Skip to main content
Erschienen in: Neural Computing and Applications 12/2021

12.11.2020 | Original Article

Flexible data representation with graph convolution for semi-supervised learning

verfasst von: Fadi Dornaika

Erschienen in: Neural Computing and Applications | Ausgabe 12/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper introduces a scheme for semi-supervised data representation. It proposes a flexible nonlinear embedding model that imitates the principle of spectral graph convolutions. Structured data are exploited in order to determine nonlinear and linear models. The introduced scheme takes advantage of data graphs at two different levels. First, it incorporates manifold regularization that is naturally encoded by the graph itself. Second, the regression model is built on the convolved data samples that are obtained by the joint use of the data and their associated graph. The proposed semi-supervised embedding can tackle challenges related to over-fitting in image data spaces. The proposed graph convolution-based semi-supervised embedding paves the way to new theoretical and application perspectives related to the nonlinear embedding. Indeed, building flexible models that adopt convolved data samples can enhance both the data representation and the final performance of the learning system. Several experiments are conducted on six image datasets for comparing the introduced scheme with many state-of-art semi-supervised approaches. These experimental results show the effectiveness of the introduced data representation scheme.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Belkin M, Niyogi P, Sindhwani V (2006) Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J Mach Learn Res 7:2399–2434MathSciNetMATH Belkin M, Niyogi P, Sindhwani V (2006) Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J Mach Learn Res 7:2399–2434MathSciNetMATH
2.
Zurück zum Zitat Belkin M, Niyogi P (2001) Laplacian eigenmaps and spectral techniques for embedding and clustering. Adv Neural Inform Process Syst 14:585–591 Belkin M, Niyogi P (2001) Laplacian eigenmaps and spectral techniques for embedding and clustering. Adv Neural Inform Process Syst 14:585–591
3.
Zurück zum Zitat Cai D, He X, Han J (2007) Semi-supervised discriminant analysis. In: IEEE international conference on computer vision, pp 1–7 Cai D, He X, Han J (2007) Semi-supervised discriminant analysis. In: IEEE international conference on computer vision, pp 1–7
4.
Zurück zum Zitat Dornaika F, El Traboulsi Y (2016) Learning flexible graph-based semi-supervised embedding. IEEE Trans Cybern 46(1):206–218CrossRef Dornaika F, El Traboulsi Y (2016) Learning flexible graph-based semi-supervised embedding. IEEE Trans Cybern 46(1):206–218CrossRef
5.
Zurück zum Zitat Dornaika F, Traboulsi YE (2017) Matrix exponential based semi-supervised discriminant embedding. Pattern Recognit 61:92–103CrossRef Dornaika F, Traboulsi YE (2017) Matrix exponential based semi-supervised discriminant embedding. Pattern Recognit 61:92–103CrossRef
6.
Zurück zum Zitat Dornaika F, Traboulsi YE (2019) Joint sparse graph and flexible embedding for graph-based semi-supervised learning. Neural Netw 114:91–95CrossRef Dornaika F, Traboulsi YE (2019) Joint sparse graph and flexible embedding for graph-based semi-supervised learning. Neural Netw 114:91–95CrossRef
7.
Zurück zum Zitat Dornaika F, Kejani M, Bosaghzadeh A (2017) Graph construction using adaptive local hybrid coding scheme. Neural Netw 95:91–101CrossRef Dornaika F, Kejani M, Bosaghzadeh A (2017) Graph construction using adaptive local hybrid coding scheme. Neural Netw 95:91–101CrossRef
8.
Zurück zum Zitat El Traboulsi Y, Dornaika F, Assoum A (2015) Kernel flexible manifold embedding for pattern classification. Neurocomputing 167:517–527CrossRef El Traboulsi Y, Dornaika F, Assoum A (2015) Kernel flexible manifold embedding for pattern classification. Neurocomputing 167:517–527CrossRef
9.
