Skip to main content
Erschienen in: Cognitive Computation 3/2018

22.12.2017

Extreme Learning Machines for VISualization+R: Mastering Visualization with Target Variables

verfasst von: Andrey Gritsenko, Anton Akusok, Stephen Baek, Yoan Miche, Amaury Lendasse

Erschienen in: Cognitive Computation | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The current paper presents an improvement of the Extreme Learning Machines for VISualization (ELMVIS+) nonlinear dimensionality reduction method. In this improved method, called ELMVIS+R, it is proposed to apply the originally unsupervised ELMVIS+ method for the regression problems, using target values to improve visualization results. It has been shown in previous work that the approach of adding supervised component for classification problems indeed allows to obtain better visualization results. To verify this assumption for regression problems, a set of experiments on several different datasets was performed. The newly proposed method was compared to the ELMVIS+ method and, in most cases, outperformed the original algorithm. Results, presented in this article, prove the general idea that using supervised components (target values) with nonlinear dimensionality reduction method like ELMVIS+ can improve both visual properties and overall accuracy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Løkse S, Bianchi FM, Jenssen R. Training echo state networks with regularization through dimensionality reduction. Cogn Comput 2017;9(3):364–378.CrossRef Løkse S, Bianchi FM, Jenssen R. Training echo state networks with regularization through dimensionality reduction. Cogn Comput 2017;9(3):364–378.CrossRef
2.
Zurück zum Zitat Gisbrecht A., Hammer B. Data visualization by nonlinear dimensionality reduction. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 2015;5(2):51–73. Gisbrecht A., Hammer B. Data visualization by nonlinear dimensionality reduction. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 2015;5(2):51–73.
3.
Zurück zum Zitat Kaski S., Peltonen J. Dimensionality reduction for data visualization. IEEE Signal Process Mag 2011;28(2): 100–104.CrossRef Kaski S., Peltonen J. Dimensionality reduction for data visualization. IEEE Signal Process Mag 2011;28(2): 100–104.CrossRef
4.
Zurück zum Zitat Akusok A., Baek S., Miche Y., Björk K.M., Nian R., Lauren P., Lendasse A. ELMVIS+: fast nonlinear visualization technique based on cosine distance and extreme learning machines. Neurocomputing 2016;205: 247–263.CrossRef Akusok A., Baek S., Miche Y., Björk K.M., Nian R., Lauren P., Lendasse A. ELMVIS+: fast nonlinear visualization technique based on cosine distance and extreme learning machines. Neurocomputing 2016;205: 247–263.CrossRef
5.
Zurück zum Zitat Padmaja DL, Vishnuvardhan B. Comparative study of feature subset selection methods for dimensionality reduction on scientific data. 2016 IEEE 6th International Conference on Advanced Computing (IACC); 2016. p. 31–34. Padmaja DL, Vishnuvardhan B. Comparative study of feature subset selection methods for dimensionality reduction on scientific data. 2016 IEEE 6th International Conference on Advanced Computing (IACC); 2016. p. 31–34.
6.
Zurück zum Zitat Torabi A., Zareayan Jahromy F., Daliri M.R. 2017. Semantic category-based classification using nonlinear features and wavelet coefficients of brain signals. Cognitive Computation. Torabi A., Zareayan Jahromy F., Daliri M.R. 2017. Semantic category-based classification using nonlinear features and wavelet coefficients of brain signals. Cognitive Computation.
7.
Zurück zum Zitat Xia S.X., Meng F.R., Liu B., Zhou Y. A kernel clustering-based possibilistic fuzzy extreme learning machine for class imbalance learning. Cogn Comput 2015;7(1):74–85.CrossRef Xia S.X., Meng F.R., Liu B., Zhou Y. A kernel clustering-based possibilistic fuzzy extreme learning machine for class imbalance learning. Cogn Comput 2015;7(1):74–85.CrossRef
8.
Zurück zum Zitat Wei H., Dong Z. V4 neural network model for shape-based feature extraction and object discrimination. Cogn Comput 2015;7(6):753–762.CrossRef Wei H., Dong Z. V4 neural network model for shape-based feature extraction and object discrimination. Cogn Comput 2015;7(6):753–762.CrossRef
9.
Zurück zum Zitat Kohonen T. Self-organized formation of topologically correct feature maps. Biol Cybern 1982;43(1):59–69.CrossRef Kohonen T. Self-organized formation of topologically correct feature maps. Biol Cybern 1982;43(1):59–69.CrossRef
10.
Zurück zum Zitat Minhas S., Hussain A. From spin to swindle: identifying falsification in financial text. Cogn Comput 2016;8 (4):729–745.CrossRef Minhas S., Hussain A. From spin to swindle: identifying falsification in financial text. Cogn Comput 2016;8 (4):729–745.CrossRef
11.
