Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 19/2023

23.03.2023 | Technical Article

Fabrication of Ti2AlC Compound by Mechanical Alloying and Spark Plasma Sintering and Investigation of Its Cyclic Oxidation Behavior

verfasst von: Borna Nejat, Iman Ebrahimzadeh, Mahdi Rafiei

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 19/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, the Ti2AlC MAX phase was produced by mechanical alloying (MA) and spark plasma sintering (SPS) of a mixture of Ti, Al and C powders with a molar ratio of 2:1.1:1. The time of the mechanical alloying process and sintering process temperature were selected as variables, and their effect on the properties of resulted samples was investigated. SPS process was performed on the samples at temperatures of 1000, 1100 and 1200 °C and under the pressure of 30 MPa for 20 min. The cyclic oxidation behavior of the samples was then investigated. The density and hardness of the samples were also examined. The results showed that the best specimen had a density of 4.2 gr cm−3 and a hardness of 995 HV. According to the x-ray diffraction patterns, it was found that the Ti2AlC MAX phase has been formed in all samples. The cyclic oxidation process was performed for 50 h on the selected sample at temperatures 1200 and 1350 °C. The results of oxidation test showed that Al2O3 and TiO2 oxide layers formed with good adhesion on the substrate surface. The weight gain equation of the oxidation test was obtained powerfully at temperatures of 1200 and 1350 °C, where the oxidation constant (ko) increased from 8 × 10–4 to 9 × 10–3 mgn h−1, respectively. In this study, the best results were obtained by MA time of 24 h and then SPS process at the temperature of 1200 °C.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Radovic and M.W. Barsoum, MAX Phases: Bridging the Gap Between Metals and Ceramics, Am. Ceram. Soc. Bull., 2013, 92, p 20–27. M. Radovic and M.W. Barsoum, MAX Phases: Bridging the Gap Between Metals and Ceramics, Am. Ceram. Soc. Bull., 2013, 92, p 20–27.
2.
Zurück zum Zitat M.W. Barsoum, The Mn+1AXn Phases: A New Class of Solids: Thermodynamically Stable Nanolaminates, Prog. Solid State Chem., 2000, 28, p 201–281.CrossRef M.W. Barsoum, The Mn+1AXn Phases: A New Class of Solids: Thermodynamically Stable Nanolaminates, Prog. Solid State Chem., 2000, 28, p 201–281.CrossRef
3.
Zurück zum Zitat Z.M. Sun, Progress in Research and Development on MAX Phases: A Family of Layered Ternary Compounds, Int. Mater. Rev., 2011, 56, p 143–166.CrossRef Z.M. Sun, Progress in Research and Development on MAX Phases: A Family of Layered Ternary Compounds, Int. Mater. Rev., 2011, 56, p 143–166.CrossRef
4.
Zurück zum Zitat M. Barsoum and M. Radovic, Elastic and Mechanical Properties of the MAX Phases, Ann. Rev. Mater. Res., 2011, 41, p 195–227.CrossRef M. Barsoum and M. Radovic, Elastic and Mechanical Properties of the MAX Phases, Ann. Rev. Mater. Res., 2011, 41, p 195–227.CrossRef
5.
Zurück zum Zitat B. Cui, R. Sa, D.D. Jayaseelan, F. Inam, M.J. Reece, and W.E. Lee, Microstructural Evolution During High-Temperature Oxidation of Spark Plasma Sintered Ti2AlN Ceramics, Acta Mater., 2012, 60, p 1079–1092.CrossRef B. Cui, R. Sa, D.D. Jayaseelan, F. Inam, M.J. Reece, and W.E. Lee, Microstructural Evolution During High-Temperature Oxidation of Spark Plasma Sintered Ti2AlN Ceramics, Acta Mater., 2012, 60, p 1079–1092.CrossRef
6.
Zurück zum Zitat I.R. Shein and A.L. Ivanovskii, Elastic Properties of Superconducting MAX Phases from First-Principles Calculations, Phys. Status Solidi (b), 2011, 248, p 228–232.CrossRef I.R. Shein and A.L. Ivanovskii, Elastic Properties of Superconducting MAX Phases from First-Principles Calculations, Phys. Status Solidi (b), 2011, 248, p 228–232.CrossRef
7.