Zurück zum Zitat Fang X, Xu Y, Li X, Lai Z, Wong WK (2015) Learning a nonnegative sparse graph for linear regression Fang X, Xu Y, Li X, Lai Z, Wong WK (2015) Learning a nonnegative sparse graph for linear regression
10.
Zurück zum Zitat Franceschi L, Niepert M, Pontil M, He X (2019) Learning discrete structures for graph neural networks. In: International conference on machine learning, pp 1972–1982 Franceschi L, Niepert M, Pontil M, He X (2019) Learning discrete structures for graph neural networks. In: International conference on machine learning, pp 1972–1982
11.
Zurück zum Zitat Hamilton ZYW, Leskovec J (2017) Inductive representation learning on large graphs. In: Advances in neural information processing systems, pp 1024–1034 Hamilton ZYW, Leskovec J (2017) Inductive representation learning on large graphs. In: Advances in neural information processing systems, pp 1024–1034
12.
Zurück zum Zitat Hou C, Nie F, Li X, Yi D, Wu Y (2014) Joint embedding learning and sparse regression: a framework for unsupervised feature selection. IEEE Trans Cybern 44(6):793–804CrossRef Hou C, Nie F, Li X, Yi D, Wu Y (2014) Joint embedding learning and sparse regression: a framework for unsupervised feature selection. IEEE Trans Cybern 44(6):793–804CrossRef
13.
Zurück zum Zitat Huang H, Liu J, Pan Y (2012) Semi-supervised marginal fisher analysis for hyperspectral image classification. ISPRS Ann Photogramm Remote Sens Spatial Inform Sci 3:377–382CrossRef Huang H, Liu J, Pan Y (2012) Semi-supervised marginal fisher analysis for hyperspectral image classification. ISPRS Ann Photogramm Remote Sens Spatial Inform Sci 3:377–382CrossRef
14.
Zurück zum Zitat Kar P, Li S, Narasimhan H, Chawla S, Sebastiani F (2016)Online optimization methods for the quantification problem. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining Kar P, Li S, Narasimhan H, Chawla S, Sebastiani F (2016)Online optimization methods for the quantification problem. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining
15.
Zurück zum Zitat Kejani MT, Dornaika F, Talebi H (2020) Graph convolution networks with manifold regularization for semi-supervised learning. Neural Netw 127:160–167CrossRef Kejani MT, Dornaika F, Talebi H (2020) Graph convolution networks with manifold regularization for semi-supervised learning. Neural Netw 127:160–167CrossRef
16.
Zurück zum Zitat Kipf TN, Welling M (2017) Semi-supervised classification with graph convolutional networks. In: International conference on learning representations Kipf TN, Welling M (2017) Semi-supervised classification with graph convolutional networks. In: International conference on learning representations
17.
Zurück zum Zitat Klicpera ABJ, Gunnemann S (2019) Predict then propagate: graph neural networks meet personalized pagerank. In: International conference on learning representations Klicpera ABJ, Gunnemann S (2019) Predict then propagate: graph neural networks meet personalized pagerank. In: International conference on learning representations
18.
Zurück zum Zitat Korda N, Szorenyi, B, Li S (2016) Distributed clustering of linear bandits in peer to peer networks. In: International conference on machine learning Korda N, Szorenyi, B, Li S (2016) Distributed clustering of linear bandits in peer to peer networks. In: International conference on machine learning
19.
Zurück zum Zitat Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105
20.
Zurück zum Zitat Lazebnik S, Schmid C, Ponce J (2006) Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: IEEE conference on computer vision and pattern recognition, pp 2169–2178 Lazebnik S, Schmid C, Ponce J (2006) Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: IEEE conference on computer vision and pattern recognition, pp 2169–2178
21.
Zurück zum Zitat LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324CrossRef LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324CrossRef
22.
