Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 5/2014

01.05.2014

Fabrication of Porous Ti-rich Ti51Ni49 by Evaporating NaCl Space Holder

verfasst von: Fu-Cheng Yen, Kuen-Shyang Hwang, Shyi-Kaan Wu

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 5/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Net-shaped porous Ti-rich Ti51Ni49 alloy with well-controlled porosity, pore size, and pore shape are fabricated by pressing-and-sintering compacts containing fine Ti and Ni powders and coarse NaCl powders. After sintering at 1323 K (1050 °C) for 30 minutes in a high vacuum, the NaCl space holder is removed by evaporation, and the remaining Ti and Ni powders are sintered with about 2.3 vol pct liquid phase. The sintered Ti51Ni49 compacts have porosities of 26, 64, 70, 78, and 85 pct, and no distortion is observed. DSC tests show that the M S temperature and ΔH are about 347 K (74 °C) and 28 J/g, respectively, and that they are almost independent of the porosity and close to those of wrought Ti-rich TiNi alloys. These porous Ti51Ni49 compacts exhibit a homogeneous microstructure, and the compressive properties and porosity are close to those of human bones.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Bansiddhi, T. D. Sargeant, S. I. Stupp and D. C. Dunand, “Porous NiTi for Bone Implants: A Review”, Acta Biomaterialia, 2008, vol. 4, pp. 773-782.CrossRef A. Bansiddhi, T. D. Sargeant, S. I. Stupp and D. C. Dunand, “Porous NiTi for Bone Implants: A Review”, Acta Biomaterialia, 2008, vol. 4, pp. 773-782.CrossRef
2.
Zurück zum Zitat G. Ryan, A. Pandit and D. P. Apatsidis, “Fabrication Methods of Porous Metals for Use in Orthopaedic Applications”, Biomaterials, 2006, vol. 27, pp. 2651-2670.CrossRef G. Ryan, A. Pandit and D. P. Apatsidis, “Fabrication Methods of Porous Metals for Use in Orthopaedic Applications”, Biomaterials, 2006, vol. 27, pp. 2651-2670.CrossRef
3.
Zurück zum Zitat A. Kapanen, J. Ryhänen, A. Danilov and J. Tuukkanen, “Effect of Nickel-Titanium Shape Memory Metal Alloy on Bone Formation”, Biomaterials, 2001, vol. 22, pp. 2475-2480.CrossRef A. Kapanen, J. Ryhänen, A. Danilov and J. Tuukkanen, “Effect of Nickel-Titanium Shape Memory Metal Alloy on Bone Formation”, Biomaterials, 2001, vol. 22, pp. 2475-2480.CrossRef
4.
Zurück zum Zitat M. Schwartz, ed.: Smart Materials, CRC Press/Taylor and Francis, New York, NY, 2008, pp. 1–46. M. Schwartz, ed.: Smart Materials, CRC Press/Taylor and Francis, New York, NY, 2008, pp. 1–46.
5.
Zurück zum Zitat K. Otsuka and X. Ren, “Physical Metallurgy of TiNi-based shape Memory Alloys”, Progress in Material Science, 2005, vol. 50, pp. 511-678.CrossRef K. Otsuka and X. Ren, “Physical Metallurgy of TiNi-based shape Memory Alloys”, Progress in Material Science, 2005, vol. 50, pp. 511-678.CrossRef
6.
Zurück zum Zitat M. Barrabés, P. Sevilla, J. A. Planell and F. J. Gil, “Mechanical Properties of Nikel-titanium Foams for Reconstructive Orthopaedics”, Materials Science and Engineering C, 2008, vol. 28, pp. 23-27.CrossRef M. Barrabés, P. Sevilla, J. A. Planell and F. J. Gil, “Mechanical Properties of Nikel-titanium Foams for Reconstructive Orthopaedics”, Materials Science and Engineering C, 2008, vol. 28, pp. 23-27.CrossRef
7.