Zurück zum Zitat I. Low, Advances in Science and Technology of Mn+1AXnPhases, Elsevier, Amsterdam, 2012.CrossRef I. Low, Advances in Science and Technology of Mn+1AXnPhases, Elsevier, Amsterdam, 2012.CrossRef
8.
Zurück zum Zitat B. Anasori, N.C. El’ad, Y. Elraheb, and M.W. Barsoum, On the Oxidation of Ti2GeC in Air, J. Alloys Compd., 2013, 580, p 550–557.CrossRef B. Anasori, N.C. El’ad, Y. Elraheb, and M.W. Barsoum, On the Oxidation of Ti2GeC in Air, J. Alloys Compd., 2013, 580, p 550–557.CrossRef
9.
Zurück zum Zitat Z.M. Sun, H. Hashimoto, Z.F. Zhang, S.L. Yang, and S. Tada, Synthesis and Characterization of a Metallic Ceramic Material–Ti3SiC2, Mater. Trans., 2006, 47, p 170–174.CrossRef Z.M. Sun, H. Hashimoto, Z.F. Zhang, S.L. Yang, and S. Tada, Synthesis and Characterization of a Metallic Ceramic Material–Ti3SiC2, Mater. Trans., 2006, 47, p 170–174.CrossRef
10.
Zurück zum Zitat J.D. Hettinger, S.E. Lofland, P. Finkel, T. Meehan, J. Palma, K. Harrell et al., Electrical Transport, Thermal Transport, and Elastic Properties of M2AlC (M=Ti, Cr, Nb, and V), Phys. Rev. B, 2005, 72(11), p 115120.CrossRef J.D. Hettinger, S.E. Lofland, P. Finkel, T. Meehan, J. Palma, K. Harrell et al., Electrical Transport, Thermal Transport, and Elastic Properties of M2AlC (M=Ti, Cr, Nb, and V), Phys. Rev. B, 2005, 72(11), p 115120.CrossRef
11.
Zurück zum Zitat J.F. Zhu, G.Q. Qi, F. Wang, and H.B. Yang, High Purity Ti2AlC Powder Prepared by a Novel Method, Mater. Sci. Forum, 2010, 658, p 340–343.CrossRef J.F. Zhu, G.Q. Qi, F. Wang, and H.B. Yang, High Purity Ti2AlC Powder Prepared by a Novel Method, Mater. Sci. Forum, 2010, 658, p 340–343.CrossRef
12.
Zurück zum Zitat E. Sadeghi, F. Karimzadeh, and M.H. Abbasi, Thermodynamic Analysis of Ti–Al–C Intermetallics Formation by Mechanical Alloying, J. Alloys Compd., 2013, 576, p 317–323.CrossRef E. Sadeghi, F. Karimzadeh, and M.H. Abbasi, Thermodynamic Analysis of Ti–Al–C Intermetallics Formation by Mechanical Alloying, J. Alloys Compd., 2013, 576, p 317–323.CrossRef
13.
Zurück zum Zitat B. Velasco, E. Gordo, L. Hu, M. Radovic, and S.A. Tsipas, Influence of Porosity on Elastic Properties of Ti2AlC and Ti3SiC2 MAX Phase Foams, J. Alloys Compd., 2018, 764, p 24–35.CrossRef B. Velasco, E. Gordo, L. Hu, M. Radovic, and S.A. Tsipas, Influence of Porosity on Elastic Properties of Ti2AlC and Ti3SiC2 MAX Phase Foams, J. Alloys Compd., 2018, 764, p 24–35.CrossRef
14.
Zurück zum Zitat T. Fey, M. Stumpf, A. Chmielarz, P. Colombo, P. Greil, and M. Potoczek, Microstructure, Thermal Conductivity and Simulation of Elastic Modulus of MAX-Phase (Ti2AlC) Gel-Cast Foams, J. Eur. Ceram. Soc., 2018, 38(10), p 3424–3432.CrossRef T. Fey, M. Stumpf, A. Chmielarz, P. Colombo, P. Greil, and M. Potoczek, Microstructure, Thermal Conductivity and Simulation of Elastic Modulus of MAX-Phase (Ti2AlC) Gel-Cast Foams, J. Eur. Ceram. Soc., 2018, 38(10), p 3424–3432.CrossRef
15.