Zurück zum Zitat Li LJ, Li FF (2007) What, where and who? Classifying events by scene and object recognition. In: IEEE international conference on computer vision, pp 1–8 Li LJ, Li FF (2007) What, where and who? Classifying events by scene and object recognition. In: IEEE international conference on computer vision, pp 1–8
23.
Zurück zum Zitat Liang Y, You L, Lu X, He Z, Wang H (2018) Low-rank projection learning via graph embedding. Neurocomputing 348:97–106CrossRef Liang Y, You L, Lu X, He Z, Wang H (2018) Low-rank projection learning via graph embedding. Neurocomputing 348:97–106CrossRef
26.
Zurück zum Zitat Liu W, Wang J, Chang S-F (2012) Graph-based semi-supervised learning. Proc IEEE 100(9):2624–2638CrossRef Liu W, Wang J, Chang S-F (2012) Graph-based semi-supervised learning. Proc IEEE 100(9):2624–2638CrossRef
27.
Zurück zum Zitat Liu W, Chang S-F (2009) Robust multi-class transductive learning with graphs. In: IEEE conference on computer vision and pattern recognition, 2009. CVPR 2009, pp 381–388. IEEE Liu W, Chang S-F (2009) Robust multi-class transductive learning with graphs. In: IEEE conference on computer vision and pattern recognition, 2009. CVPR 2009, pp 381–388. IEEE
28.
Zurück zum Zitat Mahadik K, Wu Q, Li S, Sabne A (2020) Fast distributed bandits for online recommendation systems Mahadik K, Wu Q, Li S, Sabne A (2020) Fast distributed bandits for online recommendation systems
29.
Zurück zum Zitat Nene SA, Nayar S, Murase H (1996) Columbia object image library (COIL-20). In: Technical report CUCS-005-96 Nene SA, Nayar S, Murase H (1996) Columbia object image library (COIL-20). In: Technical report CUCS-005-96
30.
Zurück zum Zitat Nie F, Xu D, Tsang IW-H, Zhang C (2010) Flexible manifold embedding: a framework for semi-supervised and unsupervised dimension reduction. IEEE Trans Image Process 19(7):1921–1932MathSciNetCrossRef Nie F, Xu D, Tsang IW-H, Zhang C (2010) Flexible manifold embedding: a framework for semi-supervised and unsupervised dimension reduction. IEEE Trans Image Process 19(7):1921–1932MathSciNetCrossRef
31.
Zurück zum Zitat Nie F, Wang Z, Wang R, Li X (2020) Submanifold-preserving discriminant analysis with an auto-optimized graph. IEEE Trans Cybern 50(8):3682–3695CrossRef Nie F, Wang Z, Wang R, Li X (2020) Submanifold-preserving discriminant analysis with an auto-optimized graph. IEEE Trans Cybern 50(8):3682–3695CrossRef
32.
Zurück zum Zitat Nie F, Cai G, Li X (2017) Multi-view clustering and semi-supervised classification with adaptive neighbours. In: Thirty-first AAAI conference on artificial intelligence, pp 1501–1511 Nie F, Cai G, Li X (2017) Multi-view clustering and semi-supervised classification with adaptive neighbours. In: Thirty-first AAAI conference on artificial intelligence, pp 1501–1511
33.
Zurück zum Zitat Nie F, Dong F, Li X (2020) Unsupervised and semisupervised projection with graph optimization. In: IEEE transactions on neural networks and learning systems Nie F, Dong F, Li X (2020) Unsupervised and semisupervised projection with graph optimization. In: IEEE transactions on neural networks and learning systems
34.
Zurück zum Zitat Ojala T, Pietikäinen M, Harwood D (1996) A comparative study of texture measures with classification based on featured distributions. Pattern Recognit 29(1):51–59CrossRef Ojala T, Pietikäinen M, Harwood D (1996) A comparative study of texture measures with classification based on featured distributions. Pattern Recognit 29(1):51–59CrossRef
35.