Zurück zum Zitat C. L. Chu, C. Y. Chung, P. H. Lin, and S.D. Wang, “Fabrication and Properties of Porous NiTi Shape Memory Alloys for Heavy Load-Bearing Medical Applications”, Journal of Materials Processing Technology, 2005, vol. 169, pp. 103-107.CrossRef C. L. Chu, C. Y. Chung, P. H. Lin, and S.D. Wang, “Fabrication and Properties of Porous NiTi Shape Memory Alloys for Heavy Load-Bearing Medical Applications”, Journal of Materials Processing Technology, 2005, vol. 169, pp. 103-107.CrossRef
8.
Zurück zum Zitat B. Yuan, X. P. Zhang, C. Y. Chung, M. Q. Zeng and M. Zhu, “A Comparative Study of the Porous TiNi Shape-Memory Alloys Fabricated by Three Different Processes”, Metallurgical and Materials Transactions A, 2006, vol. 37A, pp. 755-761.CrossRef B. Yuan, X. P. Zhang, C. Y. Chung, M. Q. Zeng and M. Zhu, “A Comparative Study of the Porous TiNi Shape-Memory Alloys Fabricated by Three Different Processes”, Metallurgical and Materials Transactions A, 2006, vol. 37A, pp. 755-761.CrossRef
9.
Zurück zum Zitat J. Y. Xiong, Y. C. Li, X. J. Wang, P. D. Hodgson, and C. E. Wen, “Titanium-Nickel Shape Memory Alloy Foams for Bone Tissue Engineering”, J. Mechanical Behavior of Biomedical Materials, 2008, vol. 1, pp. 269-273.CrossRef J. Y. Xiong, Y. C. Li, X. J. Wang, P. D. Hodgson, and C. E. Wen, “Titanium-Nickel Shape Memory Alloy Foams for Bone Tissue Engineering”, J. Mechanical Behavior of Biomedical Materials, 2008, vol. 1, pp. 269-273.CrossRef
10.
Zurück zum Zitat A. Biswas, “Porous NiTi by Thermal Explosion Mode of SHS: Processing, Mechanism, and Generation of Single Phase Microstructure”, Acta Materialia, 2005, vol. 53, pp. 1415-1425.CrossRef A. Biswas, “Porous NiTi by Thermal Explosion Mode of SHS: Processing, Mechanism, and Generation of Single Phase Microstructure”, Acta Materialia, 2005, vol. 53, pp. 1415-1425.CrossRef
11.
Zurück zum Zitat O. Scalzo, S. Turenne, M. Gauthier and V. Brailovski, “Mechanical and Microstructural Characterization of Porous NiTi Shape Memory Alloys”, Metallurgical and Materials Transactions A, 2009, vol. 40A, pp. 2061-2070.CrossRef O. Scalzo, S. Turenne, M. Gauthier and V. Brailovski, “Mechanical and Microstructural Characterization of Porous NiTi Shape Memory Alloys”, Metallurgical and Materials Transactions A, 2009, vol. 40A, pp. 2061-2070.CrossRef
12.
Zurück zum Zitat A. Bansiddhi and D. C. Dunand, “Shape-memory NiTi foams Produced by Solid-state Replication with NaF”, Intermetallics, 2007, vol. 15, pp. 1612-1622.CrossRef A. Bansiddhi and D. C. Dunand, “Shape-memory NiTi foams Produced by Solid-state Replication with NaF”, Intermetallics, 2007, vol. 15, pp. 1612-1622.CrossRef
13.
Zurück zum Zitat A. Bansiddhi and D.C. Dunand, “Shape- memory NiTi foams Produced by Replication of NaCl Space-holders”, Acta Biomaterialia, 2008, vol. 4, pp. 1996-2007.CrossRef A. Bansiddhi and D.C. Dunand, “Shape- memory NiTi foams Produced by Replication of NaCl Space-holders”, Acta Biomaterialia, 2008, vol. 4, pp. 1996-2007.CrossRef
14.