Zurück zum Zitat S. Badie, A. Dash, Y. Sohn, R. Vaßen, O. Guillon, and J. Gonzalez-Julian, Synthesis, Sintering and Effect of Surface Roughness on Oxidation of Submicron Ti2AlC Ceramics, J. Am. Ceram. Soc., 2020, 104(4), p 1669–1688.CrossRef S. Badie, A. Dash, Y. Sohn, R. Vaßen, O. Guillon, and J. Gonzalez-Julian, Synthesis, Sintering and Effect of Surface Roughness on Oxidation of Submicron Ti2AlC Ceramics, J. Am. Ceram. Soc., 2020, 104(4), p 1669–1688.CrossRef
16.
Zurück zum Zitat R. Benitez, W.H. Kan, H. Gao, M. O’Neal, G. Proust, A. Srivastava et al., Mechanical Properties and Microstructure Evolution of Ti2AlC Under Compression in 25–1100 °C Temperature Range, Acta Mater., 2020, 189, p 154–165.CrossRef R. Benitez, W.H. Kan, H. Gao, M. O’Neal, G. Proust, A. Srivastava et al., Mechanical Properties and Microstructure Evolution of Ti2AlC Under Compression in 25–1100 °C Temperature Range, Acta Mater., 2020, 189, p 154–165.CrossRef
17.
Zurück zum Zitat A. Hendaoui, D. Vrel, A. Amara, P. Langlois, M. Andasmas,and M. Guerioune, Synthesis of High-Purity Polycrystalline MAX Phases in Ti–Al–C SYSTEM THROUGH MECHANICally Activated Self-propagating High-temperature Synthesis, J. Eur. Ceram. Soc., 2010, 30(4), p 1049–1057.CrossRef A. Hendaoui, D. Vrel, A. Amara, P. Langlois, M. Andasmas,and M. Guerioune, Synthesis of High-Purity Polycrystalline MAX Phases in Ti–Al–C SYSTEM THROUGH MECHANICally Activated Self-propagating High-temperature Synthesis, J. Eur. Ceram. Soc., 2010, 30(4), p 1049–1057.CrossRef
18.
Zurück zum Zitat M.W. Barsoum, N. Tzenov, A. Procopio, T. El-Raghy, and M. Ali, Oxidation of Tin+1AlXn (n={1 3} and X= C, N): II. Experimental Results, J. Electrochem. Soc., 2001, 148(8), p C551.CrossRef M.W. Barsoum, N. Tzenov, A. Procopio, T. El-Raghy, and M. Ali, Oxidation of Tin+1AlXn (n={1 3} and X= C, N): II. Experimental Results, J. Electrochem. Soc., 2001, 148(8), p C551.CrossRef
19.
Zurück zum Zitat W. Yu, V. Mauchamp, T. Cabioc’h, D. Magne, L. Gence, L. Piraux et al., Solid Solution Effects in the Ti2Al(CxNy) MAX Phases: Synthesis, Microstructure, Electronic Structure and Transport Properties, Acta Mater., 2014, 80, p 421–434.CrossRef W. Yu, V. Mauchamp, T. Cabioc’h, D. Magne, L. Gence, L. Piraux et al., Solid Solution Effects in the Ti2Al(CxNy) MAX Phases: Synthesis, Microstructure, Electronic Structure and Transport Properties, Acta Mater., 2014, 80, p 421–434.CrossRef
20.
Zurück zum Zitat Y. Du, J.-X. Liu, Y. Gu, X.-G. Wang, F. Xu, and G.-J. Zhang, Anisotropic Corrosion of Ti2AlC and Ti3AlC2 in Supercritical Water at 500 °C, Ceram. Int., 2017, 43(9), p 7166–7171.CrossRef Y. Du, J.-X. Liu, Y. Gu, X.-G. Wang, F. Xu, and G.-J. Zhang, Anisotropic Corrosion of Ti2AlC and Ti3AlC2 in Supercritical Water at 500 °C, Ceram. Int., 2017, 43(9), p 7166–7171.CrossRef
21.
