Skip to main content
Erschienen in: Journal of Applied Mathematics and Computing 1/2022

25.03.2021 | Original Research

Exponential-sum-approximation technique for variable-order time-fractional diffusion equations

verfasst von: Jia-Li Zhang, Zhi-Wei Fang, Hai-Wei Sun

Erschienen in: Journal of Applied Mathematics and Computing | Ausgabe 1/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we study the variable-order (VO) time-fractional diffusion equations. For a VO function \(\alpha (t)\in (0,1)\), we develop an exponential-sum-approximation (ESA) technique to approach the VO Caputo fractional derivative. The ESA technique keeps both the quadrature exponents and the number of exponentials in the summation unchanged at different time level. Approximating parameters are properly selected to achieve the efficient accuracy. Compared with the general direct method, the proposed method reduces the storage requirement from \({\mathcal {O}}(n)\) to \({\mathcal {O}}(\log ^2 n)\) and the computational cost from \({\mathcal {O}}(n^2)\) to \(\mathcal {O}(n\log ^2 n)\), respectively, with n being the number of the time levels. When this fast algorithm is exploited to construct a fast ESA scheme for the VO time-fractional diffusion equations, the computational complexity of the proposed scheme is only of \({\mathcal {O}}(mn\log ^2 n)\) with \({\mathcal {O}}(m\log ^2n)\) storage requirement, where m denotes the number of spatial grid points. Theoretically, the unconditional stability and error analysis of the fast ESA scheme are given. The effectiveness of the proposed algorithm is verified by numerical examples.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Baffet, D., Hesthaven, J.S.: A kernel compression scheme for fractional differential equations. SIAM J. Numer. Anal. 55, 496–520 (2017)MathSciNetMATHCrossRef Baffet, D., Hesthaven, J.S.: A kernel compression scheme for fractional differential equations. SIAM J. Numer. Anal. 55, 496–520 (2017)MathSciNetMATHCrossRef
2.
Zurück zum Zitat Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: Application of a fractional advection dispersion equation. Water Resour. Res. 36, 1403–1412 (2000)CrossRef Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: Application of a fractional advection dispersion equation. Water Resour. Res. 36, 1403–1412 (2000)CrossRef
3.
Zurück zum Zitat Bertaccini, D., Durastante, F.: Block structured preconditioners in tensor form for the all-at-once solution of a finite volume fractional diffusion equation. Appl. Math. Lett. 95, 92–97 (2019)MathSciNetMATHCrossRef Bertaccini, D., Durastante, F.: Block structured preconditioners in tensor form for the all-at-once solution of a finite volume fractional diffusion equation. Appl. Math. Lett. 95, 92–97 (2019)MathSciNetMATHCrossRef
4.
5.
Zurück zum Zitat Chechkin, A.V., Gorenflo, R., Sokolov, I.M.: Fractional diffusion in inhomogeneous media. J. Phys. A Math. Gen. 38, 679–684 (2005)MathSciNetMATHCrossRef Chechkin, A.V., Gorenflo, R., Sokolov, I.M.: Fractional diffusion in inhomogeneous media. J. Phys. A Math. Gen. 38, 679–684 (2005)MathSciNetMATHCrossRef
7.
Zurück zum Zitat Diaz, G., Coimbra, C.F.M.: Nonlinear dynamics and control of a variable order oscillator with application to the van der pol equation. Nonlin. Dyn. 56, 145–157 (2009)MathSciNetMATHCrossRef Diaz, G., Coimbra, C.F.M.: Nonlinear dynamics and control of a variable order oscillator with application to the van der pol equation. Nonlin. Dyn. 56, 145–157 (2009)MathSciNetMATHCrossRef
8.
Zurück zum Zitat Du, R., Alikhanov, A.A., Sun, Z.Z.: Temporal second order difference schemes for the multi-dimensional variable-order time fractional sub-diffusion equations. Comput. Math. with Appl. 79, 2952–2972 (2020)MathSciNetMATHCrossRef Du, R., Alikhanov, A.A., Sun, Z.Z.: Temporal second order difference schemes for the multi-dimensional variable-order time fractional sub-diffusion equations. Comput. Math. with Appl. 79, 2952–2972 (2020)MathSciNetMATHCrossRef
9.
