Skip to main content
Erschienen in: Optical Memory and Neural Networks 3/2023

01.12.2023

Far Resonance Kapitza-Dirac Diffraction: from Raman-Nath to Bragg and Multiple Beam Atomic Interferometer

verfasst von: Atom Zh. Muradyan

Erschienen in: Optical Memory and Neural Networks | Sonderheft 3/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Near-resonant Kapitza–Dirac diffraction theory is extended out of familiar Raman–Nath approximation. New solutions with initial superposition of equidistant momentum states, applied to one- and two-optical grating atom interferometer schemes, reveals certain output patterns, usable as large-area multiple beam atom interferometer.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kapitza, P.L., and Dirac, P.A.M., The reflection of electrons from standing light waves, Proc. Cambridge Philos. Soc., 1933, vol. 29, no. 2, pp. 297–300.CrossRef Kapitza, P.L., and Dirac, P.A.M., The reflection of electrons from standing light waves, Proc. Cambridge Philos. Soc., 1933, vol. 29, no. 2, pp. 297–300.CrossRef
2.
Zurück zum Zitat Haroutyunyan, V.M. and Muradyan, A.Zh., Behavior of an atom in a resonant field of counterpropagating waves, Rep. Acad. Sci. Arm. SSR, 1975, vol. 60, no. 5, pp. 275–278. Haroutyunyan, V.M. and Muradyan, A.Zh., Behavior of an atom in a resonant field of counterpropagating waves, Rep. Acad. Sci. Arm. SSR, 1975, vol. 60, no. 5, pp. 275–278.
3.
Zurück zum Zitat Cook, R.J. and Bernhardt, A.F., Deflection of atoms by a resonant standing electromagnetic wave, Phys. Rev. A, 1978, vol. 18, no. 6, pp. 2533–2537.CrossRef Cook, R.J. and Bernhardt, A.F., Deflection of atoms by a resonant standing electromagnetic wave, Phys. Rev. A, 1978, vol. 18, no. 6, pp. 2533–2537.CrossRef
4.
Zurück zum Zitat Bernhardt, A.F. and Shore, B.W., Coherent atomic deflection by resonant standing waves, Phys. Rev. A, 1981, vol. 23, no. 3, pp. 1290–1301.CrossRef Bernhardt, A.F. and Shore, B.W., Coherent atomic deflection by resonant standing waves, Phys. Rev. A, 1981, vol. 23, no. 3, pp. 1290–1301.CrossRef
5.
Zurück zum Zitat Arimondo, E., Bambini, A., and Stenholm, S. Quasiclassical theory of laser-induced atomic-beam dispersion, Phys. Rev. A, 1981, vol. 24, no. 2, pp. 898–909.CrossRef Arimondo, E., Bambini, A., and Stenholm, S. Quasiclassical theory of laser-induced atomic-beam dispersion, Phys. Rev. A, 1981, vol. 24, no. 2, pp. 898–909.CrossRef
6.
Zurück zum Zitat Kazantsev, A.P., Ryabenko, G.A., Surdutovich, G.I., and Yakovlev, V.P., Phys. Rep.,1985, vol. 129, no. 2, pp. 75–144.CrossRef Kazantsev, A.P., Ryabenko, G.A., Surdutovich, G.I., and Yakovlev, V.P., Phys. Rep.,1985, vol. 129, no. 2, pp. 75–144.CrossRef
7.
Zurück zum Zitat Baklanov, E.V. and Minogin, V.G., Scattering of the wavepacket of an atom by a resonance standing light wave, Zh. Eksp. Teor. Fiz., 1987, vol. 92, no. 2, pp. 417–431. Baklanov, E.V. and Minogin, V.G., Scattering of the wavepacket of an atom by a resonance standing light wave, Zh. Eksp. Teor. Fiz., 1987, vol. 92, no. 2, pp. 417–431.
8.
Zurück zum Zitat Simula, T.P., Muradyan, A., and Molmer, K., Atomic diffraction in counter-propagating Gaussian pulses of laser light, Phys. Rev. A, 2007, vol. 76, no. 6, 063619.CrossRef Simula, T.P., Muradyan, A., and Molmer, K., Atomic diffraction in counter-propagating Gaussian pulses of laser light, Phys. Rev. A, 2007, vol. 76, no. 6, 063619.CrossRef
9.
Zurück zum Zitat Edwards, M., Benton, B., Heward, J., and Clark, C.W., Momentum-space engineering of gaseous Bose–Einstein condensates, Phys. Rev. A, 2010, vol. 82, no. 6, 063613.CrossRef Edwards, M., Benton, B., Heward, J., and Clark, C.W., Momentum-space engineering of gaseous Bose–Einstein condensates, Phys. Rev. A, 2010, vol. 82, no. 6, 063613.CrossRef
