Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 8/2020

05.03.2020

Fabrication and characterization of Zn-ion-conducting solid polymer electrolyte films based on PVdF-HFP/Zn(Tf)2 complex system

verfasst von: Jianghe Liu, Zeba Khanam, Ravi Muchakayala, Shenhua Song

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 8/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present work is aimed at developing the Zn-ion-conducting solid polymer electrolyte (SPE) films based on PVdF-HFP/Zn(Tf)2 complex system via solution casting method. The structural and morphological characteristics of the as-prepared films are elucidated by X-ray diffraction and scanning electron microscopy. Further, impedance spectroscopy and cyclic voltammetry are performed to investigate their electrical and electrochemical properties. The structural analysis confirms that the PVdF-HFP is semi-crystalline and its amorphous domain increases with the addition of Zn(Tf)2 salt. The impedance results reveal that the ionic conductivity of the electrolyte film is raised up to a maximum value of 2.44 × 10–5 S cm−1 at room temperature when the mass ratio of Zn(Tf)2:PVdF-HFP is 0.4 (named as PE/Zn-4). However, further loading of salt degrades the overall properties of the film. Hence, the PE/Zn-4 system is regarded to be the optimal composition for efficient SPE films. Additionally, the PE/Zn-4 electrolyte exhibits sound thermal stability and mechanical properties. The electrochemical stability window of the PE/Zn-4 system is evaluated as approximately 3.45 V, being acceptable for energy storage applications. In addition, the present polymer electrolyte may well suppress the formation of Zn dendrites on Zn electrodes. Conclusively, the development of high-performance SPEs could be potentially very useful for the next-generation Zn-based devices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat C.W. Sun, J. Liu, Y.D. Gong et al., Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 33, 363–386 (2017) C.W. Sun, J. Liu, Y.D. Gong et al., Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 33, 363–386 (2017)
2.
Zurück zum Zitat Y.B. Li, J. Fu, C. Zhong et al., Recent advances in flexible zinc-based rechargeable batteries. Adv Energy Mater. 9, 47654 (2019) Y.B. Li, J. Fu, C. Zhong et al., Recent advances in flexible zinc-based rechargeable batteries. Adv Energy Mater. 9, 47654 (2019)
3.
Zurück zum Zitat S. Ahmad, Polymer electrolytes: characteristics and peculiarities. Ionics 15, 309–321 (2009) S. Ahmad, Polymer electrolytes: characteristics and peculiarities. Ionics 15, 309–321 (2009)
4.
Zurück zum Zitat W.H. Meyer, Polymer electrolytes for lithium-ion batteries. Adv Mater. 10, 439–448 (1998) W.H. Meyer, Polymer electrolytes for lithium-ion batteries. Adv Mater. 10, 439–448 (1998)
5.
Zurück zum Zitat S. Ibrahim, M.M. Yassin, R. Ahmad et al., Effects of various LiPF6 salt concentrations on PEO-based solid polymer electrolytes. Ionics 17, 399–405 (2011) S. Ibrahim, M.M. Yassin, R. Ahmad et al., Effects of various LiPF6 salt concentrations on PEO-based solid polymer electrolytes. Ionics 17, 399–405 (2011)
6.
Zurück zum Zitat D.E. Fenton, J.M. Parker, P.V. Wright, Complexes of alkali-metal ions with poly(ethylene oxide). Polymer 14, 589–589 (1973) D.E. Fenton, J.M. Parker, P.V. Wright, Complexes of alkali-metal ions with poly(ethylene oxide). Polymer 14, 589–589 (1973)
7.
Zurück zum Zitat M. Armand, The history of polymer electrolytes. Solid State Ionics 69, 309–319 (1994) M. Armand, The history of polymer electrolytes. Solid State Ionics 69, 309–319 (1994)
8.
Zurück zum Zitat Z.G. Xue, D. He, X.L. Xie, Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A 3, 19218–19253 (2015) Z.G. Xue, D. He, X.L. Xie, Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A 3, 19218–19253 (2015)
9.
Zurück zum Zitat K.S. Ngai, S. Ramesh, K. Ramesh et al., A review of polymer electrolytes: fundamental, approaches and applications. Ionics 22, 1259–1279 (2016) K.S. Ngai, S. Ramesh, K. Ramesh et al., A review of polymer electrolytes: fundamental, approaches and applications. Ionics 22, 1259–1279 (2016)
10.
