Skip to main content
Erschienen in: Wireless Personal Communications 1/2021

27.08.2020

Filtering Super-Resolution Scan Conversion of Medical Ultrasound Frames

verfasst von: Dipannita Ghosh, Amish Kumar, Palash Ghosal, Amritendu Mukherjee, Debashis Nandi

Erschienen in: Wireless Personal Communications | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we consider a challenging problem of reconstruction of high resolution (HR) B-mode ultrasound (US) image by proposing a novel multi-frame based super-resolution (SR) scan conversion framework. This new framework of SR scan conversion reconstructs an improved HR frame by using the scan data of several low resolution (LR) frames. It also unifies the speckle reduction and HR scan conversion in such a way that it has become a single operation to generate a super-resolved image with lesser loss of information. We evaluated the performance of the proposed model on synthetic images, ultrasound simulated (by Field II software) images and real ultrasound image dataset and the comparison is performed against some of the publicly available state-of-the-art ultrasound image enhancement techniques. Significant improvement in image quality has been achieved due to utilization of non-redundant information present in the scan data of the LR frames. We demonstrate the improvement of the proposed technique through the computation of perceptual and quantitative quality metrics, such as, SSIM, PSNR etc. over the recent competing methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Li, Y., & Zagzebski, J. A. (2000). Computer model for harmonic ultrasound imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency control, 47(5), 1259–1272.CrossRef Li, Y., & Zagzebski, J. A. (2000). Computer model for harmonic ultrasound imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency control, 47(5), 1259–1272.CrossRef
2.
Zurück zum Zitat Nandi, D., Mukhopadhyay, S., Ghosh, D., & Chakroborty, B. (2018). A novel framework of speckle reducing scan conversion in ultrasound imaging systems. IETE Technical Review, 35(6), 618–630.CrossRef Nandi, D., Mukhopadhyay, S., Ghosh, D., & Chakroborty, B. (2018). A novel framework of speckle reducing scan conversion in ultrasound imaging systems. IETE Technical Review, 35(6), 618–630.CrossRef
3.
Zurück zum Zitat Li, X., Hu, Y., Gao, X., Tao, D., & Ning, B. (2010). A multi-frame image super-resolution method. Signal Processing, 90(2), 405–414.MATHCrossRef Li, X., Hu, Y., Gao, X., Tao, D., & Ning, B. (2010). A multi-frame image super-resolution method. Signal Processing, 90(2), 405–414.MATHCrossRef
4.
Zurück zum Zitat Lertrattanapanich, S., & Bose, N. K. (2002). High resolution image formation from low resolution frames using Delaunay triangulation. IEEE Transactions on Image Processing, 11(12), 1427–1441.MathSciNetCrossRef Lertrattanapanich, S., & Bose, N. K. (2002). High resolution image formation from low resolution frames using Delaunay triangulation. IEEE Transactions on Image Processing, 11(12), 1427–1441.MathSciNetCrossRef
5.
Zurück zum Zitat Clement, G. T., Huttunen, J., & Hynynen, K. (2005). Superresolution ultrasound imaging using back-projected reconstruction. The Journal of the Acoustical Society of America, 118(6), 3953–3960.CrossRef Clement, G. T., Huttunen, J., & Hynynen, K. (2005). Superresolution ultrasound imaging using back-projected reconstruction. The Journal of the Acoustical Society of America, 118(6), 3953–3960.CrossRef
6.
Zurück zum Zitat Christensen-Jeffries, K., Browning, R. J., Tang, M. X., Dunsby, C., & Eckersley, R. J. (2014). In vivo acoustic super-resolution and super-resolved velocity mapping using microbubbles. IEEE Transactions on Medical Imaging, 34(2), 433–440.CrossRef Christensen-Jeffries, K., Browning, R. J., Tang, M. X., Dunsby, C., & Eckersley, R. J. (2014). In vivo acoustic super-resolution and super-resolved velocity mapping using microbubbles. IEEE Transactions on Medical Imaging, 34(2), 433–440.CrossRef
7.
Zurück zum Zitat Bar-Zion, A., Tremblay-Darveau, C., Solomon, O., Adam, D., & Eldar, Y. C. (2016). Fast vascular ultrasound imaging with enhanced spatial resolution and background rejection. IEEE Transactions on Medical Imaging, 36(1), 169–180.CrossRef Bar-Zion, A., Tremblay-Darveau, C., Solomon, O., Adam, D., & Eldar, Y. C. (2016). Fast vascular ultrasound imaging with enhanced spatial resolution and background rejection. IEEE Transactions on Medical Imaging, 36(1), 169–180.CrossRef
8.