Zurück zum Zitat F. Wang, Q. Su, M. Nastasi, M.A. Kirk, M. Li, and B. Cui, Evolution of Irradiation Defects in Ti2AlC Ceramics During Heavy Ion Irradiation, Ceram. Int., 2018, 44(12), p 14686–14692.CrossRef F. Wang, Q. Su, M. Nastasi, M.A. Kirk, M. Li, and B. Cui, Evolution of Irradiation Defects in Ti2AlC Ceramics During Heavy Ion Irradiation, Ceram. Int., 2018, 44(12), p 14686–14692.CrossRef
22.
Zurück zum Zitat Y. Li, G. Zhao, Y. Qian, J. Xu, and M. Li, Deposition and Characterization of Phase-Pure Ti2AlC and Ti3AlC2 Coatings by DC Magnetron Sputtering with Cost-Effective Targets, Vacuum, 2018, 153, p 62–69.CrossRef Y. Li, G. Zhao, Y. Qian, J. Xu, and M. Li, Deposition and Characterization of Phase-Pure Ti2AlC and Ti3AlC2 Coatings by DC Magnetron Sputtering with Cost-Effective Targets, Vacuum, 2018, 153, p 62–69.CrossRef
23.
Zurück zum Zitat W. Wang, M. Sokol, S. Kota, and M. Barsoum, Reaction Paths and Microstructures of Nickel and Ti2AlC Mixtures Reacted in the 1050–1350 °C TEMPERATURE RANGE, J. Alloys Compd., 2020, 828, p 154193.CrossRef W. Wang, M. Sokol, S. Kota, and M. Barsoum, Reaction Paths and Microstructures of Nickel and Ti2AlC Mixtures Reacted in the 1050–1350 °C TEMPERATURE RANGE, J. Alloys Compd., 2020, 828, p 154193.CrossRef
24.
Zurück zum Zitat X. Li, X. Xie, J. Gonzalez-Julian, J. Malzbender, and R. Yang, Mechanical and Oxidation Behavior of Textured Ti2AlC and Ti3AlC2 MAX Phase Materials, J. Eur. Ceram. Soc., 2020, 40(15), p 5258–5271.CrossRef X. Li, X. Xie, J. Gonzalez-Julian, J. Malzbender, and R. Yang, Mechanical and Oxidation Behavior of Textured Ti2AlC and Ti3AlC2 MAX Phase Materials, J. Eur. Ceram. Soc., 2020, 40(15), p 5258–5271.CrossRef
25.
Zurück zum Zitat W. Yu, M. Vallet, B. Levraut, V. Gauthier-Brunet, and S. Dubois, Oxidation Mechanisms in Bulk Ti2AlC: Influence of The Grain Size, J. Eur. Ceram. Soc., 2020, 40(5), p 1820–1828.CrossRef W. Yu, M. Vallet, B. Levraut, V. Gauthier-Brunet, and S. Dubois, Oxidation Mechanisms in Bulk Ti2AlC: Influence of The Grain Size, J. Eur. Ceram. Soc., 2020, 40(5), p 1820–1828.CrossRef
26.
Zurück zum Zitat B. Mei, Z. Weibing, J. Zhu, and X. Hong, Synthesis of High-Purity Ti2AlC by Spark Plasma Sintering (SPS) of the Elemental Powders, J. Mater. Sci., 2004, 39, p 1471–1472.CrossRef B. Mei, Z. Weibing, J. Zhu, and X. Hong, Synthesis of High-Purity Ti2AlC by Spark Plasma Sintering (SPS) of the Elemental Powders, J. Mater. Sci., 2004, 39, p 1471–1472.CrossRef
27.
Zurück zum Zitat W.B. Zhou, B.C. Mei, J.Q. Zhu, and X.L. Hong, Rapid Synthesis of Ti2AlC by Spark Plasma Sintering Technique, Mater. Lett., 2005, 59(1), p 131–134.CrossRef W.B. Zhou, B.C. Mei, J.Q. Zhu, and X.L. Hong, Rapid Synthesis of Ti2AlC by Spark Plasma Sintering Technique, Mater. Lett., 2005, 59(1), p 131–134.CrossRef
28.
Zurück zum Zitat Y.L. Yue and H.T. Wu, Fabrication of Ti2AlC/TiAl Composites with the Addition of Niobium by Spark Plasma Sintering, Key Eng. Mater., 2008, 368–372, p 1004–1006.CrossRef Y.L. Yue and H.T. Wu, Fabrication of Ti2AlC/TiAl Composites with the Addition of Niobium by Spark Plasma Sintering, Key Eng. Mater., 2008, 368–372, p 1004–1006.CrossRef
29.