10.
Zurück zum Zitat Cassidy, M.C., Soshier. M.G., and Harrell, L.E., Improved optical standing-wave beam splitters for dilute Bose–Einstein condensates, J. Appl. Phys., 2021, vol. 130, no. 19, 194002.CrossRef Cassidy, M.C., Soshier. M.G., and Harrell, L.E., Improved optical standing-wave beam splitters for dilute Bose–Einstein condensates, J. Appl. Phys., 2021, vol. 130, no. 19, 194002.CrossRef
11.
Zurück zum Zitat Gould, P.L., Ruff, G.A., and Pritchard, D.E., Diffraction of atoms by light: The near-resonant Kapitza–Dirac effect, Phys. Rev. Lett., 1986, vol. 56, no. 8, pp. 827–830.CrossRef Gould, P.L., Ruff, G.A., and Pritchard, D.E., Diffraction of atoms by light: The near-resonant Kapitza–Dirac effect, Phys. Rev. Lett., 1986, vol. 56, no. 8, pp. 827–830.CrossRef
12.
Zurück zum Zitat Martin, P.J., Oldaker, B.G., Miklich, H., and Pritchard, D.E., Bragg scattering of atoms from a standing light wave, Phys. Rev. Lett., 1988, vol. 60, no. 6, pp. 515–518.CrossRef Martin, P.J., Oldaker, B.G., Miklich, H., and Pritchard, D.E., Bragg scattering of atoms from a standing light wave, Phys. Rev. Lett., 1988, vol. 60, no. 6, pp. 515–518.CrossRef
13.
Zurück zum Zitat Huckans, J.H., Spielman, I.B., Tolra, B.L., Phillips, W.D., and Porto, J.V., Quantum and classical dynamics of a BEC in a large-period optical lattice, Phys. Rev. A, 2009, vol. 80, no. 4, 043609.CrossRef Huckans, J.H., Spielman, I.B., Tolra, B.L., Phillips, W.D., and Porto, J.V., Quantum and classical dynamics of a BEC in a large-period optical lattice, Phys. Rev. A, 2009, vol. 80, no. 4, 043609.CrossRef
14.
Zurück zum Zitat Xiong, W., Yue, X., Wang, Z., Zhou, X., and Chen, X., Manipulating the momentum state of a condensate by sequence of standing wave pulses, Phys. Rev. A, 2011, vol. 84, no. 4, 043616.CrossRef Xiong, W., Yue, X., Wang, Z., Zhou, X., and Chen, X., Manipulating the momentum state of a condensate by sequence of standing wave pulses, Phys. Rev. A, 2011, vol. 84, no. 4, 043616.CrossRef
15.
Zurück zum Zitat Reeves, J., Krinner, L., Stewart, M., Pazmino, A., and Schneble, D., Nonadiabatic Diffraction of matter waves, Phys. Rev. A, 2015, vol. 92, no. 2, 023628.CrossRef Reeves, J., Krinner, L., Stewart, M., Pazmino, A., and Schneble, D., Nonadiabatic Diffraction of matter waves, Phys. Rev. A, 2015, vol. 92, no. 2, 023628.CrossRef
16.
Zurück zum Zitat Adams, C.S., Sigel, M., and Mlynek, J., Atom Optics, Phys. Rep., 1994, vol. 240, no. 3, pp. 143–210.CrossRef Adams, C.S., Sigel, M., and Mlynek, J., Atom Optics, Phys. Rep., 1994, vol. 240, no. 3, pp. 143–210.CrossRef
17.
Zurück zum Zitat Cronin, A.D., Schmiedmayer, J., and Pritchard, D.E., Optics and interferometry with atoms and molecules, Rev. Mod. Phys., 2009, vol. 81, no. 3, pp. 1051–1129.CrossRef Cronin, A.D., Schmiedmayer, J., and Pritchard, D.E., Optics and interferometry with atoms and molecules, Rev. Mod. Phys., 2009, vol. 81, no. 3, pp. 1051–1129.CrossRef
18.
Zurück zum Zitat Schmidt-Keller, F., Pfau, T, Schmelcher, P., and Schleich, W., Focus on atom optics and its applications, New J. Phys., vol. 12, no. 6, 065014. Schmidt-Keller, F., Pfau, T, Schmelcher, P., and Schleich, W., Focus on atom optics and its applications, New J. Phys., vol. 12, no. 6, 065014.
19.
Zurück zum Zitat Muradyan, A.Zh., Muradyan, G.A., and Berman, P.R., Theory of a compound large-angle atom beam splitter. II. Initial state deflection, Phys. Rev. A, 2004, vol. 70, no. 6, 065601.CrossRef Muradyan, A.Zh., Muradyan, G.A., and Berman, P.R., Theory of a compound large-angle atom beam splitter. II. Initial state deflection, Phys. Rev. A, 2004, vol. 70, no. 6, 065601.CrossRef