Zurück zum Zitat Taxt, T., & Jirik, R. (2004). Superresolution of ultrasound images using the first and second harmonic signal. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency control, 51(2), 163–175.CrossRef Taxt, T., & Jirik, R. (2004). Superresolution of ultrasound images using the first and second harmonic signal. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency control, 51(2), 163–175.CrossRef
9.
Zurück zum Zitat Goldberg, B. B., Liu, J. B., & Forsberg, F. (1994). Ultrasound contrast agents: a review. Ultrasound in Medicine & Biology, 20(4), 319–333.CrossRef Goldberg, B. B., Liu, J. B., & Forsberg, F. (1994). Ultrasound contrast agents: a review. Ultrasound in Medicine & Biology, 20(4), 319–333.CrossRef
10.
Zurück zum Zitat Jang, H. J., Lim, H. K., Lee, W. J., Kim, S. H., Kim, K. A., & Kim, E. Y. (2000). Ultrasonographic evaluation of focal hepatic lesions: comparison of pulse inversion harmonic, tissue harmonic, and conventional imaging techniques. Journal of Ultrasound in Medicine, 19(5), 293–299.CrossRef Jang, H. J., Lim, H. K., Lee, W. J., Kim, S. H., Kim, K. A., & Kim, E. Y. (2000). Ultrasonographic evaluation of focal hepatic lesions: comparison of pulse inversion harmonic, tissue harmonic, and conventional imaging techniques. Journal of Ultrasound in Medicine, 19(5), 293–299.CrossRef
11.
Zurück zum Zitat Christensen-Jeffries, K., Harput, S., Brown, J., Wells, P. N., Aljabar, P., Dunsby, C., et al. (2017). Microbubble axial localization errors in ultrasound super-resolution imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency control, 64(11), 1644–1654.CrossRef Christensen-Jeffries, K., Harput, S., Brown, J., Wells, P. N., Aljabar, P., Dunsby, C., et al. (2017). Microbubble axial localization errors in ultrasound super-resolution imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency control, 64(11), 1644–1654.CrossRef
12.
Zurück zum Zitat Morin, R., Basarab, A., Ploquin, M., & Kouamé, D. (2012). Post-processing multiple-frame super-resolution in ultrasound imaging. In Medical imaging 2012: Ultrasonic imaging, tomography, and therapy (vol. 8320, p. 83201G). International Society for Optics and Photonics. Morin, R., Basarab, A., Ploquin, M., & Kouamé, D. (2012). Post-processing multiple-frame super-resolution in ultrasound imaging. In Medical imaging 2012: Ultrasonic imaging, tomography, and therapy (vol. 8320, p. 83201G). International Society for Optics and Photonics.
13.
Zurück zum Zitat Stark, H., & Oskoui, P. (1989). High-resolution image recovery from image-plane arrays, using convex projections. JOSA A, 6(11), 1715–1726.CrossRef Stark, H., & Oskoui, P. (1989). High-resolution image recovery from image-plane arrays, using convex projections. JOSA A, 6(11), 1715–1726.CrossRef
14.
Zurück zum Zitat Irani, M., & Peleg, S. (1991). Improving resolution by image registration. CVGIP: Graphical Models and Image Processing, 53(3), 231–239. Irani, M., & Peleg, S. (1991). Improving resolution by image registration. CVGIP: Graphical Models and Image Processing, 53(3), 231–239.
15.
Zurück zum Zitat Papoulis, A. (1975). A new algorithm in spectral analysis and band-limited extrapolation. IEEE Transactions on Circuits and Systems, 22(9), 735–742.MathSciNetCrossRef Papoulis, A. (1975). A new algorithm in spectral analysis and band-limited extrapolation. IEEE Transactions on Circuits and Systems, 22(9), 735–742.MathSciNetCrossRef
16.
Zurück zum Zitat Nandi, D., Karmakar, J., Kumar, A., & Mandal, M. K. (2019). Sparse representation based multi-frame image super-resolution reconstruction using adaptive weighted features. IET Image Processing, 13(4), 663–672.CrossRef Nandi, D., Karmakar, J., Kumar, A., & Mandal, M. K. (2019). Sparse representation based multi-frame image super-resolution reconstruction using adaptive weighted features. IET Image Processing, 13(4), 663–672.CrossRef
17.
Zurück zum Zitat Hong, M. C., Kang, M. G., & Katsaggelos, A. K. (1997). Regularized multichannel restoration approach for globally optimal high-resolution video sequence. In Visual communications and image processing’97 (Vol. 3024, pp. 1306–1316). International Society for Optics and Photonics. Hong, M. C., Kang, M. G., & Katsaggelos, A. K. (1997). Regularized multichannel restoration approach for globally optimal high-resolution video sequence. In Visual communications and image processing’97 (Vol. 3024, pp. 1306–1316). International Society for Optics and Photonics.