Zurück zum Zitat Qiao L, Chen S, Tan X (2010) Sparsity preserving discriminant analysis for single training image face recognition. Pattern Recognit Lett 31(5):422–429CrossRef Qiao L, Chen S, Tan X (2010) Sparsity preserving discriminant analysis for single training image face recognition. Pattern Recognit Lett 31(5):422–429CrossRef
36.
Zurück zum Zitat Qu M, Bengio Y, Tang J (2019) GMNN: graph Markov neural networks. In: International conference on machine learning, pp 5241–5250 Qu M, Bengio Y, Tang J (2019) GMNN: graph Markov neural networks. In: International conference on machine learning, pp 5241–5250
37.
Zurück zum Zitat Raducanu B, Dornaika F (2012) A supervised non-linear dimensionality reduction approach for manifold learning. Pattern Recognit 45(6):2432–2444CrossRef Raducanu B, Dornaika F (2012) A supervised non-linear dimensionality reduction approach for manifold learning. Pattern Recognit 45(6):2432–2444CrossRef
38.
Zurück zum Zitat Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326CrossRef Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326CrossRef
39.
Zurück zum Zitat Tenenbaum JB, De Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290(5500):2319–2323CrossRef Tenenbaum JB, De Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290(5500):2319–2323CrossRef
40.
Zurück zum Zitat Velickovic WL H P L YB P, Fedus W, Hjelm RD (2019) Deep graph infomax. In: International conference on learning representations Velickovic WL H P L YB P, Fedus W, Hjelm RD (2019) Deep graph infomax. In: International conference on learning representations
41.
Zurück zum Zitat Wan M, Li M, Yang G, Gai S, Jin Z (2014) Feature extraction using two-dimensional maximum embedding difference. Inf Sci 274:55–69CrossRef Wan M, Li M, Yang G, Gai S, Jin Z (2014) Feature extraction using two-dimensional maximum embedding difference. Inf Sci 274:55–69CrossRef
42.
Zurück zum Zitat Wan M, Lai Z, Yang G, Yang Z, Zhang F, Zheng H (2017) Local graph embedding based on maximum margin criterion via fuzzy set. Fuzzy Sets Syst 318:120–131MathSciNetCrossRef Wan M, Lai Z, Yang G, Yang Z, Zhang F, Zheng H (2017) Local graph embedding based on maximum margin criterion via fuzzy set. Fuzzy Sets Syst 318:120–131MathSciNetCrossRef
43.
Zurück zum Zitat Wang F, Wang X, Zhang D, Zhang C, Li T (2009) Marginface: a novel face recognition method by average neighborhood margin maximization. Pattern Recognit 42(11):2863–2875CrossRef Wang F, Wang X, Zhang D, Zhang C, Li T (2009) Marginface: a novel face recognition method by average neighborhood margin maximization. Pattern Recognit 42(11):2863–2875CrossRef
44.
45.
Zurück zum Zitat Wen J, Xu Y, Liu H (2020) Incomplete multiview spectral clustering with adaptive graph learning. IEEE Trans Cybern 50(4):1418–1429CrossRef Wen J, Xu Y, Liu H (2020) Incomplete multiview spectral clustering with adaptive graph learning. IEEE Trans Cybern 50(4):1418–1429CrossRef
46.
Zurück zum Zitat Wu H, Prasad S (2018) Semi-supervised dimensionality reduction of hyperspectral imagery using pseudo-labels. Pattern Recognit 74:212–224CrossRef Wu H, Prasad S (2018) Semi-supervised dimensionality reduction of hyperspectral imagery using pseudo-labels. Pattern Recognit 74:212–224CrossRef
47.
Zurück zum Zitat Wu F, Souza A, Zhang T, Fifty C, Yu T, Weinberger K (2019) Simplifying graph convolutional networks. In: International conference on machine learning, pp 6861–6871 Wu F, Souza A, Zhang T, Fifty C, Yu T, Weinberger K (2019) Simplifying graph convolutional networks. In: International conference on machine learning, pp 6861–6871
48.