Zurück zum Zitat J.W. Tang, R. Muchakayala, S.H. Song et al., Effect of EMIMBF4 ionic liquid addition on the structure and ionic conductivity of LiBF4-complexed PVdF-HFP polymer electrolyte films. Polym. Test. 50, 247–254 (2016) J.W. Tang, R. Muchakayala, S.H. Song et al., Effect of EMIMBF4 ionic liquid addition on the structure and ionic conductivity of LiBF4-complexed PVdF-HFP polymer electrolyte films. Polym. Test. 50, 247–254 (2016)
11.
Zurück zum Zitat N.S. Mohamed, A.K. Arof, Investigation of electrical and electrochemical properties of PVDF-based polymer electrolytes. J. Power Sources 132, 229–234 (2004) N.S. Mohamed, A.K. Arof, Investigation of electrical and electrochemical properties of PVDF-based polymer electrolytes. J. Power Sources 132, 229–234 (2004)
12.
Zurück zum Zitat N.G. Mccrum, A Study of Internal friction in copolymers of tetrafluoroethylene and hexafluoropropylene. Makromolekul Chem. 34, 50–66 (1959) N.G. Mccrum, A Study of Internal friction in copolymers of tetrafluoroethylene and hexafluoropropylene. Makromolekul Chem. 34, 50–66 (1959)
13.
Zurück zum Zitat S. Abbrent, J. Plestil, D. Hlavata et al., Crystallinity and morphology of PVdF-HFP-based gel electrolytes. Polymer 42, 1407–1416 (2001) S. Abbrent, J. Plestil, D. Hlavata et al., Crystallinity and morphology of PVdF-HFP-based gel electrolytes. Polymer 42, 1407–1416 (2001)
14.
Zurück zum Zitat K. Kordesch, M. Weissenbacher, Rechargeable alkaline manganese-dioxide zinc Batteries. J. Power Sources 51, 61–78 (1994) K. Kordesch, M. Weissenbacher, Rechargeable alkaline manganese-dioxide zinc Batteries. J. Power Sources 51, 61–78 (1994)
15.
Zurück zum Zitat J. Ming, J. Guo, C. Xia et al., Zinc-ion batteries: materials, mechanisms, and applications. Mater. Sci. Eng. R 135, 58–84 (2019) J. Ming, J. Guo, C. Xia et al., Zinc-ion batteries: materials, mechanisms, and applications. Mater. Sci. Eng. R 135, 58–84 (2019)
16.
Zurück zum Zitat C.J. Xu, B.H. Li, H.D. Du et al., Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 51, 933–935 (2012) C.J. Xu, B.H. Li, H.D. Du et al., Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 51, 933–935 (2012)
17.
Zurück zum Zitat J.J. Wang, J.G. Wang, H.Y. Liu et al., Electrochemical activation of commercial MnO microsized particles for high-performance aqueous zinc-ion batteries. J. Power Sources 438, 226951 (2019) J.J. Wang, J.G. Wang, H.Y. Liu et al., Electrochemical activation of commercial MnO microsized particles for high-performance aqueous zinc-ion batteries. J. Power Sources 438, 226951 (2019)
18.
Zurück zum Zitat G.Z. Fang, J. Zhou, A.Q. Pan et al., Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 3, 2480–2501 (2018) G.Z. Fang, J. Zhou, A.Q. Pan et al., Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 3, 2480–2501 (2018)
19.
Zurück zum Zitat J.J. Wang, J.G. Wang, H.Y. Liu et al., Zinc ion stabilized MnO2 nanospheres for high capacity and long lifespan aqueous zinc-ion batteries. J. Mater. Chem. A 7, 13727–13735 (2019) J.J. Wang, J.G. Wang, H.Y. Liu et al., Zinc ion stabilized MnO2 nanospheres for high capacity and long lifespan aqueous zinc-ion batteries. J. Mater. Chem. A 7, 13727–13735 (2019)
20.
Zurück zum Zitat M.J.C. Plancha, C.M. Rangel, C.A.C. Sequeira, Pseudo-equilibrium phase diagrams for PEO-Zn salts-based electrolytes. Solid State Ionics 116, 293–300 (1999) M.J.C. Plancha, C.M. Rangel, C.A.C. Sequeira, Pseudo-equilibrium phase diagrams for PEO-Zn salts-based electrolytes. Solid State Ionics 116, 293–300 (1999)
21.