18.
Zurück zum Zitat Elad, M., & Feuer, A. (1999). Superresolution restoration of an image sequence: adaptive filtering approach. IEEE Transactions on Image Processing, 8(3), 387–395.CrossRef Elad, M., & Feuer, A. (1999). Superresolution restoration of an image sequence: adaptive filtering approach. IEEE Transactions on Image Processing, 8(3), 387–395.CrossRef
19.
Zurück zum Zitat Duhamel, P., & Maitre, H. (1999). Multi-channel high resolution blind image restoration. In 1999 IEEE international conference on acoustics, speech, and signal processing. proceedings. icassp99 (Cat. No. 99CH36258) (vol. 6, pp. 3229–3232). IEEE. Duhamel, P., & Maitre, H. (1999). Multi-channel high resolution blind image restoration. In 1999 IEEE international conference on acoustics, speech, and signal processing. proceedings. icassp99 (Cat. No. 99CH36258) (vol. 6, pp. 3229–3232). IEEE.
20.
Zurück zum Zitat Rajan, D., & Chaudhuri, S. (2002). Generation of super-resolution images from blurred observations using an MRF model. Journal of Mathematical Imaging and Vision, 16(1), 5–15.MathSciNetMATHCrossRef Rajan, D., & Chaudhuri, S. (2002). Generation of super-resolution images from blurred observations using an MRF model. Journal of Mathematical Imaging and Vision, 16(1), 5–15.MathSciNetMATHCrossRef
21.
Zurück zum Zitat Tsai, R. Y. (1989). Multiple frame image restoration and registration. Advances in Computer Vision and Image Processing, 1, 1715–1989. Tsai, R. Y. (1989). Multiple frame image restoration and registration. Advances in Computer Vision and Image Processing, 1, 1715–1989.
22.
Zurück zum Zitat Dai, Y., Wang, B., & Liu, D. (2009). A fast and robust super resolution method for intima reconstruction in medical ultrasound. In 2009 3rd International conference on bioinformatics and biomedical engineering (pp. 1–4). IEEE. Dai, Y., Wang, B., & Liu, D. (2009). A fast and robust super resolution method for intima reconstruction in medical ultrasound. In 2009 3rd International conference on bioinformatics and biomedical engineering (pp. 1–4). IEEE.
23.
Zurück zum Zitat Cardona, H. D. V., López-Lopera, A. F., Orozco, Á. A., Álvarez, M. A., Tamames, J. A. H., & Malpica, N. (2015). Gaussian processes for slice-based super-resolution MR images. In International symposium on visual computing (pp. 692–701). Springer, Cham. Cardona, H. D. V., López-Lopera, A. F., Orozco, Á. A., Álvarez, M. A., Tamames, J. A. H., & Malpica, N. (2015). Gaussian processes for slice-based super-resolution MR images. In International symposium on visual computing (pp. 692–701). Springer, Cham.
24.
Zurück zum Zitat Hiremath, P. S., Akkasaligar, P. T., & Badiger, S. (2013). Speckle noise reduction in medical ultrasound images. Intechopen: In Advancements and breakthroughs in ultrasound imaging. Hiremath, P. S., Akkasaligar, P. T., & Badiger, S. (2013). Speckle noise reduction in medical ultrasound images. Intechopen: In Advancements and breakthroughs in ultrasound imaging.
25.
Zurück zum Zitat Prabusankarlal, K. M., Manavalan, R., & Sivaranjani, R. (2018). An optimized non-local means filter using automated clustering based preclassification through gap statistics for speckle reduction in breast ultrasound images. Applied Computing and Informatics, 14(1), 48–54.CrossRef Prabusankarlal, K. M., Manavalan, R., & Sivaranjani, R. (2018). An optimized non-local means filter using automated clustering based preclassification through gap statistics for speckle reduction in breast ultrasound images. Applied Computing and Informatics, 14(1), 48–54.CrossRef
26.
Zurück zum Zitat Lee, J. S. (1980). Digital image enhancement and noise filtering by use of local statistics. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2, 165–168.CrossRef Lee, J. S. (1980). Digital image enhancement and noise filtering by use of local statistics. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2, 165–168.CrossRef
27.