20.
Zurück zum Zitat Hogan, J.M., Johnson, D.M.S., and Kasevich, M.A., Light-pulse atom interferometry, arXiv:0806.3261, 2008. Hogan, J.M., Johnson, D.M.S., and Kasevich, M.A., Light-pulse atom interferometry, arXiv:0806.3261, 2008.
21.
Zurück zum Zitat Bongs, K., Holynski, M., Vovrosh, J., Bouyer, P., Condon G., Rasel, E., Schubert, C., Schleich, W.P., and Roura, A., Taking atom interferometric quantum sensors from the laboratory to real-world applications, 2019, Nat. Rev. Phys., vol. 1, no. 12, pp. 731–739.CrossRef Bongs, K., Holynski, M., Vovrosh, J., Bouyer, P., Condon G., Rasel, E., Schubert, C., Schleich, W.P., and Roura, A., Taking atom interferometric quantum sensors from the laboratory to real-world applications, 2019, Nat. Rev. Phys., vol. 1, no. 12, pp. 731–739.CrossRef
22.
Zurück zum Zitat Klein, W.R. and Cook, B.D., Unified approach to ultrasonic light diffraction, IEEE Trans. Sonics Ultrason, 1967, vol. 14, no.3, pp. 123–134.CrossRef Klein, W.R. and Cook, B.D., Unified approach to ultrasonic light diffraction, IEEE Trans. Sonics Ultrason, 1967, vol. 14, no.3, pp. 123–134.CrossRef
23.
Zurück zum Zitat Macke, B., Nutation optique dans une onde atationaire, Opt. Commun., 1979, vol. 28, no. 1, pp. 131–136.CrossRef Macke, B., Nutation optique dans une onde atationaire, Opt. Commun., 1979, vol. 28, no. 1, pp. 131–136.CrossRef
24.
Zurück zum Zitat Anderson, B.P. and Kasevich, M.A., Macroscopic quantum interference from atomic tunnel arrays, 1998, Science, vol. 282, no. 5394, pp. 1686–1689.CrossRef Anderson, B.P. and Kasevich, M.A., Macroscopic quantum interference from atomic tunnel arrays, 1998, Science, vol. 282, no. 5394, pp. 1686–1689.CrossRef
25.
Zurück zum Zitat Chen, H., Xiong, D., Wang, P., and Zhang, J., Pulse loading 87Rb Bose–Einstein condensation in optical lattice: The Kapitza–Dirac scattering and temporal matter-wave-dispersion Talbot effect, Chin. Opt. Lett., 2010, vol. 8, no. 4, pp. 348–350.CrossRef Chen, H., Xiong, D., Wang, P., and Zhang, J., Pulse loading 87Rb Bose–Einstein condensation in optical lattice: The Kapitza–Dirac scattering and temporal matter-wave-dispersion Talbot effect, Chin. Opt. Lett., 2010, vol. 8, no. 4, pp. 348–350.CrossRef
26.
Zurück zum Zitat Pelle, B, Hilico, A., Tackmann, G., Beaufils, Q., and Pereira dos Santos, F., State-labeling Winner–Stark atomic interferometers, 2013, Phys. Rev. A, vol. 87, no. 2, 023601.CrossRef Pelle, B, Hilico, A., Tackmann, G., Beaufils, Q., and Pereira dos Santos, F., State-labeling Winner–Stark atomic interferometers, 2013, Phys. Rev. A, vol. 87, no. 2, 023601.CrossRef
27.
Zurück zum Zitat Chapman, M.S., Ekstrom, C.R., Hammond, T.D., Schmiedmayer, J., Tannian, B.E., Wehinger, S., and Pritchard, D.E., Near-field imaging of atom diffraction gratings: The atomic Talbot effect, 1995, Phys. Rev. A, vol. 51, no. 1, pp. R14–R17.CrossRef Chapman, M.S., Ekstrom, C.R., Hammond, T.D., Schmiedmayer, J., Tannian, B.E., Wehinger, S., and Pritchard, D.E., Near-field imaging of atom diffraction gratings: The atomic Talbot effect, 1995, Phys. Rev. A, vol. 51, no. 1, pp. R14–R17.CrossRef
Metadaten
Titel
Far Resonance Kapitza-Dirac Diffraction: from Raman-Nath to Bragg and Multiple Beam Atomic Interferometer
verfasst von
Atom Zh. Muradyan
Publikationsdatum
01.12.2023
Verlag
Pleiades Publishing
Erschienen in
Optical Memory and Neural Networks / Ausgabe Sonderheft 3/2023
Print ISSN: 1060-992X
Elektronische ISSN: 1934-7898
DOI
https://doi.org/10.3103/S1060992X23070159

Weitere Artikel der Sonderheft 3/2023

Optical Memory and Neural Networks 3/2023 Zur Ausgabe

Premium Partner