497–515CrossRef Setio S, Setio HD, Jezequel L (1992) A method of nonlinear modal identification from frequency response tests. J Sound Vib 158(3):497–515CrossRef
5.
Zurück zum Zitat Gibert C (2003) Fitting measured frequency response using nonlinear modes. Mech Syst Signal Process 17(1):211–218CrossRef Gibert C (2003) Fitting measured frequency response using nonlinear modes. Mech Syst Signal Process 17(1):211–218CrossRef
6.
Zurück zum Zitat Szemplinska-Stupnicka W (1979) The modified single mode method in the investigations of the resonant vibrations of nonlinear systems. J Sound Vib 63(4):475–489CrossRef Szemplinska-Stupnicka W (1979) The modified single mode method in the investigations of the resonant vibrations of nonlinear systems. J Sound Vib 63(4):475–489CrossRef
7.
Zurück zum Zitat Peeters M, Kerschen G, Golinval JC (2011) Dynamic testing of nonlinear vibrating structures using nonlinear normal modes. J Sound Vib 330:486–509CrossRef Peeters M, Kerschen G, Golinval JC (2011) Dynamic testing of nonlinear vibrating structures using nonlinear normal modes. J Sound Vib 330:486–509CrossRef
8.
Zurück zum Zitat Peeters M, Kerschen G, Golinval JC (2011) Modal testing of nonlinear vibrating structures based on nonlinear normal modes: experimental demonstration. Mech Syst Signal Process 25:1227–1247CrossRef Peeters M, Kerschen G, Golinval JC (2011) Modal testing of nonlinear vibrating structures based on nonlinear normal modes: experimental demonstration. Mech Syst Signal Process 25:1227–1247CrossRef
9.
Zurück zum Zitat Londono JM, Neild SA, Cooper JE (2015) Identification of backbone curves of nonlinear systems from resonance decay responses. J Sound Vib 348:224–238CrossRef Londono JM, Neild SA, Cooper JE (2015) Identification of backbone curves of nonlinear systems from resonance decay responses. J Sound Vib 348:224–238CrossRef
10.
Zurück zum Zitat Platten MF, Wright JR, Cooper JE, Dimitriadis G (2009) Identification of a nonlinear wing structure using an extended modal model. AIAA J Aircraft 46(5):1614–1626CrossRef Platten MF, Wright JR, Cooper JE, Dimitriadis G (2009) Identification of a nonlinear wing structure using an extended modal model. AIAA J Aircraft 46(5):1614–1626CrossRef
11.
Zurück zum Zitat Krack M (2021) Extension of the single nonlinear mode theory by linear attachments and application to exciter-structure interaction. J Sound Vib 505 Krack M (2021) Extension of the single nonlinear mode theory by linear attachments and application to exciter-structure interaction. J Sound Vib 505
12.
Zurück zum Zitat Pacini BR, Kuether RJ, Roettgen DR (2022) Shaker-structure modeling and analysis for nonlinear force appropriation testing. Mech Syst Signal Process 162 Pacini BR, Kuether RJ, Roettgen DR (2022) Shaker-structure modeling and analysis for nonlinear force appropriation testing. Mech Syst Signal Process 162
13.
Zurück zum Zitat Renson L, Gonzalez-Buelga A, Barton DAW, Neild SA (2016) Robust identification of backbone curves using control-based continuation. J Sound Vib 367:145–158CrossRef Renson L, Gonzalez-Buelga A, Barton DAW, Neild SA (2016) Robust identification of backbone curves using control-based continuation. J Sound Vib 367:145–158CrossRef
14.
15.
Zurück zum Zitat Peter S, Leine RI (2017) Excitation power quantities in phase resonance testing of nonlinear systems with phase-locked-loop excitation. Mech Syst Signal Process 96:139–158CrossRef Peter S, Leine RI (2017) Excitation power quantities in phase resonance testing of nonlinear systems with phase-locked-loop excitation. Mech Syst Signal Process 96:139–158CrossRef
16.
Zurück zum Zitat Denis V, Jossic M, Giraud-Audine C, Chomette B, Renault A, Thomas O (2018) Identification of nonlinear modes using phase-locked-loop experimental continuation and normal form. Mech Syst Sig Process 106:430–452CrossRef Denis V, Jossic M, Giraud-Audine C, Chomette B, Renault A, Thomas O (2018) Identification of nonlinear modes using phase-locked-loop experimental continuation and normal form. Mech Syst Sig Process 106:430–452CrossRef
17.
Zurück zum Zitat Jezequel L, Lamarque C (1991) Analysis of non-linear dynamical systems by the normal form theory. J Sound Vib 149(3):429–459CrossRef Jezequel L, Lamarque C (1991) Analysis of non-linear dynamical systems by the normal form theory. J Sound Vib 149(3):429–459CrossRef
18.
Zurück zum Zitat Kwarta M, Allen MS (2022) Nonlinear Normal Mode backbone curve estimation with near-resonant steady state inputs. Mech Syst Signal Process 162 Kwarta M, Allen MS (2022) Nonlinear Normal Mode backbone curve estimation with near-resonant steady state inputs. Mech Syst Signal Process 162
19.
Zurück zum Zitat Anastasio D, Marchesiello S, Kerschen G, Noël JP (2019) Experimental identification of distributed nonlinearities in the modal domain. J Sound Vib 458:426–444CrossRef Anastasio D, Marchesiello S, Kerschen G, Noël JP (2019) Experimental identification of distributed nonlinearities in the modal domain. J Sound Vib 458:426–444CrossRef
20.