Zurück zum Zitat Fu, Z.J., Chen, W., Ling, L.: Method of approximate particular solutions for constant- and variable-order fractional diffusion models. Eng. Anal. Bound. Elem. 57, 37–46 (2015)MathSciNetMATHCrossRef Fu, Z.J., Chen, W., Ling, L.: Method of approximate particular solutions for constant- and variable-order fractional diffusion models. Eng. Anal. Bound. Elem. 57, 37–46 (2015)MathSciNetMATHCrossRef
10.
Zurück zum Zitat Fu, Z.J., Reutskiy, S., Sun, H.G., Ma, J., Khan, M.A.: A robust kernel-based solver for variable-order time fractional PDEs under 2D/3D irregular domains. Appl. Math. Lett. 94, 105–111 (2019)MathSciNetMATHCrossRef Fu, Z.J., Reutskiy, S., Sun, H.G., Ma, J., Khan, M.A.: A robust kernel-based solver for variable-order time fractional PDEs under 2D/3D irregular domains. Appl. Math. Lett. 94, 105–111 (2019)MathSciNetMATHCrossRef
11.
Zurück zum Zitat Fu, H.F., Wang, H.: A preconditioned fast finite difference method for space-time fractional partial differential equations. Fract. Calc. Appl. Anal. 20, 88–116 (2017)MathSciNetMATHCrossRef Fu, H.F., Wang, H.: A preconditioned fast finite difference method for space-time fractional partial differential equations. Fract. Calc. Appl. Anal. 20, 88–116 (2017)MathSciNetMATHCrossRef
12.
Zurück zum Zitat Gao, G.H., Sun, Z.Z.: A compact finite difference scheme for the fractional sub-diffusion equations. J. Comput. Phys. 230, 586–595 (2011)MathSciNetMATHCrossRef Gao, G.H., Sun, Z.Z.: A compact finite difference scheme for the fractional sub-diffusion equations. J. Comput. Phys. 230, 586–595 (2011)MathSciNetMATHCrossRef
13.
Zurück zum Zitat Ingman, D., Suzdalnitsky, J.: Control of damping oscilations by fractional differential operator with time-dependent order. Comput. Methods Appl. Mech. Eng. 193, 5585–5595 (2004)MATHCrossRef Ingman, D., Suzdalnitsky, J.: Control of damping oscilations by fractional differential operator with time-dependent order. Comput. Methods Appl. Mech. Eng. 193, 5585–5595 (2004)MATHCrossRef
14.
Zurück zum Zitat Jia, Y.T., Xu, M.Q., Lin, Y.Z.: A numerical solution for variable order fractional functional differential equation. Appl. Math. Lett. 64, 125–130 (2017)MathSciNetMATHCrossRef Jia, Y.T., Xu, M.Q., Lin, Y.Z.: A numerical solution for variable order fractional functional differential equation. Appl. Math. Lett. 64, 125–130 (2017)MathSciNetMATHCrossRef
15.
Zurück zum Zitat Jiang, S.D., Zhang, J.W., Zhang, Q., Zhang, Z.M.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21, 650–678 (2017)MathSciNetMATHCrossRef Jiang, S.D., Zhang, J.W., Zhang, Q., Zhang, Z.M.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21, 650–678 (2017)MathSciNetMATHCrossRef
16.
Zurück zum Zitat Ke, R., Ng, M.K., Sun, H.W.: A fast direct method for block triangular Toeplitz-like with tri-diagonal block systems from time-fractional partial differential equations. J. Comput. Phys. 303, 203–211 (2015)MathSciNetMATHCrossRef Ke, R., Ng, M.K., Sun, H.W.: A fast direct method for block triangular Toeplitz-like with tri-diagonal block systems from time-fractional partial differential equations. J. Comput. Phys. 303, 203–211 (2015)MathSciNetMATHCrossRef
17.
Zurück zum Zitat Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations. Elsevier, Amsterdam (2006)MATH Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations. Elsevier, Amsterdam (2006)MATH
18.
Zurück zum Zitat Langlands, T.A.M., Henry, B.I.: The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 205, 719–736 (2005)MathSciNetMATHCrossRef Langlands, T.A.M., Henry, B.I.: The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 205, 719–736 (2005)MathSciNetMATHCrossRef
19.
Zurück zum Zitat Liao, H.L., Li, D.F., Zhang, J.W.: Sharp error estimate of the nonuniform \(L1\) formula for linear reaction-subdiffusion equations. SIAM J. Numer. Aanl. 56, 1112–1133 (2018)MathSciNetMATHCrossRef Liao, H.L., Li, D.F., Zhang, J.W.: Sharp error estimate of the nonuniform \(L1\) formula for linear reaction-subdiffusion equations. SIAM J. Numer. Aanl. 56, 1112–1133 (2018)MathSciNetMATHCrossRef
20.