Zurück zum Zitat G. Tosun, L. Ozler, M. Kaya, and N. Orthan, “A Study on Microstructure and Porosity of NiTi Alloy Implants Produced by SHS”, J. Alloys and Compounds, 2009, vol. 487, pp. 605-611.CrossRef G. Tosun, L. Ozler, M. Kaya, and N. Orthan, “A Study on Microstructure and Porosity of NiTi Alloy Implants Produced by SHS”, J. Alloys and Compounds, 2009, vol. 487, pp. 605-611.CrossRef
15.
Zurück zum Zitat S. Wu, C. Y. Chung, X. Liu, P. K. Chu, J. P. Y. Ho, C. L. Chu, Y. L. Chan, K. W. K. Yeung, W. W. Lu, K. M. C. Cheung, and K. D. K. Luk, “Pore Formation Mechanism and Characterization of Porous NiTi Shape Memory Alloys Synthesized by Capsule-Free Hot Isostatic Pressing”, Acta Materialia, 2007, vol. 55, pp. 3437-3451.CrossRef S. Wu, C. Y. Chung, X. Liu, P. K. Chu, J. P. Y. Ho, C. L. Chu, Y. L. Chan, K. W. K. Yeung, W. W. Lu, K. M. C. Cheung, and K. D. K. Luk, “Pore Formation Mechanism and Characterization of Porous NiTi Shape Memory Alloys Synthesized by Capsule-Free Hot Isostatic Pressing”, Acta Materialia, 2007, vol. 55, pp. 3437-3451.CrossRef
16.
Zurück zum Zitat S. L. Zhu, X. J. Yang, D. H. Fu, L. Y. Zhang, C. Y. Li, and Z. D. Cui, “Stress-Strain Behavior of Porous NiTi Alloys Prepared by Powder Sintering”, Materials Science & Engineering A, 2005, vol. 408, pp. 264-268.CrossRef S. L. Zhu, X. J. Yang, D. H. Fu, L. Y. Zhang, C. Y. Li, and Z. D. Cui, “Stress-Strain Behavior of Porous NiTi Alloys Prepared by Powder Sintering”, Materials Science & Engineering A, 2005, vol. 408, pp. 264-268.CrossRef
17.
Zurück zum Zitat Y. P. Zhang, D. S. Li, and X. P. Zhang, “Gradient Porosity and Large Pore Size NiTi Shape Memory Alloys”, Scripta Materialia, 2007, vol. 57, pp. 1020-1023.CrossRef Y. P. Zhang, D. S. Li, and X. P. Zhang, “Gradient Porosity and Large Pore Size NiTi Shape Memory Alloys”, Scripta Materialia, 2007, vol. 57, pp. 1020-1023.CrossRef
18.
Zurück zum Zitat Y-H Li, L-J Rong, and Y-Y Li, “Compressive Property of Porous NiTi Alloy Synthesized by Combustion Synthesis”, J. Alloys and Compounds, 2002, vol. 345, pp. 271-274.CrossRef Y-H Li, L-J Rong, and Y-Y Li, “Compressive Property of Porous NiTi Alloy Synthesized by Combustion Synthesis”, J. Alloys and Compounds, 2002, vol. 345, pp. 271-274.CrossRef
19.
Zurück zum Zitat D. S. Li, Y. P. Zhang, G. Eggeler, and X. P. Zhang, “High Porosity and High-Strength Porous NiTi Shape Memory Alloys with Controllable Pore Characteristics”, J. Alloys and Compounds, 2009, vol. 470, pp. L1-L5.CrossRef D. S. Li, Y. P. Zhang, G. Eggeler, and X. P. Zhang, “High Porosity and High-Strength Porous NiTi Shape Memory Alloys with Controllable Pore Characteristics”, J. Alloys and Compounds, 2009, vol. 470, pp. L1-L5.CrossRef
20.
Zurück zum Zitat M. Kaya, N. Orhan, B. Kurt and T. I. Khan, “The Effect of Solution Treatment under Loading on The Microstructure and Phase Transformation Behavior of Porous NiTi Shape Memory Alloy Fabricated by SHS”, Journal of Alloys and Compounds, 2009, vol. 475, pp. 378-382.CrossRef M. Kaya, N. Orhan, B. Kurt and T. I. Khan, “The Effect of Solution Treatment under Loading on The Microstructure and Phase Transformation Behavior of Porous NiTi Shape Memory Alloy Fabricated by SHS”, Journal of Alloys and Compounds, 2009, vol. 475, pp. 378-382.CrossRef
21.