Zurück zum Zitat Wang X, Hill TL, Neild SA (2019) Frequency response expansion strategy for nonlinear structures. Mech Syst Signal Process 116:505–529CrossRef Wang X, Hill TL, Neild SA (2019) Frequency response expansion strategy for nonlinear structures. Mech Syst Signal Process 116:505–529CrossRef
21.
Zurück zum Zitat Marchesiello S, Garibaldi L (2008) A time domain approach for identifying nonlinear vibrating structures by subspace methods. Mech Syst Signal Process 22:81–101CrossRef Marchesiello S, Garibaldi L (2008) A time domain approach for identifying nonlinear vibrating structures by subspace methods. Mech Syst Signal Process 22:81–101CrossRef
22.
Zurück zum Zitat Noël JP, Kerschen G (2013) Frequency-domain subspace identification for nonlinear mechanical systems. Mech Syst Signal Process 40:701–717CrossRef Noël JP, Kerschen G (2013) Frequency-domain subspace identification for nonlinear mechanical systems. Mech Syst Signal Process 40:701–717CrossRef
23.
Zurück zum Zitat Karaağaçlı T, Özgüven HN (2021) Experimental modal analysis of nonlinear systems by using response-controlled stepped-sine testing. Mech Syst Signal Process 146 Karaağaçlı T, Özgüven HN (2021) Experimental modal analysis of nonlinear systems by using response-controlled stepped-sine testing. Mech Syst Signal Process 146
24.
Zurück zum Zitat Karaağaçlı T, Özgüven HN (2020) Experimental identification of backbone curves of strongly nonlinear systems by using response-controlled stepped-sine testing (RCT). Vibration 3(3):266–280CrossRef Karaağaçlı T, Özgüven HN (2020) Experimental identification of backbone curves of strongly nonlinear systems by using response-controlled stepped-sine testing (RCT). Vibration 3(3):266–280CrossRef
25.
Zurück zum Zitat Arslan Ö, Özgüven HN (2008) Modal identification of nonlinear structures and the use of modal model in structural dynamic analysis. Proceedings of the 26th International Modal Analysis Conference (IMAC) Orlando, FL, USA Arslan Ö, Özgüven HN (2008) Modal identification of nonlinear structures and the use of modal model in structural dynamic analysis. Proceedings of the 26th International Modal Analysis Conference (IMAC) Orlando, FL, USA
26.
Zurück zum Zitat Tanrıkulu Ö, Kuran B, Özgüven HN, Imregün M (1993) Forced harmonic response analysis of nonlinear structures using describing functions. AIAA J 31(7):1313–1320CrossRef Tanrıkulu Ö, Kuran B, Özgüven HN, Imregün M (1993) Forced harmonic response analysis of nonlinear structures using describing functions. AIAA J 31(7):1313–1320CrossRef
27.
Zurück zum Zitat Scheel M, Peter S, Leine RI, Krack M (2018) A phase resonance approach for modal testing of structures with nonlinear dissipation. J Sound Vib 435:56–73CrossRef Scheel M, Peter S, Leine RI, Krack M (2018) A phase resonance approach for modal testing of structures with nonlinear dissipation. J Sound Vib 435:56–73CrossRef
28.
Zurück zum Zitat Scheel M, Weigele T, Krack M (2020) Challenging an experimental nonlinear modal analysis method with a new strongly friction-damped structure. J Sound Vib 485 Scheel M, Weigele T, Krack M (2020) Challenging an experimental nonlinear modal analysis method with a new strongly friction-damped structure. J Sound Vib 485
29.
Zurück zum Zitat Karaağaçlı T, Özgüven HN (2021) Experimental modal analysis of geometrically nonlinear structures by using response-controlled stepped-sine testing. Proceedings of the 39th International Modal Analysis Conference (IMAC) Orlando, FL, USA Karaağaçlı T, Özgüven HN (2021) Experimental modal analysis of geometrically nonlinear structures by using response-controlled stepped-sine testing. Proceedings of the 39th International Modal Analysis Conference (IMAC) Orlando, FL, USA
30.
Zurück zum Zitat Abeloos G, Renson L, Collette C, Kerschen G (2021) Stepped and swept control based continuation using adaptive filtering. Nonlinear Dyn 104:3793-3808CrossRef Abeloos G, Renson L, Collette C, Kerschen G (2021) Stepped and swept control based continuation using adaptive filtering. Nonlinear Dyn 104:3793-3808CrossRef
31.
Zurück zum Zitat Wang X, Zheng GT (2016) Equivalent dynamic stiffness mapping technique for identifying nonlinear structural elements from frequency response functions. Mech Syst Signal Process 68–69:394–415CrossRef Wang X, Zheng GT (2016) Equivalent dynamic stiffness mapping technique for identifying nonlinear structural elements from frequency response functions. Mech Syst Signal Process 68–69:394–415CrossRef
Metadaten
Titel
Experimental Quantification and Validation of Modal Properties of Geometrically Nonlinear Structures by Using Response-Controlled Stepped-Sine Testing
verfasst von
T. Karaağaçlı
H. N. Özgüven
Publikationsdatum
05.10.2021
Verlag
Springer US
Erschienen in
Experimental Mechanics / Ausgabe 2/2022
Print ISSN: 0014-4851
Elektronische ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-021-00784-9

Weitere Artikel der Ausgabe 2/2022

Experimental Mechanics 2/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.