Zurück zum Zitat Liu, F.W., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker-Planck equation. J. Comput. Appl. Math. 166, 209–219 (2004)MathSciNetMATHCrossRef Liu, F.W., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker-Planck equation. J. Comput. Appl. Math. 166, 209–219 (2004)MathSciNetMATHCrossRef
21.
Zurück zum Zitat López-Fernándes, M., Lubich, C., Schadle, A.: Adaptive, fast and oblivious convolution in evolution with memory. SIAM J. Sci. Comput. 30, 1015–1037 (2008)MathSciNetMATHCrossRef López-Fernándes, M., Lubich, C., Schadle, A.: Adaptive, fast and oblivious convolution in evolution with memory. SIAM J. Sci. Comput. 30, 1015–1037 (2008)MathSciNetMATHCrossRef
22.
23.
Zurück zum Zitat Lu, X., Pang, H.K., Sun, H.W.: Fast approximate inversion of a block triangular Toeplitz matrix with applications to fractional sub-diffusion equations. Numer. Lin. Alg. Appl. 22, 866–882 (2015)MathSciNetMATHCrossRef Lu, X., Pang, H.K., Sun, H.W.: Fast approximate inversion of a block triangular Toeplitz matrix with applications to fractional sub-diffusion equations. Numer. Lin. Alg. Appl. 22, 866–882 (2015)MathSciNetMATHCrossRef
24.
Zurück zum Zitat Lu, X., Pang, H.K., Sun, H.W., Vong, S.W.: Approximation inversion method for time-fractional subdiffusion equations. Numer. Lin. Alg. Appl. 25, (2018) Lu, X., Pang, H.K., Sun, H.W., Vong, S.W.: Approximation inversion method for time-fractional subdiffusion equations. Numer. Lin. Alg. Appl. 25, (2018)
25.
26.
Zurück zum Zitat Mainardi, F., Raberto, M., Gorenflo, R., Scalas, E.: Fractional calculus and continuous-time finance II: the waiting-time distribution. Phys. A 287, 468–481 (2000)MATHCrossRef Mainardi, F., Raberto, M., Gorenflo, R., Scalas, E.: Fractional calculus and continuous-time finance II: the waiting-time distribution. Phys. A 287, 468–481 (2000)MATHCrossRef
27.
Zurück zum Zitat Obembe, A.D., Hossain, M.E., Abu-Khamsin, S.A.: Variable-order derivative time fractional diffusion model for heterogeneous porous media. J. Petrol. Sci. Eng. 152, 391–405 (2017)CrossRef Obembe, A.D., Hossain, M.E., Abu-Khamsin, S.A.: Variable-order derivative time fractional diffusion model for heterogeneous porous media. J. Petrol. Sci. Eng. 152, 391–405 (2017)CrossRef
28.
Zurück zum Zitat Oldham, K.B., Spanier, J.: The fractional calculus. Academic Press, New York (1974)MATH Oldham, K.B., Spanier, J.: The fractional calculus. Academic Press, New York (1974)MATH
29.
Zurück zum Zitat Pedro, H.T.C., Kobayashi, M.H., Pereira, J.M.C., Coimbra, C.F.M.: Variable order modeling of diffusive-convective effects on the oscillatory flow past a sphere. J. Vib. Control 14, 1659–1672 (2008)MathSciNetMATHCrossRef Pedro, H.T.C., Kobayashi, M.H., Pereira, J.M.C., Coimbra, C.F.M.: Variable order modeling of diffusive-convective effects on the oscillatory flow past a sphere. J. Vib. Control 14, 1659–1672 (2008)MathSciNetMATHCrossRef
30.
Zurück zum Zitat Podlubny, I.: Fractional differential equations. Academic Press, New York (1999)MATH Podlubny, I.: Fractional differential equations. Academic Press, New York (1999)MATH
31.
Zurück zum Zitat Raberto, M., Scalas, E., Mainardi, F.: Waiting-times and returns in high-frequency financial data: an empirical study. Phys. A 314, 749–755 (2002)MATHCrossRef Raberto, M., Scalas, E., Mainardi, F.: Waiting-times and returns in high-frequency financial data: an empirical study. Phys. A 314, 749–755 (2002)MATHCrossRef
32.
Zurück zum Zitat Ramirez, L. E. S., Coimbra, C. F. M.: On the selection and meaning of variable order operators for dynamic modeling, Int. J. Differ. Equ., Article ID 846107, p. 16 (2010) Ramirez, L. E. S., Coimbra, C. F. M.: On the selection and meaning of variable order operators for dynamic modeling, Int. J. Differ. Equ., Article ID 846107, p. 16 (2010)
33.
Zurück zum Zitat Samko, S.G., Ross, B.: Integration and differentiation to a variable fractional order. Integr. Transf. Spec. Funct. 1, 277–300 (1993)MathSciNetMATHCrossRef Samko, S.G., Ross, B.: Integration and differentiation to a variable fractional order. Integr. Transf. Spec. Funct. 1, 277–300 (1993)MathSciNetMATHCrossRef
34.