Zurück zum Zitat Loupas, T., McDicken, W. N., & Allan, P. L. (1989). An adaptive weighted median filter for speckle suppression in medical ultrasonic images. IEEE Transactions on Circuits and Systems, 36(1), 129–135.CrossRef Loupas, T., McDicken, W. N., & Allan, P. L. (1989). An adaptive weighted median filter for speckle suppression in medical ultrasonic images. IEEE Transactions on Circuits and Systems, 36(1), 129–135.CrossRef
28.
Zurück zum Zitat Perona, P., & Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7), 629–639.CrossRef Perona, P., & Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7), 629–639.CrossRef
29.
Zurück zum Zitat Behar, V., Adam, D., & Friedman, Z. (2003). A new method of spatial compounding imaging. Ultrasonics, 41(5), 377–384.CrossRef Behar, V., Adam, D., & Friedman, Z. (2003). A new method of spatial compounding imaging. Ultrasonics, 41(5), 377–384.CrossRef
30.
Zurück zum Zitat Chang, J. H., Kim, H. H., Lee, J., & Shung, K. K. (2010). Frequency compounded imaging with a high-frequency dual element transducer. Ultrasonics, 50(4–5), 453–457.CrossRef Chang, J. H., Kim, H. H., Lee, J., & Shung, K. K. (2010). Frequency compounded imaging with a high-frequency dual element transducer. Ultrasonics, 50(4–5), 453–457.CrossRef
31.
Zurück zum Zitat Li, P. C., & Chen, M. J. (2002). Strain compounding: a new approach for speckle reduction. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency control, 49(1), 39–46.CrossRef Li, P. C., & Chen, M. J. (2002). Strain compounding: a new approach for speckle reduction. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency control, 49(1), 39–46.CrossRef
32.
Zurück zum Zitat Ullah, H., Amir, M., Haq, I. U., Khan, S. U., Rahim, M. K. A., & Khan, K. B. (2018). Wavelet based de-noising using logarithmic shrinkage function. Wireless Personal Communications, 98(1), 1473–1488.CrossRef Ullah, H., Amir, M., Haq, I. U., Khan, S. U., Rahim, M. K. A., & Khan, K. B. (2018). Wavelet based de-noising using logarithmic shrinkage function. Wireless Personal Communications, 98(1), 1473–1488.CrossRef
33.
Zurück zum Zitat Buades, A., Coll, B., & Morel, J. M. (2005). A non-local algorithm for image denoising. In 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05) (Vol. 2, pp. 60–65). IEEE. Buades, A., Coll, B., & Morel, J. M. (2005). A non-local algorithm for image denoising. In 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05) (Vol. 2, pp. 60–65). IEEE.
34.
Zurück zum Zitat Coupé, P., Hellier, P., Kervrann, C., & Barillot, C. (2009). Nonlocal means-based speckle filtering for ultrasound images. IEEE Transactions on Image Processing, 18(10), 2221–2229.MathSciNetMATHCrossRef Coupé, P., Hellier, P., Kervrann, C., & Barillot, C. (2009). Nonlocal means-based speckle filtering for ultrasound images. IEEE Transactions on Image Processing, 18(10), 2221–2229.MathSciNetMATHCrossRef
35.
Zurück zum Zitat Rudin, L. I., & Osher, S. (1994). Total variation based image restoration with free local constraints. In Proceedings of 1st international conference on image processing (Vol. 1, pp. 31–35). IEEE. Rudin, L. I., & Osher, S. (1994). Total variation based image restoration with free local constraints. In Proceedings of 1st international conference on image processing (Vol. 1, pp. 31–35). IEEE.
36.
Zurück zum Zitat Chinnathambi, V., Sankaralingam, E., Thangaraj, V., & Padma, S. (2018). Despeckling of ultrasound images using directionally decimated wavelet packets with adaptive clustering. IET Image Processing, 13(1), 206–215.CrossRef Chinnathambi, V., Sankaralingam, E., Thangaraj, V., & Padma, S. (2018). Despeckling of ultrasound images using directionally decimated wavelet packets with adaptive clustering. IET Image Processing, 13(1), 206–215.CrossRef
37.
Zurück zum Zitat Rawat, N., Singh, M., & Singh, B. (2019). Wavelet and total variation based method using adaptive regularization for speckle noise reduction in ultrasound images. Wireless Personal Communications, 106(3), 1547–1572.CrossRef Rawat, N., Singh, M., & Singh, B. (2019). Wavelet and total variation based method using adaptive regularization for speckle noise reduction in ultrasound images. Wireless Personal Communications, 106(3), 1547–1572.CrossRef
38.
Zurück zum Zitat Gungor, M. A., & Karagoz, I. (2015). The homogeneity map method for speckle reduction in diagnostic ultrasound images. Measurement, 68, 100–110.CrossRef Gungor, M. A., & Karagoz, I. (2015). The homogeneity map method for speckle reduction in diagnostic ultrasound images. Measurement, 68, 100–110.CrossRef
39.