Zurück zum Zitat M. Kaya, N. Orhan and B. Kurt, “Effect of Solution Treatment under Load on Microstructure and Fabrication of Porous NiTi Shape Memory Alloy by Self- propogating High Temperature Synthesis”, Powder Metallurgy, 2009, vol. 52, pp. 36-41.CrossRef M. Kaya, N. Orhan and B. Kurt, “Effect of Solution Treatment under Load on Microstructure and Fabrication of Porous NiTi Shape Memory Alloy by Self- propogating High Temperature Synthesis”, Powder Metallurgy, 2009, vol. 52, pp. 36-41.CrossRef
22.
Zurück zum Zitat J. Mentz, M. Bram, H. P. Buchkremer and D. Stöver, “Improvementn of Mechanical Properties of Powder Metallurgical NiTi Shape Memory Alloys”, Advanced Materials Engineering, 2006, vol. 8, pp. 247- 252.CrossRef J. Mentz, M. Bram, H. P. Buchkremer and D. Stöver, “Improvementn of Mechanical Properties of Powder Metallurgical NiTi Shape Memory Alloys”, Advanced Materials Engineering, 2006, vol. 8, pp. 247- 252.CrossRef
23.
Zurück zum Zitat J. Mentz, J. Frenzel, M. F. X. Wagner, K. Neuking, G. Eggeler, H. P. Buchkremer and D. Stöver, “Powder Metallurgical Processing of NiTi Shape Memory Alloys with Elvated Transformation Temper- atures”, Materials Science and Engineering A, 2008, vol. 491, pp. 270-278.CrossRef J. Mentz, J. Frenzel, M. F. X. Wagner, K. Neuking, G. Eggeler, H. P. Buchkremer and D. Stöver, “Powder Metallurgical Processing of NiTi Shape Memory Alloys with Elvated Transformation Temper- atures”, Materials Science and Engineering A, 2008, vol. 491, pp. 270-278.CrossRef
24.
Zurück zum Zitat B. Bertheville, “Porous Single-phase NiTi Processed under Ca Reducing Vapor for Use as A Bone Graft Substitute”, Biomaterialia, 2006, vol. 27, pp. 1246- 1250.CrossRef B. Bertheville, “Porous Single-phase NiTi Processed under Ca Reducing Vapor for Use as A Bone Graft Substitute”, Biomaterialia, 2006, vol. 27, pp. 1246- 1250.CrossRef
25.
Zurück zum Zitat F.C. Yen and K.S. Hwang: Proceedings of World Powder Metallurgy Congress and Exhibition, European Powder Metallurgy Association, Shrewsbury, 2010, vol. 5, pp. 421–29. F.C. Yen and K.S. Hwang: Proceedings of World Powder Metallurgy Congress and Exhibition, European Powder Metallurgy Association, Shrewsbury, 2010, vol. 5, pp. 421–29.
26.
Zurück zum Zitat F. C. Yen, K. S. Hwang, S. K. Wu and S. H. Wu, “TiNi Shape Memory Alloys with High Sintered Densities and Well-defined Martensitic Transformation Behavior”, Metallurgical and Materials Transactions A, 2011, vol. 42A, pp. 2431-2441.CrossRef F. C. Yen, K. S. Hwang, S. K. Wu and S. H. Wu, “TiNi Shape Memory Alloys with High Sintered Densities and Well-defined Martensitic Transformation Behavior”, Metallurgical and Materials Transactions A, 2011, vol. 42A, pp. 2431-2441.CrossRef
27.
Zurück zum Zitat F. C. Yen and K. S. Hwang, “Shape Memory Characteristics and Mechanical Properties of High-density Powder Metal TiNi with Post-sintering Heat Treatment”, Materials Science and Engineering A, 2011, vol. 528, pp. 5296-5305.CrossRef F. C. Yen and K. S. Hwang, “Shape Memory Characteristics and Mechanical Properties of High-density Powder Metal TiNi with Post-sintering Heat Treatment”, Materials Science and Engineering A, 2011, vol. 528, pp. 5296-5305.CrossRef
28.