Zurück zum Zitat S. Kulkarni and A. Datye, Synthesis of Ti2AlC by Spark Plasma Sintering of TiAl–Carbon Nanotube Powder Mixture, J. Alloys Compd., 2010, 490, p 155–159.CrossRef S. Kulkarni and A. Datye, Synthesis of Ti2AlC by Spark Plasma Sintering of TiAl–Carbon Nanotube Powder Mixture, J. Alloys Compd., 2010, 490, p 155–159.CrossRef
30.
Zurück zum Zitat Y.L. Chen, X. Zhu, P. Lu, Z. Li, C. Zeng, and M. Yan, Ti2AlC/TiC Functionally Graded Material Fabricated by SPS, Appl. Mech. Mater., 2014, 543–547, p 3869–3873.CrossRef Y.L. Chen, X. Zhu, P. Lu, Z. Li, C. Zeng, and M. Yan, Ti2AlC/TiC Functionally Graded Material Fabricated by SPS, Appl. Mech. Mater., 2014, 543–547, p 3869–3873.CrossRef
31.
Zurück zum Zitat G.-H. Jeong, G.-R. Baek, T.F. Zhang, K. Kim, K. Kim, H. Shin et al., MAX-Phase Ti2AlC Ceramics: Syntheses, Properties and Feasibility of Applications in Micro Electrical Discharge Machining, J. Ceram. Process. Res., 2016, 17, p 1116–1122. G.-H. Jeong, G.-R. Baek, T.F. Zhang, K. Kim, K. Kim, H. Shin et al., MAX-Phase Ti2AlC Ceramics: Syntheses, Properties and Feasibility of Applications in Micro Electrical Discharge Machining, J. Ceram. Process. Res., 2016, 17, p 1116–1122.
32.
Zurück zum Zitat K. Kozak, A. Dosi, G. Antou, N. Pradeilles, and T. Chotard, Characterization of Thermomechanical Behavior of Ti3SiC2 and Ti2AlC Ceramics Elaborated by Spark Plasma Sintering Using Ultrasonic Means: Characterization of Thermomechanical Behavior of Ti3SiC2 and Ti2AlC, Adv. Eng. Mater., 2016, 18, p 1952–1957.CrossRef K. Kozak, A. Dosi, G. Antou, N. Pradeilles, and T. Chotard, Characterization of Thermomechanical Behavior of Ti3SiC2 and Ti2AlC Ceramics Elaborated by Spark Plasma Sintering Using Ultrasonic Means: Characterization of Thermomechanical Behavior of Ti3SiC2 and Ti2AlC, Adv. Eng. Mater., 2016, 18, p 1952–1957.CrossRef
33.
Zurück zum Zitat R. Benitez, H. Gao, M. O’Neal, P. Lovelace, G. Proust, and M. Radovic, Effects of Microstructure on the Mechanical Properties of Ti2AlC in Compression, Acta Mater., 2018, 143, p 130–140.CrossRef R. Benitez, H. Gao, M. O’Neal, P. Lovelace, G. Proust, and M. Radovic, Effects of Microstructure on the Mechanical Properties of Ti2AlC in Compression, Acta Mater., 2018, 143, p 130–140.CrossRef
34.
Zurück zum Zitat L. Boatemaa, M. Bosch, A.-S. Farle, G. Bei, S. Zwaag, and W.G. Sloof, Autonomous High Temperature Healing of Surface Cracks in Al2O3 Containing Ti2AlC Particles, J. Am. Ceram. Soc., 2018, 101, p 5684–5693.CrossRef L. Boatemaa, M. Bosch, A.-S. Farle, G. Bei, S. Zwaag, and W.G. Sloof, Autonomous High Temperature Healing of Surface Cracks in Al2O3 Containing Ti2AlC Particles, J. Am. Ceram. Soc., 2018, 101, p 5684–5693.CrossRef
35.