Zurück zum Zitat Yan S, Xu D, Zhang B, Zhang H, Yang Q, Lin S (2007) Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell 29(1):40–51CrossRef Yan S, Xu D, Zhang B, Zhang H, Yang Q, Lin S (2007) Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell 29(1):40–51CrossRef
49.
Zurück zum Zitat Yu G, Zhang G, Domeniconi C, Yu Z, You J (2012) Semi-supervised classification based on random subspace dimensionality reduction. Pattern Recognit 45(3):1119–1135CrossRef Yu G, Zhang G, Domeniconi C, Yu Z, You J (2012) Semi-supervised classification based on random subspace dimensionality reduction. Pattern Recognit 45(3):1119–1135CrossRef
50.
Zurück zum Zitat Yuan Y, Mou L, Lu X (2015) Scene recognition by manifold regularized deep learning architecture. IEEE Trans Neural Netw Learn Syst 26(10):2222–2233MathSciNetCrossRef Yuan Y, Mou L, Lu X (2015) Scene recognition by manifold regularized deep learning architecture. IEEE Trans Neural Netw Learn Syst 26(10):2222–2233MathSciNetCrossRef
51.
Zurück zum Zitat Zhang Z, Jia L, Zhao M, Ye Q, Zhang M, Wang M (2018) Adaptive non-negative projective semi-supervised learning for inductive classification. Neural Netw 108:128–145CrossRef Zhang Z, Jia L, Zhao M, Ye Q, Zhang M, Wang M (2018) Adaptive non-negative projective semi-supervised learning for inductive classification. Neural Netw 108:128–145CrossRef
52.
Zurück zum Zitat Zhao M, Zhang Y, Zhang Z, Liu J, Kong W (2019) Alg: Adaptive low-rank graph regularization for scalable semi-supervised and unsupervised learning. Neurocomputing 370:16–27CrossRef Zhao M, Zhang Y, Zhang Z, Liu J, Kong W (2019) Alg: Adaptive low-rank graph regularization for scalable semi-supervised and unsupervised learning. Neurocomputing 370:16–27CrossRef
53.
Zurück zum Zitat Zhu R, Dornaika F, Ruichek Y (2019) Joint graph based embedding and feature weighting for image classification. Pattern Recognit 93:458–469CrossRef Zhu R, Dornaika F, Ruichek Y (2019) Joint graph based embedding and feature weighting for image classification. Pattern Recognit 93:458–469CrossRef
54.
Zurück zum Zitat Zhu R, Dornaika F, Ruichek Y (2019) Learning a discriminant graph-based embedding with feature selection for image categorization. Neural Netw 111:35–46CrossRef Zhu R, Dornaika F, Ruichek Y (2019) Learning a discriminant graph-based embedding with feature selection for image categorization. Neural Netw 111:35–46CrossRef
55.
Zurück zum Zitat Zhu R, Dornaika F, Ruichek Y (2020) Semi-supervised elastic manifold embedding with deep learning architecture. Pattern Recognit 107:107425CrossRef Zhu R, Dornaika F, Ruichek Y (2020) Semi-supervised elastic manifold embedding with deep learning architecture. Pattern Recognit 107:107425CrossRef
56.
Zurück zum Zitat Zhu X, Ghahramani Z, Lafferty J et al (2003) Semi-supervised learning using Gaussian fields and harmonic functions, vol 3, pp 912–919 Zhu X, Ghahramani Z, Lafferty J et al (2003) Semi-supervised learning using Gaussian fields and harmonic functions, vol 3, pp 912–919
Metadaten
Titel
Flexible data representation with graph convolution for semi-supervised learning
verfasst von
Fadi Dornaika
Publikationsdatum
12.11.2020
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 12/2021
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-020-05462-w

Weitere Artikel der Ausgabe 12/2021

Neural Computing and Applications 12/2021 Zur Ausgabe

Premium Partner