Zurück zum Zitat F. C. Yen and K. S. Hwang, “Microstructures, Mechanical Properties, and Shape Memory Characteristics of Powder Metallurgy Ti51Ni49 Modified with Boron”, Metallurgical and Materials Transactions A, 2012, vol. 43A, pp. 687-696.CrossRef F. C. Yen and K. S. Hwang, “Microstructures, Mechanical Properties, and Shape Memory Characteristics of Powder Metallurgy Ti51Ni49 Modified with Boron”, Metallurgical and Materials Transactions A, 2012, vol. 43A, pp. 687-696.CrossRef
29.
Zurück zum Zitat H. C. Lin, S. K. Wu and J. C. Lin, “The Martensitic Transformation in Ti-rich TiNi Shape Memory Alloys”, Materials Chemistry and Physics, 1994, vol. 37, pp. 184-190.CrossRef H. C. Lin, S. K. Wu and J. C. Lin, “The Martensitic Transformation in Ti-rich TiNi Shape Memory Alloys”, Materials Chemistry and Physics, 1994, vol. 37, pp. 184-190.CrossRef
30.
Zurück zum Zitat L. Zhang, C. Xie and J. Wu, “Martensitic Tensformation and Shape Memory Effect of Ti-49at.%Ni Alloys”, Materials Science and Engineering A, 2006, vol. 438–440, pp.905-910.CrossRef L. Zhang, C. Xie and J. Wu, “Martensitic Tensformation and Shape Memory Effect of Ti-49at.%Ni Alloys”, Materials Science and Engineering A, 2006, vol. 438–440, pp.905-910.CrossRef
31.
Zurück zum Zitat T. Aydoğmus and S. Bor, “Processing of Porous TiNi Alloys Using Magnesium as Space Holder”, J. Alloys and Compounds, 2009, vol. 478, pp. 705-710.CrossRef T. Aydoğmus and S. Bor, “Processing of Porous TiNi Alloys Using Magnesium as Space Holder”, J. Alloys and Compounds, 2009, vol. 478, pp. 705-710.CrossRef
32.
Zurück zum Zitat T. Aydoğmus and S. Bor, “Superelasticity and Compression Behavior of Porous TiNi Alloys Produced Using Mg Spacers”, J. Mechanical Behavior of Biomedical Materials, 2012, vol. 15, pp. 59-69.CrossRef T. Aydoğmus and S. Bor, “Superelasticity and Compression Behavior of Porous TiNi Alloys Produced Using Mg Spacers”, J. Mechanical Behavior of Biomedical Materials, 2012, vol. 15, pp. 59-69.CrossRef
33.
Zurück zum Zitat W.M. Haynes, ed.: CRC Handbook of Chemistry and Physics, 92nd ed., CRC Press/Taylor and Francis, Boca Raton, FL, 2011, pp. 88–117. W.M. Haynes, ed.: CRC Handbook of Chemistry and Physics, 92nd ed., CRC Press/Taylor and Francis, Boca Raton, FL, 2011, pp. 88–117.
34.
Zurück zum Zitat X. Zhao, H. Sun, L. Lan, J. Huang, H. Zhang, and Y. Wang, “Pore Structure of High-Porosity NiTi Alloys Made from Elemental Powders with NaCl Temporary Space-Holders”, Materials Letters, 2009, vol. 63, pp. 2402-2404.CrossRef X. Zhao, H. Sun, L. Lan, J. Huang, H. Zhang, and Y. Wang, “Pore Structure of High-Porosity NiTi Alloys Made from Elemental Powders with NaCl Temporary Space-Holders”, Materials Letters, 2009, vol. 63, pp. 2402-2404.CrossRef
35.