Zurück zum Zitat T.M.A. Abrantes, L.J. Alcacer, C.A.C. Sequeira, Thin-film solid-state polymer electrolytes containing silver, copper and zinc ions as charge-carriers. Solid State Ionics 18–9, 315–320 (1986) T.M.A. Abrantes, L.J. Alcacer, C.A.C. Sequeira, Thin-film solid-state polymer electrolytes containing silver, copper and zinc ions as charge-carriers. Solid State Ionics 18–9, 315–320 (1986)
22.
Zurück zum Zitat R. Huq, G.C. Farrington, Ion-transport in divalent-cation complexes of poly(ethylene oxide). Solid State Ionics 28, 990–993 (1988) R. Huq, G.C. Farrington, Ion-transport in divalent-cation complexes of poly(ethylene oxide). Solid State Ionics 28, 990–993 (1988)
23.
Zurück zum Zitat S. Karan, T.B. Sahu, M. Sahu et al., Characterization of ion transport property in hot-press cast solid polymer electrolyte (SPE) films: [PEO: Zn(CF3SO3)(2)]. Ionics 23, 2721–2726 (2017) S. Karan, T.B. Sahu, M. Sahu et al., Characterization of ion transport property in hot-press cast solid polymer electrolyte (SPE) films: [PEO: Zn(CF3SO3)(2)]. Ionics 23, 2721–2726 (2017)
24.
Zurück zum Zitat H. Ye, J.J. Xu, Zinc ion conducting polymer electrolytes based on oligomeric polyether/PVDF-HFP blends. J. Power Sources 165, 500–508 (2007) H. Ye, J.J. Xu, Zinc ion conducting polymer electrolytes based on oligomeric polyether/PVDF-HFP blends. J. Power Sources 165, 500–508 (2007)
25.
Zurück zum Zitat H.F. Li, C.P. Han, Y. Huang et al., An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ. Sci. 11, 941–951 (2018) H.F. Li, C.P. Han, Y. Huang et al., An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ. Sci. 11, 941–951 (2018)
26.
Zurück zum Zitat W. Li, K.L. Wang, S.J. Cheng et al., An ultrastable presodiated titanium disulfide anode for aqueous "rocking-chair" zinc ion battery. Adv. Energy Mater. 9, 1900993 (2019) W. Li, K.L. Wang, S.J. Cheng et al., An ultrastable presodiated titanium disulfide anode for aqueous "rocking-chair" zinc ion battery. Adv. Energy Mater. 9, 1900993 (2019)
27.
Zurück zum Zitat A. Mitha, A.Z. Yazdi, M. Ahmed et al., Surface adsorption of polyethylene glycol to suppress dendrite formation on zinc anodes in rechargeable aqueous batteries. Chemelectrochem 5, 2409–2418 (2018) A. Mitha, A.Z. Yazdi, M. Ahmed et al., Surface adsorption of polyethylene glycol to suppress dendrite formation on zinc anodes in rechargeable aqueous batteries. Chemelectrochem 5, 2409–2418 (2018)
28.
Zurück zum Zitat H.F. Li, C.J. Xu, C.P. Han et al., Enhancement on cycle performance of Zn anodes by activated carbon modification for neutral rechargeable zinc ion batteries. J. Electrochem. Soc. 162, A1439–A1444 (2015) H.F. Li, C.J. Xu, C.P. Han et al., Enhancement on cycle performance of Zn anodes by activated carbon modification for neutral rechargeable zinc ion batteries. J. Electrochem. Soc. 162, A1439–A1444 (2015)
29.
Zurück zum Zitat W. Li, K.L. Wang, S.J. Cheng et al., A long-life aqueous Zn-ion battery based on Na3V2(PO4)2F3 cathode. Energy Storage Mater. 15, 14–21 (2018) W. Li, K.L. Wang, S.J. Cheng et al., A long-life aqueous Zn-ion battery based on Na3V2(PO4)2F3 cathode. Energy Storage Mater. 15, 14–21 (2018)
30.
Zurück zum Zitat W. Li, K.L. Wang, M. Zhou et al., Advanced low-cost, high-voltage, long-life Aqueous hybrid sodium/zinc batteries enabled by a dendrite-free zinc anode and concentrated electrolyte. ACS Appl. Mater. Interface 10, 22059–22066 (2018) W. Li, K.L. Wang, M. Zhou et al., Advanced low-cost, high-voltage, long-life Aqueous hybrid sodium/zinc batteries enabled by a dendrite-free zinc anode and concentrated electrolyte. ACS Appl. Mater. Interface 10, 22059–22066 (2018)
31.