Zurück zum Zitat Y. Wada, N. Sekido, T. Ohmura, and K. Yoshimi, Deformation Microstructure Developed by Nanoindentation of a MAX Phase Ti2AlC, Mater. Trans., 2018, 59, p 771–778.CrossRef Y. Wada, N. Sekido, T. Ohmura, and K. Yoshimi, Deformation Microstructure Developed by Nanoindentation of a MAX Phase Ti2AlC, Mater. Trans., 2018, 59, p 771–778.CrossRef
36.
Zurück zum Zitat C. Lu, K. Piven, Q. Qi, J. Zhang, G. Hug, and A. Jankowiak, Substitution Behavior of Si Atoms in the Ti2AlC Ceramics, Acta Mater., 2018, 144, p 543–551.CrossRef C. Lu, K. Piven, Q. Qi, J. Zhang, G. Hug, and A. Jankowiak, Substitution Behavior of Si Atoms in the Ti2AlC Ceramics, Acta Mater., 2018, 144, p 543–551.CrossRef
37.
Zurück zum Zitat T. Thomas, C. Zhang, A. Sahu, P. Nautiyal, A. Loganathan, T. Laha et al., Effect of Graphene Reinforcement on the Mechanical Properties of Ti2AlC Ceramic Fabricated by Spark Plasma Sintering, Mater. Sci. Eng. A, 2018, 728, p 45–53.CrossRef T. Thomas, C. Zhang, A. Sahu, P. Nautiyal, A. Loganathan, T. Laha et al., Effect of Graphene Reinforcement on the Mechanical Properties of Ti2AlC Ceramic Fabricated by Spark Plasma Sintering, Mater. Sci. Eng. A, 2018, 728, p 45–53.CrossRef
38.
Zurück zum Zitat Z. Zhan, Y. Chen, M. Radovic, and A. Srivastava, Non-classical Crystallographic Slip in a Ternary Carbide – Ti2AlC, Mater. Res. Lett., 2020, 8(7), p 275–281.CrossRef Z. Zhan, Y. Chen, M. Radovic, and A. Srivastava, Non-classical Crystallographic Slip in a Ternary Carbide – Ti2AlC, Mater. Res. Lett., 2020, 8(7), p 275–281.CrossRef
39.
Zurück zum Zitat A. Koniuszewska and K. Naplocha, Microwave Assisted Self-propagating High-temperature Synthesis of Ti2AlC MAX Phase, Compos. Theory Pract., 2016, 16, p 109–112. A. Koniuszewska and K. Naplocha, Microwave Assisted Self-propagating High-temperature Synthesis of Ti2AlC MAX Phase, Compos. Theory Pract., 2016, 16, p 109–112.
40.
Zurück zum Zitat W. Chen, J. Tang, X. Shi, N. Ye, Z. Yue, and X. Lin, Synthesis and Formation Mechanism of High-Purity Ti3AlC2 Powders by Microwave Sintering, Int. J. Appl. Ceram. Technol., 2019, 17, p 778–789.CrossRef W. Chen, J. Tang, X. Shi, N. Ye, Z. Yue, and X. Lin, Synthesis and Formation Mechanism of High-Purity Ti3AlC2 Powders by Microwave Sintering, Int. J. Appl. Ceram. Technol., 2019, 17, p 778–789.CrossRef
41.
Zurück zum Zitat Smialek J. Kinetic aspects of Ti2AlC MAX phase oxidation. Oxidation of Metals. 2015;83. Smialek J. Kinetic aspects of Ti2AlC MAX phase oxidation. Oxidation of Metals. 2015;83.
42.
Zurück zum Zitat J.L. Smialek, Environmental Resistance of a Ti2AlC-type MAX Phase in a High Pressure Burner Rig, J. Eur. Ceram. Soc., 2017, 37(1), p 23–34.CrossRef J.L. Smialek, Environmental Resistance of a Ti2AlC-type MAX Phase in a High Pressure Burner Rig, J. Eur. Ceram. Soc., 2017, 37(1), p 23–34.CrossRef
43.
Zurück zum Zitat J.L. Smialek, B.J. Harder, and A. Garg, Oxidative Durability of TBCs on Ti2AlC MAX Phase Substrates, Surf. Coat. Technol., 2016, 285, p 77–86.CrossRef J.L. Smialek, B.J. Harder, and A. Garg, Oxidative Durability of TBCs on Ti2AlC MAX Phase Substrates, Surf. Coat. Technol., 2016, 285, p 77–86.CrossRef
44.