Zurück zum Zitat Dornaika F, Assoum A. Linear Dimensionality Reduction through Eigenvector Selection for Object Recognition. Springer Berlin Heidelberg, Berlin, Heidelberg; 2010. p. 276–285. Dornaika F, Assoum A. Linear Dimensionality Reduction through Eigenvector Selection for Object Recognition. Springer Berlin Heidelberg, Berlin, Heidelberg; 2010. p. 276–285.
12.
Zurück zum Zitat Shereena V.B., Julie M.D. Significance of dimensionality reduction in image processing. Sign Image Process Int J 2015;6(3):27–42.CrossRef Shereena V.B., Julie M.D. Significance of dimensionality reduction in image processing. Sign Image Process Int J 2015;6(3):27–42.CrossRef
13.
Zurück zum Zitat Haghighat M., Zonouz S., Abdel-Mottaleb M. CloudID: trustworthy cloud-based and cross-enterprise biometric identification. Expert Syst Appl 2015;42(21):7905–7916.CrossRef Haghighat M., Zonouz S., Abdel-Mottaleb M. CloudID: trustworthy cloud-based and cross-enterprise biometric identification. Expert Syst Appl 2015;42(21):7905–7916.CrossRef
14.
Zurück zum Zitat Ding S., Meng L., Han Y., Xue Y. A review on feature binding theory and its functions observed in perceptual process. Cogn Comput 2017;9(2):194–206.CrossRef Ding S., Meng L., Han Y., Xue Y. A review on feature binding theory and its functions observed in perceptual process. Cogn Comput 2017;9(2):194–206.CrossRef
15.
Zurück zum Zitat Ye J. Dimension Reduction Algorithms in Data Mining, with Applications. Minneapolis: PhD thesis, University of Minnesota; 2005. AAI3172868. Ye J. Dimension Reduction Algorithms in Data Mining, with Applications. Minneapolis: PhD thesis, University of Minnesota; 2005. AAI3172868.
16.
Zurück zum Zitat Kruskal J.B. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 1964;29(1):1–27.CrossRef Kruskal J.B. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 1964;29(1):1–27.CrossRef
17.
Zurück zum Zitat Sammon J. A nonlinear mapping for data structure analysis. IEEE Trans Comput 1969;18:401–409.CrossRef Sammon J. A nonlinear mapping for data structure analysis. IEEE Trans Comput 1969;18:401–409.CrossRef
18.
Zurück zum Zitat Tenenbaum J.B., De Silva V., Langford J.C. A global geometric framework for nonlinear dimensionality reduction. Science 2000;290(5500):2319–2323.CrossRefPubMed Tenenbaum J.B., De Silva V., Langford J.C. A global geometric framework for nonlinear dimensionality reduction. Science 2000;290(5500):2319–2323.CrossRefPubMed
19.
Zurück zum Zitat Merlin P., Sorjamaa A., Maillet B., Lendasse A. X-SOM and L-SOM: A double classification approach for missing value imputation. Neurocomputing 2010;73(7–9):1103–1108.CrossRef Merlin P., Sorjamaa A., Maillet B., Lendasse A. X-SOM and L-SOM: A double classification approach for missing value imputation. Neurocomputing 2010;73(7–9):1103–1108.CrossRef
20.
Zurück zum Zitat Dablemont S, Simon G, Lendasse A, Ruttiens A, Blayo F, Verleysen M. Time series forecasting with SOM and local non-linear models - application to the DAX30 index prediction. Proceedings of the Workshop on Self-organizing Maps, Hibikino, Japan; 2003. p. 340–345. Dablemont S, Simon G, Lendasse A, Ruttiens A, Blayo F, Verleysen M. Time series forecasting with SOM and local non-linear models - application to the DAX30 index prediction. Proceedings of the Workshop on Self-organizing Maps, Hibikino, Japan; 2003. p. 340–345.
21.
Zurück zum Zitat Khan A., Xue L.Z., Wei W., Qu Y., Hussain A., Vencio R.Z.N. Convergence analysis of a new self organizing map based optimization (SOMO) algorithm. Cogn Comput 2015;7(4):477–486.CrossRef Khan A., Xue L.Z., Wei W., Qu Y., Hussain A., Vencio R.Z.N. Convergence analysis of a new self organizing map based optimization (SOMO) algorithm. Cogn Comput 2015;7(4):477–486.CrossRef
22.
Zurück zum Zitat Bishop C.M., Svensén M, Williams C.K.I. GTM: The generative topographic mapping. Neural Comput 1998;10(1):215–234.CrossRef Bishop C.M., Svensén M, Williams C.K.I. GTM: The generative topographic mapping. Neural Comput 1998;10(1):215–234.CrossRef
23.