Zurück zum Zitat L.T. Kang, M.W. Cui, F.Y. Jiang et al., Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv. Energy Mater. 8, 1801090 (2018) L.T. Kang, M.W. Cui, F.Y. Jiang et al., Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv. Energy Mater. 8, 1801090 (2018)
32.
Zurück zum Zitat J.H. Cao, B.K. Zhu, Y.Y. Xu, Structure and ionic conductivity of porous polymer electrolytes based on PVDF-HFP copolymer membranes. J. Membr. Sci. 281, 446–453 (2006) J.H. Cao, B.K. Zhu, Y.Y. Xu, Structure and ionic conductivity of porous polymer electrolytes based on PVDF-HFP copolymer membranes. J. Membr. Sci. 281, 446–453 (2006)
33.
Zurück zum Zitat L.Z. Long, S.J. Wang, M. Xiao et al., Polymer electrolytes for lithium polymer batteries. J. Mater. Chem. A 4, 10038–10069 (2016) L.Z. Long, S.J. Wang, M. Xiao et al., Polymer electrolytes for lithium polymer batteries. J. Mater. Chem. A 4, 10038–10069 (2016)
34.
Zurück zum Zitat S.H. Song, J.W. Wang, J.W. Tang et al., Preparation, properties, and Li-ion battery application of EC plus PC-modified PVdF-HFP gel polymer electrolyte films. Ionics 23, 3365–3375 (2017) S.H. Song, J.W. Wang, J.W. Tang et al., Preparation, properties, and Li-ion battery application of EC plus PC-modified PVdF-HFP gel polymer electrolyte films. Ionics 23, 3365–3375 (2017)
35.
Zurück zum Zitat S. Ramesh, S.C. Lu, A simple P(VdF-HFP)-LiTf system yielding highly ionic conducting and thermally stable solid polymer electrolytes. J. Mol. Liq. 177, 73–77 (2013) S. Ramesh, S.C. Lu, A simple P(VdF-HFP)-LiTf system yielding highly ionic conducting and thermally stable solid polymer electrolytes. J. Mol. Liq. 177, 73–77 (2013)
36.
Zurück zum Zitat J.W. Wang, Z.J. Zhao, S.H. Song et al., High performance poly(vinyl alcohol)-based Li-ion conducting gel polymer electrolyte films for electric double-layer capacitors. Polymers 10, 1179 (2018) J.W. Wang, Z.J. Zhao, S.H. Song et al., High performance poly(vinyl alcohol)-based Li-ion conducting gel polymer electrolyte films for electric double-layer capacitors. Polymers 10, 1179 (2018)
37.
Zurück zum Zitat B. Liang, S.Q. Tang, Q.B. Jiang et al., Preparation and characterization of PEO-PMMA polymer composite electrolytes doped with nano-Al2O3. Electrochim. Acta 169, 334–341 (2015) B. Liang, S.Q. Tang, Q.B. Jiang et al., Preparation and characterization of PEO-PMMA polymer composite electrolytes doped with nano-Al2O3. Electrochim. Acta 169, 334–341 (2015)
38.
Zurück zum Zitat M. Ravi, S.H. Song, K.M. Gu et al., Electrical properties of biodegradable poly(epsilon-caprolactone): lithium thiocyanate complexed polymer electrolyte films. Mater. Sci. Eng. B 195, 74–83 (2015) M. Ravi, S.H. Song, K.M. Gu et al., Electrical properties of biodegradable poly(epsilon-caprolactone): lithium thiocyanate complexed polymer electrolyte films. Mater. Sci. Eng. B 195, 74–83 (2015)
39.
Zurück zum Zitat A.S.A. Khiar, R. Puteh, A.K. Arof, Conductivity studies of a chitosan-based polymer electrolyte. Phys. B 373, 23–27 (2006) A.S.A. Khiar, R. Puteh, A.K. Arof, Conductivity studies of a chitosan-based polymer electrolyte. Phys. B 373, 23–27 (2006)
40.
Zurück zum Zitat S.P.C. Murali, A.S. Samuel, Zinc ion conducting blended polymer electrolytes based on room-temperature ionic liquid and ceramic filler. J. Appl. Polym. Sci. 136, 47654 (2019) S.P.C. Murali, A.S. Samuel, Zinc ion conducting blended polymer electrolytes based on room-temperature ionic liquid and ceramic filler. J. Appl. Polym. Sci. 136, 47654 (2019)
41.