Zurück zum Zitat Schädle, A., López-Fernándes, M., Lubich, C.: Fast and oblivious convolution quadrature. SIAM J. Sci. Comput. 28, 421–438 (2006)MathSciNetMATHCrossRef Schädle, A., López-Fernándes, M., Lubich, C.: Fast and oblivious convolution quadrature. SIAM J. Sci. Comput. 28, 421–438 (2006)MathSciNetMATHCrossRef
35.
Zurück zum Zitat Shen, S.J., Liu, F.W., Chen, J.H., Turner, I., Anh, V.: Numerical techniques for the variable order time fractional diffusion equation. App. Math. Comput. 218, 10861–10870 (2012)MathSciNetMATHCrossRef Shen, S.J., Liu, F.W., Chen, J.H., Turner, I., Anh, V.: Numerical techniques for the variable order time fractional diffusion equation. App. Math. Comput. 218, 10861–10870 (2012)MathSciNetMATHCrossRef
36.
Zurück zum Zitat Sokolov, I.M., Klafter, J.: From diffusion to anomalous diffusion: a century after einsteins brownian motion. Chaos 15, 1–7 (2005)MathSciNetMATHCrossRef Sokolov, I.M., Klafter, J.: From diffusion to anomalous diffusion: a century after einsteins brownian motion. Chaos 15, 1–7 (2005)MathSciNetMATHCrossRef
37.
Zurück zum Zitat Soon, C.M., Coimbra, C.F.M., Kobayashi, M.H.: The variable viscoelasticity oscillator. Ann. Phys. 14, 378–389 (2005)MATHCrossRef Soon, C.M., Coimbra, C.F.M., Kobayashi, M.H.: The variable viscoelasticity oscillator. Ann. Phys. 14, 378–389 (2005)MATHCrossRef
38.
Zurück zum Zitat Sun, Z.Z.: Numerical methods of partial differential equations. Science Press, Beijing (2005) Sun, Z.Z.: Numerical methods of partial differential equations. Science Press, Beijing (2005)
39.
Zurück zum Zitat Sun, H.G., Chang, A., Zhang, Y., Chen, W.: A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications. Fract. Calc. Appl. Anal. 22, 27–59 (2019)MathSciNetMATHCrossRef Sun, H.G., Chang, A., Zhang, Y., Chen, W.: A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications. Fract. Calc. Appl. Anal. 22, 27–59 (2019)MathSciNetMATHCrossRef
40.
Zurück zum Zitat Sun, H.G., Chen, W., Chen, Y.Q.: Variable-order fractional differential operators in anomalous diffusion modeling. Phys. A 388, 4586–4592 (2009)CrossRef Sun, H.G., Chen, W., Chen, Y.Q.: Variable-order fractional differential operators in anomalous diffusion modeling. Phys. A 388, 4586–4592 (2009)CrossRef
41.
Zurück zum Zitat Sun, H.G., Chen, W., Li, C.P., Chen, Y.Q.: Finite difference schemes for variable-order time fractional diffusion equation. Int. J. Bifurcation Chaos 22, 1250085 (2012)MathSciNetMATHCrossRef Sun, H.G., Chen, W., Li, C.P., Chen, Y.Q.: Finite difference schemes for variable-order time fractional diffusion equation. Int. J. Bifurcation Chaos 22, 1250085 (2012)MathSciNetMATHCrossRef
42.
Zurück zum Zitat Sun, H.G., Chen, W., Wei, H., Chen, Y.Q.: A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems. Eur. Phys. J. Spec. Top. 193, 185–192 (2011)CrossRef Sun, H.G., Chen, W., Wei, H., Chen, Y.Q.: A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems. Eur. Phys. J. Spec. Top. 193, 185–192 (2011)CrossRef
43.
44.
Zurück zum Zitat Zhao, X., Sun, Z.Z., Karniadakis, G.E.: Second-order approximations for variable order fractional derivatives: Algorithms and applications. J. Comput. Phys. 293, 184–200 (2015)MathSciNetMATHCrossRef Zhao, X., Sun, Z.Z., Karniadakis, G.E.: Second-order approximations for variable order fractional derivatives: Algorithms and applications. J. Comput. Phys. 293, 184–200 (2015)MathSciNetMATHCrossRef
45.
Zurück zum Zitat Zhuang, P., Liu, F.W., Anh, V., Turner, I.: Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 47, 1760–1781 (2009)MathSciNetMATHCrossRef Zhuang, P., Liu, F.W., Anh, V., Turner, I.: Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 47, 1760–1781 (2009)MathSciNetMATHCrossRef
Metadaten
Titel
Exponential-sum-approximation technique for variable-order time-fractional diffusion equations
verfasst von
Jia-Li Zhang
Zhi-Wei Fang
Hai-Wei Sun
Publikationsdatum
25.03.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Applied Mathematics and Computing / Ausgabe 1/2022
Print ISSN: 1598-5865
Elektronische ISSN: 1865-2085
DOI
https://doi.org/10.1007/s12190-021-01528-7

Weitere Artikel der Ausgabe 1/2022

Journal of Applied Mathematics and Computing 1/2022 Zur Ausgabe

Premium Partner