Zurück zum Zitat Z. Zhang, S.H. Lim, D.M.Y. Lai, S.Y. Tan, X.Q. Koh, J. Chai et al., Feature Article, J. Eur. Ceram. Soc., 2017, 37(1), p 43–51.CrossRef Z. Zhang, S.H. Lim, D.M.Y. Lai, S.Y. Tan, X.Q. Koh, J. Chai et al., Feature Article, J. Eur. Ceram. Soc., 2017, 37(1), p 43–51.CrossRef
45.
Zurück zum Zitat C. Tang, M. Steinbrück, M. Große, T. Bergfeldt, and H.J. Seifert, Oxidation Behavior of Ti2AlC in the Temperature Range of 1400 °C–1600 °C in Steam, J. Nucl. Mater., 2017, 490, p 130–142.CrossRef C. Tang, M. Steinbrück, M. Große, T. Bergfeldt, and H.J. Seifert, Oxidation Behavior of Ti2AlC in the Temperature Range of 1400 °C–1600 °C in Steam, J. Nucl. Mater., 2017, 490, p 130–142.CrossRef
46.
Zurück zum Zitat A. Donchev, M. Schütze, E. Ström, and M. Galetz, Oxidation Behaviour of the MAX-Phases Ti2AlC and (Ti, Nb)2AlC at Elevated Temperatures with and Without Fluorine Treatment, J. Eur. Ceram. Soc., 2019, 39(15), p 4595–4601.CrossRef A. Donchev, M. Schütze, E. Ström, and M. Galetz, Oxidation Behaviour of the MAX-Phases Ti2AlC and (Ti, Nb)2AlC at Elevated Temperatures with and Without Fluorine Treatment, J. Eur. Ceram. Soc., 2019, 39(15), p 4595–4601.CrossRef
47.
Zurück zum Zitat L. Smialek, Relative Ti2AlC Scale Volatility Under 1300 °C Combustion Conditions, Coatings, 2020, 10, p 142.CrossRef L. Smialek, Relative Ti2AlC Scale Volatility Under 1300 °C Combustion Conditions, Coatings, 2020, 10, p 142.CrossRef
48.
Zurück zum Zitat X. Wang and Y. Zhou, High-Temperature Oxidation Behavior of Ti2AlC in Air, Oxid. Met., 2003, 59(3–4), p 303–320.CrossRef X. Wang and Y. Zhou, High-Temperature Oxidation Behavior of Ti2AlC in Air, Oxid. Met., 2003, 59(3–4), p 303–320.CrossRef
49.
Zurück zum Zitat J. Byeon, J. Liu, M. Hopkins, W. Fischer, N. Garimella, K. Park, M. Brady, M. Radovic, T. El-Raghy, and Y. Sohn, Microstructure and Residual Stress of Alumina Scale Formed on Ti2AlC at High Temperature in Air, Oxid. Met., 2007, 68, p 97–111.CrossRef J. Byeon, J. Liu, M. Hopkins, W. Fischer, N. Garimella, K. Park, M. Brady, M. Radovic, T. El-Raghy, and Y. Sohn, Microstructure and Residual Stress of Alumina Scale Formed on Ti2AlC at High Temperature in Air, Oxid. Met., 2007, 68, p 97–111.CrossRef
50.
Zurück zum Zitat W. Zhou, K. Li, J. Zhu, S. Tian, and D.-M. Zhu, Low-Temperature Synthesis of High-Purity Ti2AlC Powder by Microwave Sintering, Micro Nano Lett., 2018, 13, p 798–800.CrossRef W. Zhou, K. Li, J. Zhu, S. Tian, and D.-M. Zhu, Low-Temperature Synthesis of High-Purity Ti2AlC Powder by Microwave Sintering, Micro Nano Lett., 2018, 13, p 798–800.CrossRef
51.
Zurück zum Zitat M. Sundberg, G. Malmqvist, A. Magnusson, and T. El-Raghy, Alumina Forming High Temperature Silicides and Carbides, Ceram. Int., 2004, 30, p 1899–1904.CrossRef M. Sundberg, G. Malmqvist, A. Magnusson, and T. El-Raghy, Alumina Forming High Temperature Silicides and Carbides, Ceram. Int., 2004, 30, p 1899–1904.CrossRef
52.