Zurück zum Zitat S. Gross, D. Camozzo, V. Di Noto et al., PMMA: a key macromolecular component for dielectric low-kappa hybrid inorganic-organic polymer films. Eur. Polym. J. 43, 673–696 (2007) S. Gross, D. Camozzo, V. Di Noto et al., PMMA: a key macromolecular component for dielectric low-kappa hybrid inorganic-organic polymer films. Eur. Polym. J. 43, 673–696 (2007)
42.
Zurück zum Zitat D. Ravinder, A.V.R. Reddy, G.R. Mohan, Abnormal dielectric behaviour in polycrystalline zinc-substituted manganese ferrites at high frequencies. Mater. Lett. 52, 259–265 (2002) D. Ravinder, A.V.R. Reddy, G.R. Mohan, Abnormal dielectric behaviour in polycrystalline zinc-substituted manganese ferrites at high frequencies. Mater. Lett. 52, 259–265 (2002)
43.
Zurück zum Zitat P.B. Bhargav, V.M. Mohan, A.K. Sharma et al., Investigations on electrical properties of (PVA: NaF) polymer electrolytes for electrochemical cell applications. Curr. Appl. Phys. 9, 165–171 (2009) P.B. Bhargav, V.M. Mohan, A.K. Sharma et al., Investigations on electrical properties of (PVA: NaF) polymer electrolytes for electrochemical cell applications. Curr. Appl. Phys. 9, 165–171 (2009)
44.
Zurück zum Zitat N. Kulshrestha, B. Chatterjee, P.N. Gupta, Characterization and electrical properties of polyvinyl alcohol based polymer electrolyte films doped with ammonium thiocyanate. Mater. Sci. Eng. B 184, 49–57 (2014) N. Kulshrestha, B. Chatterjee, P.N. Gupta, Characterization and electrical properties of polyvinyl alcohol based polymer electrolyte films doped with ammonium thiocyanate. Mater. Sci. Eng. B 184, 49–57 (2014)
45.
Zurück zum Zitat J.W. Wang, S.H. Song, S. Gao et al., Mg-ion conducting gel polymer electrolyte membranes containing biodegradable chitosan: Preparation, structural, electrical and electrochemical properties. Polym. Test. 62, 278–286 (2017) J.W. Wang, S.H. Song, S. Gao et al., Mg-ion conducting gel polymer electrolyte membranes containing biodegradable chitosan: Preparation, structural, electrical and electrochemical properties. Polym. Test. 62, 278–286 (2017)
46.
Zurück zum Zitat R. Muchakayala, S.H. Song, S. Gao et al., Structure and ion transport in an ethylene carbonate-modified biodegradable gel polymer electrolyte. Polym. Test. 58, 116–125 (2017) R. Muchakayala, S.H. Song, S. Gao et al., Structure and ion transport in an ethylene carbonate-modified biodegradable gel polymer electrolyte. Polym. Test. 58, 116–125 (2017)
47.
Zurück zum Zitat C.Y. Yang, M.Q. Sun, X. Wang et al., A novel flexible supercapacitor based on cross-linked PVDF-HFP porous organogel electrolyte and carbon nanotube paper@pi-conjugated polymer film electrodes. ACS Sustain. Chem. Eng. 3, 2067–2076 (2015) C.Y. Yang, M.Q. Sun, X. Wang et al., A novel flexible supercapacitor based on cross-linked PVDF-HFP porous organogel electrolyte and carbon nanotube paper@pi-conjugated polymer film electrodes. ACS Sustain. Chem. Eng. 3, 2067–2076 (2015)
48.
Zurück zum Zitat M. Ravi, S.H. Song, J.W. Wang et al., Ionic liquid incorporated biodegradable gel polymer electrolyte for lithium ion battery applications. J. Mater. Sci. 27, 1370–1377 (2016) M. Ravi, S.H. Song, J.W. Wang et al., Ionic liquid incorporated biodegradable gel polymer electrolyte for lithium ion battery applications. J. Mater. Sci. 27, 1370–1377 (2016)
49.
Zurück zum Zitat R. Rathika, O. Padmaraj, S.A. Suthanthiraraj, Electrical conductivity and dielectric relaxation behaviour of PEO/PVdF-based solid polymer blend electrolytes for zinc battery applications. Ionics 24, 243–255 (2018) R. Rathika, O. Padmaraj, S.A. Suthanthiraraj, Electrical conductivity and dielectric relaxation behaviour of PEO/PVdF-based solid polymer blend electrolytes for zinc battery applications. Ionics 24, 243–255 (2018)
50.