Zurück zum Zitat Belkin M., Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering. Adv Neural Inf Proces Syst 2001;14:585–591. Belkin M., Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering. Adv Neural Inf Proces Syst 2001;14:585–591.
24.
Zurück zum Zitat Belkin M., Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 2003;15(6):1373–1396.CrossRef Belkin M., Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 2003;15(6):1373–1396.CrossRef
25.
Zurück zum Zitat Jolliffe I. Principal Component Analysis. Berlin: Springer Verlag; 1986.CrossRef Jolliffe I. Principal Component Analysis. Berlin: Springer Verlag; 1986.CrossRef
26.
Zurück zum Zitat Wold H. Estimation of principal components and related models by iterative least squares. In Multivariate Analysis. Volume 59. Academic Press, NY. In: Krishnaiah P, editors; 1966. p. 391– 420. Wold H. Estimation of principal components and related models by iterative least squares. In Multivariate Analysis. Volume 59. Academic Press, NY. In: Krishnaiah P, editors; 1966. p. 391– 420.
27.
Zurück zum Zitat Lendasse A, Corona F. Linear projection based on noise variance estimation: Application to spectral data. Proceedings of ESANN 2008, European Symposium on Artificial Neural Networks, Bruges (Belgium), d-side publ. (Evere, Belgium). In: Verleysen M, editors; 2008. p. 457–462. Lendasse A, Corona F. Linear projection based on noise variance estimation: Application to spectral data. Proceedings of ESANN 2008, European Symposium on Artificial Neural Networks, Bruges (Belgium), d-side publ. (Evere, Belgium). In: Verleysen M, editors; 2008. p. 457–462.
28.
Zurück zum Zitat Akusok A., Miche Y., Björk K.M., Nian R., Lauren P., Lendasse A. ELMVIS+: improved nonlinear visualization technique using cosine distance and extreme learning machines. Proceedings of ELM-2015 Volume 2: Theory, Algorithms and Applications (II). Springer International Publishing; 2016. p. 357–369. Akusok A., Miche Y., Björk K.M., Nian R., Lauren P., Lendasse A. ELMVIS+: improved nonlinear visualization technique using cosine distance and extreme learning machines. Proceedings of ELM-2015 Volume 2: Theory, Algorithms and Applications (II). Springer International Publishing; 2016. p. 357–369.
29.
Zurück zum Zitat Huang G.B. What are extreme learning machines? Filling the gap between Frank Rosenblatt’s dream and John von Neumann’s puzzle. Cogn Comput 2015;7(3):263–278.CrossRef Huang G.B. What are extreme learning machines? Filling the gap between Frank Rosenblatt’s dream and John von Neumann’s puzzle. Cogn Comput 2015;7(3):263–278.CrossRef
30.
Zurück zum Zitat Cambria E., et al. Extreme learning machines. IEEE Intell Syst 2013;28(6):30–59.CrossRef Cambria E., et al. Extreme learning machines. IEEE Intell Syst 2013;28(6):30–59.CrossRef
31.
Zurück zum Zitat Gritsenko A, Akusok A, Miche Y, Björk KM, Baek S, Lendasse A. Combined Nonlinear Visualization and Classification: ELMVIS++C. International Joint Conference on Neural Networks (IJCNN 2016), IEEE; 2016. p. 2617–2624. Gritsenko A, Akusok A, Miche Y, Björk KM, Baek S, Lendasse A. Combined Nonlinear Visualization and Classification: ELMVIS++C. International Joint Conference on Neural Networks (IJCNN 2016), IEEE; 2016. p. 2617–2624.
32.
Zurück zum Zitat Nian R., He B., Zheng B., Van Heeswijk M., Yu Q., Miche Y., Lendasse A. Extreme learning machine towards dynamic model hypothesis in fish ethology research. Neurocomputing 2014;128:273–284.CrossRef Nian R., He B., Zheng B., Van Heeswijk M., Yu Q., Miche Y., Lendasse A. Extreme learning machine towards dynamic model hypothesis in fish ethology research. Neurocomputing 2014;128:273–284.CrossRef
33.
Zurück zum Zitat Akusok A., Björk K.M., Miche Y., Lendasse A. High-performance extreme learning machines: a complete toolbox for big data applications. IEEE Access 2015;3:1011–1025.CrossRef Akusok A., Björk K.M., Miche Y., Lendasse A. High-performance extreme learning machines: a complete toolbox for big data applications. IEEE Access 2015;3:1011–1025.CrossRef
34.
Zurück zum Zitat Burkard R., Dell’Amico M., Martello S. 2012. Assignment problems. Society for Industrial and Applied Mathematics. Burkard R., Dell’Amico M., Martello S. 2012. Assignment problems. Society for Industrial and Applied Mathematics.