Zurück zum Zitat Wang, S., Huang, T. Z., Zhao, X. L., Mei, J. J., & Huang, J. (2018). Speckle noise removal in ultrasound images by first-and second-order total variation. Numerical Algorithms, 78(2), 513–533.MathSciNetMATHCrossRef Wang, S., Huang, T. Z., Zhao, X. L., Mei, J. J., & Huang, J. (2018). Speckle noise removal in ultrasound images by first-and second-order total variation. Numerical Algorithms, 78(2), 513–533.MathSciNetMATHCrossRef
40.
Zurück zum Zitat Tom, B. C., Katsaggelos, A. K., & Galatsanos, N. P. (1994). Reconstruction of a high resolution image from registration and restoration of low resolution images. In Proceedings of 1st international conference on image processing (vol. 3, pp. 553–557). IEEE. Tom, B. C., Katsaggelos, A. K., & Galatsanos, N. P. (1994). Reconstruction of a high resolution image from registration and restoration of low resolution images. In Proceedings of 1st international conference on image processing (vol. 3, pp. 553–557). IEEE.
41.
Zurück zum Zitat Tom, B. C., & Katsaggelos, A. K. (1995). Reconstruction of a high-resolution image by simultaneous registration, restoration, and interpolation of low-resolution images. In Proceedings., international conference on image processing (vol. 2, pp. 539–542). IEEE. Tom, B. C., & Katsaggelos, A. K. (1995). Reconstruction of a high-resolution image by simultaneous registration, restoration, and interpolation of low-resolution images. In Proceedings., international conference on image processing (vol. 2, pp. 539–542). IEEE.
42.
Zurück zum Zitat Nandi, D., & Mukhopadhyay, S. (2011). Super-resolution on data acquired in polar format. International Journal of Computational Intelligence and Healthcare Informatics, 4(2), 63–73. Nandi, D., & Mukhopadhyay, S. (2011). Super-resolution on data acquired in polar format. International Journal of Computational Intelligence and Healthcare Informatics, 4(2), 63–73.
43.
Zurück zum Zitat Vandewalle, P., Süsstrunk, S., & Vetterli, M. (2006). A frequency domain approach to registration of aliased images with application to super-resolution. EURASIP Journal on Advances in Signal Processing, 2006(1), 071459.CrossRef Vandewalle, P., Süsstrunk, S., & Vetterli, M. (2006). A frequency domain approach to registration of aliased images with application to super-resolution. EURASIP Journal on Advances in Signal Processing, 2006(1), 071459.CrossRef
44.
Zurück zum Zitat Alkinani, M. H., & El-Sakka, M. R. (2017). Patch-based models and algorithms for image denoising: a comparative review between patch-based images denoising methods for additive noise reduction. EURASIP Journal on Image and Video Processing, 2017(1), 1–27.CrossRef Alkinani, M. H., & El-Sakka, M. R. (2017). Patch-based models and algorithms for image denoising: a comparative review between patch-based images denoising methods for additive noise reduction. EURASIP Journal on Image and Video Processing, 2017(1), 1–27.CrossRef
45.
Zurück zum Zitat Smith, J. A. (Ed.). (2010). Abdominal Ultrasound E-Book: How, Why and When. Amsterdam: Elsevier. Smith, J. A. (Ed.). (2010). Abdominal Ultrasound E-Book: How, Why and When. Amsterdam: Elsevier.
46.
Zurück zum Zitat Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612.CrossRef Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612.CrossRef
47.
Zurück zum Zitat Biswas, R., Sarawadekar, K., Varna, S., & Banerjee, S. (2015). An FPGA-based architecture of DSC-SRI units specially for motion blind ultrasound systems. Journal of Real-Time Image Processing, 10(3), 573–595.CrossRef Biswas, R., Sarawadekar, K., Varna, S., & Banerjee, S. (2015). An FPGA-based architecture of DSC-SRI units specially for motion blind ultrasound systems. Journal of Real-Time Image Processing, 10(3), 573–595.CrossRef
Metadaten
Titel
Filtering Super-Resolution Scan Conversion of Medical Ultrasound Frames
verfasst von
Dipannita Ghosh
Amish Kumar
Palash Ghosal
Amritendu Mukherjee
Debashis Nandi
Publikationsdatum
27.08.2020
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 1/2021
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07744-x

Weitere Artikel der Ausgabe 1/2021

Wireless Personal Communications 1/2021 Zur Ausgabe

Neuer Inhalt