Zurück zum Zitat Y.A.K. Salman, O.G. Abdullah, R.R. Hanna et al., Conductivity and electrical properties of chitosan-methylcellulose blend biopolymer electrolyte incorporated with lithium tetrafluoroborate. Int. J. Electrochem. Sci. 13, 3185–3199 (2018) Y.A.K. Salman, O.G. Abdullah, R.R. Hanna et al., Conductivity and electrical properties of chitosan-methylcellulose blend biopolymer electrolyte incorporated with lithium tetrafluoroborate. Int. J. Electrochem. Sci. 13, 3185–3199 (2018)
51.
Zurück zum Zitat H.K. Koduru, L. Marino, F. Scarpelli et al., Structural and dielectric properties of NaIO4-complexed PEO/PVP blended solid polymer electrolytes. Curr. Appl. Phys. 17, 1518–1531 (2017) H.K. Koduru, L. Marino, F. Scarpelli et al., Structural and dielectric properties of NaIO4-complexed PEO/PVP blended solid polymer electrolytes. Curr. Appl. Phys. 17, 1518–1531 (2017)
52.
Zurück zum Zitat A. Arya, Md Sadiq, A.L. Sharma, Structural, electrical and ion transport properties of free-standing blended solid polymeric thin films. Polym. Bull. 76, 5149–5172 (2018) A. Arya, Md Sadiq, A.L. Sharma, Structural, electrical and ion transport properties of free-standing blended solid polymeric thin films. Polym. Bull. 76, 5149–5172 (2018)
53.
Zurück zum Zitat R. Nadirnicherla, R. Kalla, R. Muchakayala et al., Effects of potassium iodide (KI) on crystallinity, thermal stability, and electrical properties of polymer blend electrolytes (PVC/PEO:KI). Solid State Ionics 278, 260–267 (2015) R. Nadirnicherla, R. Kalla, R. Muchakayala et al., Effects of potassium iodide (KI) on crystallinity, thermal stability, and electrical properties of polymer blend electrolytes (PVC/PEO:KI). Solid State Ionics 278, 260–267 (2015)
54.
Zurück zum Zitat J.W. Wang, S.H. Song, R. Muchakayala et al., Structural, electrical, and electrochemical properties of PVA-based biodegradable gel polymer electrolyte membranes for Mg-ion battery applications. Ionics 23, 1759–1769 (2017) J.W. Wang, S.H. Song, R. Muchakayala et al., Structural, electrical, and electrochemical properties of PVA-based biodegradable gel polymer electrolyte membranes for Mg-ion battery applications. Ionics 23, 1759–1769 (2017)
55.
Zurück zum Zitat M. Ravi, S.H. Song, K.M. Gu et al., Effect of lithium thiocyanate addition on the structural and electrical properties of biodegradable poly(epsilon-caprolactone) polymer films. Ionics 21, 2171–2183 (2015) M. Ravi, S.H. Song, K.M. Gu et al., Effect of lithium thiocyanate addition on the structural and electrical properties of biodegradable poly(epsilon-caprolactone) polymer films. Ionics 21, 2171–2183 (2015)
56.
Zurück zum Zitat G.P. Pandey, S.A. Hashmi, Experimental investigations of an ionic-liquid-based, magnesium ion conducting, polymer gel electrolyte. J. Power Sources 187, 627–634 (2009) G.P. Pandey, S.A. Hashmi, Experimental investigations of an ionic-liquid-based, magnesium ion conducting, polymer gel electrolyte. J. Power Sources 187, 627–634 (2009)
57.
Zurück zum Zitat X. Zhang, S. Wang, C.J. Xue et al., Self-suppression of lithium dendrite in all-solid-state lithium metal batteries with poly(vinylidene difluoride)-based solid electrolytes. Adv. Mater. 31, 1806082 (2019) X. Zhang, S. Wang, C.J. Xue et al., Self-suppression of lithium dendrite in all-solid-state lithium metal batteries with poly(vinylidene difluoride)-based solid electrolytes. Adv. Mater. 31, 1806082 (2019)
Metadaten
Titel
Fabrication and characterization of Zn-ion-conducting solid polymer electrolyte films based on PVdF-HFP/Zn(Tf)2 complex system
verfasst von
Jianghe Liu
Zeba Khanam
Ravi Muchakayala
Shenhua Song
Publikationsdatum
05.03.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 8/2020
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-020-03169-1

Weitere Artikel der Ausgabe 8/2020

Journal of Materials Science: Materials in Electronics 8/2020 Zur Ausgabe

Neuer Inhalt