Zurück zum Zitat M. Bram, M. Köhl, H. P. Buchkremer, and D. Stöver, “Mechanical Properties of Highly Porous NiTi Alloys”, J. Materials Engineering and Performance, 2011, vol. 20, pp. 522-528.CrossRef M. Bram, M. Köhl, H. P. Buchkremer, and D. Stöver, “Mechanical Properties of Highly Porous NiTi Alloys”, J. Materials Engineering and Performance, 2011, vol. 20, pp. 522-528.CrossRef
36.
Zurück zum Zitat L-J. Chen, T. Ling, Y-M .Li, H. He, and Y-H. Hu, Trans. Nonferr. Met. Soc. of China, 2009, vol. 19, pp. 1174–79.CrossRef L-J. Chen, T. Ling, Y-M .Li, H. He, and Y-H. Hu, Trans. Nonferr. Met. Soc. of China, 2009, vol. 19, pp. 1174–79.CrossRef
37.
Zurück zum Zitat Y. Torres, J. J. Pavón, and J. A. Rodríguez, “Processing and Characterization of Porous Titanium for Implants by Using NaCl as Space Holder”, J. Materials Processing Technology, 2012, vol. 212, pp. 1061-1069.CrossRef Y. Torres, J. J. Pavón, and J. A. Rodríguez, “Processing and Characterization of Porous Titanium for Implants by Using NaCl as Space Holder”, J. Materials Processing Technology, 2012, vol. 212, pp. 1061-1069.CrossRef
38.
Zurück zum Zitat J. Graham, M. Ries, and L. Pruitt, J. Bone Joint Surg., 2003, vol. 85A, pp. 1901–908. J. Graham, M. Ries, and L. Pruitt, J. Bone Joint Surg., 2003, vol. 85A, pp. 1901–908.
39.
Zurück zum Zitat E. F. Morgan, H. H. Bayraktar, and T. M. Keaveny, “Trabecular Bone Modulus-Density Relationships Depend on Anatomic Site”, J. Biomechanics, 2003, vol. 36, pp. 897-904.CrossRef E. F. Morgan, H. H. Bayraktar, and T. M. Keaveny, “Trabecular Bone Modulus-Density Relationships Depend on Anatomic Site”, J. Biomechanics, 2003, vol. 36, pp. 897-904.CrossRef
40.
Zurück zum Zitat L. J. Gibson, “The Mechanical Behavior of Cancellous Bone”, J. Biomechanics, 1985, vol. 18, No. 5, pp. 317-328.CrossRef L. J. Gibson, “The Mechanical Behavior of Cancellous Bone”, J. Biomechanics, 1985, vol. 18, No. 5, pp. 317-328.CrossRef
41.
Zurück zum Zitat A. Rohlmann, H. Zilch, G. Bergmann, and R. Kölbel, “Material Properties of Femoral Cancellous Bone in Axial Loading, Part I: Time Independent Properties”, Arch. Orthop. Traumat. Surg., 1980, vol. 97, pp. 95-102.CrossRef A. Rohlmann, H. Zilch, G. Bergmann, and R. Kölbel, “Material Properties of Femoral Cancellous Bone in Axial Loading, Part I: Time Independent Properties”, Arch. Orthop. Traumat. Surg., 1980, vol. 97, pp. 95-102.CrossRef
42.
Zurück zum Zitat J. C. Rice, S. C. Cowin, and J. A. Bowman, “On the Dependence of the Elasticity and Strength of Cancellous Bone on Apparent density”, J. Biomechanics, 1988, vol. 21, no. 2, pp. 155-168.CrossRef J. C. Rice, S. C. Cowin, and J. A. Bowman, “On the Dependence of the Elasticity and Strength of Cancellous Bone on Apparent density”, J. Biomechanics, 1988, vol. 21, no. 2, pp. 155-168.CrossRef
Metadaten
Titel
Fabrication of Porous Ti-rich Ti51Ni49 by Evaporating NaCl Space Holder
verfasst von
Fu-Cheng Yen
Kuen-Shyang Hwang
Shyi-Kaan Wu
Publikationsdatum
01.05.2014
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 5/2014
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-014-2196-2

Weitere Artikel der Ausgabe 5/2014

Metallurgical and Materials Transactions A 5/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.