Zurück zum Zitat Z.J. Lin, M.J. Zhuo, Y. Zhou, M. Li, and J. Wang, Microstructural Characterization of Layered Ternary Ti2AlC, Acta Mater., 2006, 54, p 1009–1015.CrossRef Z.J. Lin, M.J. Zhuo, Y. Zhou, M. Li, and J. Wang, Microstructural Characterization of Layered Ternary Ti2AlC, Acta Mater., 2006, 54, p 1009–1015.CrossRef
53.
Zurück zum Zitat D.J. Tallman, B. Anasori, and M.W. Barsoum, A Critical Review of the Oxidation of Ti2AlC, Ti3AlC2 and Cr2AlC in Air, Mater. Res. Lett., 2013, 1, p 115–125.CrossRef D.J. Tallman, B. Anasori, and M.W. Barsoum, A Critical Review of the Oxidation of Ti2AlC, Ti3AlC2 and Cr2AlC in Air, Mater. Res. Lett., 2013, 1, p 115–125.CrossRef
54.
Zurück zum Zitat M. Munro, Evaluated Material Properties for a Sintered Alpha-Alumina, J. Am. Ceram. Soc., 1997, 80, p 1919–1928.CrossRef M. Munro, Evaluated Material Properties for a Sintered Alpha-Alumina, J. Am. Ceram. Soc., 1997, 80, p 1919–1928.CrossRef
55.
Zurück zum Zitat A. Li, C. Hu, M. Li, and Y. Zhou, Joining of Ti–Al–C Ceramics by Oxidation at Low Oxygen Partial Pressure, J. Eur. Ceram. Soc., 2009, 29, p 2619–2625.CrossRef A. Li, C. Hu, M. Li, and Y. Zhou, Joining of Ti–Al–C Ceramics by Oxidation at Low Oxygen Partial Pressure, J. Eur. Ceram. Soc., 2009, 29, p 2619–2625.CrossRef
56.
Zurück zum Zitat T. Thomas, Fabrication Techniques to Produce Micro and Macro Porous MAX-Phase Ti2AlC Ceramic (University of Bath, 2015. T. Thomas, Fabrication Techniques to Produce Micro and Macro Porous MAX-Phase Ti2AlC Ceramic (University of Bath, 2015.
57.
Zurück zum Zitat J.F. Zhu, G.Q. Qi, F. Wang, and H.B. Yang, High Purity Ti2AlC Powder Prepared by a Novel Method, Materials Science Forum, Trans Tech Publ, Wollerau, 2010, p 340–343 J.F. Zhu, G.Q. Qi, F. Wang, and H.B. Yang, High Purity Ti2AlC Powder Prepared by a Novel Method, Materials Science Forum, Trans Tech Publ, Wollerau, 2010, p 340–343
58.
Zurück zum Zitat A. Attaei, Mechanical Alloying and Mechanical Activation a Technology for Processing of Nanomaterials (University of Tehran, 2007) A. Attaei, Mechanical Alloying and Mechanical Activation a Technology for Processing of Nanomaterials (University of Tehran, 2007)
59.
Zurück zum Zitat M. Rafiei, M. Salehi, M. Shamanian, and A. Motallebzadeh, Preparation and Oxidation Behavior of B4C–Ni and B4C–TiB2–TiC–Ni Composite Coatings Produced by an HVOF Process, Ceram. Int., 2014, 40(8), p 13599–13609.CrossRef M. Rafiei, M. Salehi, M. Shamanian, and A. Motallebzadeh, Preparation and Oxidation Behavior of B4C–Ni and B4C–TiB2–TiC–Ni Composite Coatings Produced by an HVOF Process, Ceram. Int., 2014, 40(8), p 13599–13609.CrossRef
Metadaten
Titel
Fabrication of Ti2AlC Compound by Mechanical Alloying and Spark Plasma Sintering and Investigation of Its Cyclic Oxidation Behavior
verfasst von
Borna Nejat
Iman Ebrahimzadeh
Mahdi Rafiei
Publikationsdatum
23.03.2023
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 19/2023
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-023-08044-8

Weitere Artikel der Ausgabe 19/2023

Journal of Materials Engineering and Performance 19/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.