35.
Zurück zum Zitat Lee J.A., Verleysen M. Nonlinear dimensionality reduction. New York: Springer; 2007.CrossRef Lee J.A., Verleysen M. Nonlinear dimensionality reduction. New York: Springer; 2007.CrossRef
36.
Zurück zum Zitat Venna J., Peltonen J., Nybo K., Aidos H., Kaski S. Information retrieval perspective to nonlinear dimensionality reduction for data visualization. J Mach Learn Res 2010;11:451–490. Venna J., Peltonen J., Nybo K., Aidos H., Kaski S. Information retrieval perspective to nonlinear dimensionality reduction for data visualization. J Mach Learn Res 2010;11:451–490.
37.
Zurück zum Zitat LeCun Y., Bottou L., Bengio Y., Haffner P. Gradient-based learning applied to document recognition. Proc IEEE 1998;86(11):2278–2324.CrossRef LeCun Y., Bottou L., Bengio Y., Haffner P. Gradient-based learning applied to document recognition. Proc IEEE 1998;86(11):2278–2324.CrossRef
39.
Zurück zum Zitat Gerritsma J., Omnink R., Versluis A. Geometry, resistance and stability of the delft systematic yacht hull series. Int Shipbuild Prog 1981;28(328):276–297.CrossRef Gerritsma J., Omnink R., Versluis A. Geometry, resistance and stability of the delft systematic yacht hull series. Int Shipbuild Prog 1981;28(328):276–297.CrossRef
40.
Zurück zum Zitat Ortigosa I, Lopez R, Garcia J. A neural networks approach to residuary resistance of sailing yachts prediction. Proceedings of the international conference on marine engineering MARINE. Volume 2007; 2007. p. 250. Ortigosa I, Lopez R, Garcia J. A neural networks approach to residuary resistance of sailing yachts prediction. Proceedings of the international conference on marine engineering MARINE. Volume 2007; 2007. p. 250.
41.
Zurück zum Zitat Yeh I.C. Modeling of strength of high-performance concrete using artificial neural networks. Cem Concr Res 1998;28(12):1797–1808.CrossRef Yeh I.C. Modeling of strength of high-performance concrete using artificial neural networks. Cem Concr Res 1998;28(12):1797–1808.CrossRef
42.
Zurück zum Zitat Kaya H, Tüfekci P, Gürgen FS. 2012. Local and global learning methods for predicting power of a combined gas & steam turbine. Kaya H, Tüfekci P, Gürgen FS. 2012. Local and global learning methods for predicting power of a combined gas & steam turbine.
43.
Zurück zum Zitat Cortez P, Cerdeira A, Almeida F, Matos T, Reis J. Modeling wine preferences by data mining from physicochemical properties. Decis Support Syst 2009;47(4):547–553. Smart Business Networks: Concepts and Empirical Evidence.CrossRef Cortez P, Cerdeira A, Almeida F, Matos T, Reis J. Modeling wine preferences by data mining from physicochemical properties. Decis Support Syst 2009;47(4):547–553. Smart Business Networks: Concepts and Empirical Evidence.CrossRef
44.
Zurück zum Zitat Vergara A., Vembu S., Ayhan T., Ryan M.A., Homer M.L., Huerta R. Chemical gas sensor drift compensation using classifier ensembles. Sensors Actuators B Chem 2012;166–167:320–329.CrossRef Vergara A., Vembu S., Ayhan T., Ryan M.A., Homer M.L., Huerta R. Chemical gas sensor drift compensation using classifier ensembles. Sensors Actuators B Chem 2012;166–167:320–329.CrossRef
45.
Zurück zum Zitat Rodriguez-Lujan I., Fonollosa J., Vergara A., Homer M., Huerta R. On the calibration of sensor arrays for pattern recognition using the minimal number of experiments. Chemom Intell Lab Syst 2014;130:123–134.CrossRef Rodriguez-Lujan I., Fonollosa J., Vergara A., Homer M., Huerta R. On the calibration of sensor arrays for pattern recognition using the minimal number of experiments. Chemom Intell Lab Syst 2014;130:123–134.CrossRef
Metadaten
Titel
Extreme Learning Machines for VISualization+R: Mastering Visualization with Target Variables
verfasst von
Andrey Gritsenko
Anton Akusok
Stephen Baek
Yoan Miche
Amaury Lendasse
Publikationsdatum
22.12.2017
Verlag
Springer US
Erschienen in
Cognitive Computation / Ausgabe 3/2018
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-017-9537-6

Weitere Artikel der Ausgabe 3/2018

Cognitive Computation 3/2018 Zur Ausgabe