Skip to main content
Erschienen in: Metal Science and Heat Treatment 5-6/2023

10.11.2023

Flow Stress Behavior and Governing Equation of Plastic Flow of Low-Carbon Steel at Elevated Temperatures

verfasst von: Z. Y. Wang, M. X. Ma, S. Zhong, S. Zhang, J. Feng, H. L. Wu, Yu. Cao

Erschienen in: Metal Science and Heat Treatment | Ausgabe 5-6/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of hot isothermal compression on the flow stress of low-carbon steel was studied using a Gleeble 3500 stimulator at temperatures from 900 to 1200°C and deformation rates from 0.01 to 10 sec– 1. The flow stress was analyzed at elevated temperatures using a hyperbolic sine function. The material constants were determined in the range of true deformation rates from 0.1 to 0.7. The dislocation structure of low-carbon steel was studied after the deformation at 1100°C and cooling at a rate of 5 K/sec. A governing equation for describing and simulating the low-carbon steel behavior under high-temperature deformation was derived and justified. It was shown that the obtained equation can be used to provide a reliable and valid description of the low-carbon steel behavior under hot forming with a mean relative error of 5.1219% and a correlation coefficient of 0.9886. The equation can be used to model and optimize the process parameters of hot deformation of steel and to predict the evolution of its microstructure.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. Jie, Y. X. Xu, J. X. Liu, et al., “Effect of strength and ductility on anti-penetration performance of low-carbon alloy steel against blunt-nosed cylindrical projectiles,” Mater. Sci. Eng. A, 682, 312 – 322 (2017).CrossRef R. Jie, Y. X. Xu, J. X. Liu, et al., “Effect of strength and ductility on anti-penetration performance of low-carbon alloy steel against blunt-nosed cylindrical projectiles,” Mater. Sci. Eng. A, 682, 312 – 322 (2017).CrossRef
2.
Zurück zum Zitat B. Eric, B. Régis, R. Sophie, and F. Pierre, “Experimental investigation of the thixoforging of tubes of low-carbon steel,” J. Mater. Process. Tech., 252, 485 – 497 (2018).CrossRef B. Eric, B. Régis, R. Sophie, and F. Pierre, “Experimental investigation of the thixoforging of tubes of low-carbon steel,” J. Mater. Process. Tech., 252, 485 – 497 (2018).CrossRef
3.
Zurück zum Zitat X. Li, T. F. Jing, M. M. Lu, and J. W. Zhang, “Microstructure and mechanical properties of ultrafine lath-shaped low carbon steel,” J. Mater. Eng. Perform., 21, 1496 – 1499 (2012).CrossRef X. Li, T. F. Jing, M. M. Lu, and J. W. Zhang, “Microstructure and mechanical properties of ultrafine lath-shaped low carbon steel,” J. Mater. Eng. Perform., 21, 1496 – 1499 (2012).CrossRef
4.
Zurück zum Zitat T. Nipon, C. M. Kan, and S. Chao, “Effects of carbon and nitrogen on the microstructure and mechanical properties of carbonitrided low-carbon steel,” J. Mater. Eng. Perform., 24, 4853 – 4862 (2015).CrossRef T. Nipon, C. M. Kan, and S. Chao, “Effects of carbon and nitrogen on the microstructure and mechanical properties of carbonitrided low-carbon steel,” J. Mater. Eng. Perform., 24, 4853 – 4862 (2015).CrossRef
5.
Zurück zum Zitat S. Vasanth, M. Bilal, A. Georges, and H. Ramsey, “Friction stir welding of low-carbon AISI 1006 steel: room and high-temperature mechanical properties,” J. Mater. Eng. Perform., 27, 1673 – 1684 (2018).CrossRef S. Vasanth, M. Bilal, A. Georges, and H. Ramsey, “Friction stir welding of low-carbon AISI 1006 steel: room and high-temperature mechanical properties,” J. Mater. Eng. Perform., 27, 1673 – 1684 (2018).CrossRef
6.
Zurück zum Zitat S. Paul, U. Ahmed, and G. Megahed, “Effect of hot rolling process on microstructure and properties of low-carbon al-killed steels produced through TSCR technology,” J. Mater. Eng. Perform., 20, 1163 – 1170 (2011).CrossRef S. Paul, U. Ahmed, and G. Megahed, “Effect of hot rolling process on microstructure and properties of low-carbon al-killed steels produced through TSCR technology,” J. Mater. Eng. Perform., 20, 1163 – 1170 (2011).CrossRef
7.
Zurück zum Zitat A. Deva, B. K. Jha, and N. S. Mishra, “Influence of boron on strain hardening behaviour and ductility of low carbon hot rolled steel,” Mater. Sci. Eng. A, 528, 7375 – 7380 (2011).CrossRef A. Deva, B. K. Jha, and N. S. Mishra, “Influence of boron on strain hardening behaviour and ductility of low carbon hot rolled steel,” Mater. Sci. Eng. A, 528, 7375 – 7380 (2011).CrossRef
8.
Zurück zum Zitat M. J. Kang, J. Y. Park, S. S. Sohn, et al., “Interpretation of quasistatic and dynamic tensile behavior by digital image correlation technique in Twinning Induced Plasticity (TWIP) and low-carbon steel sheets,” Mater. Sci. Eng. A, 693, 170 – 177 (2017).CrossRef M. J. Kang, J. Y. Park, S. S. Sohn, et al., “Interpretation of quasistatic and dynamic tensile behavior by digital image correlation technique in Twinning Induced Plasticity (TWIP) and low-carbon steel sheets,” Mater. Sci. Eng. A, 693, 170 – 177 (2017).CrossRef
9.
Zurück zum Zitat J. Hu, L. X. Du, J. J. Wang, et al., “Structure-mechanical property relationship in low carbon microalloyed steel plate processed using controlled rolling and two-stage continuous cooling,” Mater. Sci. Eng. A, 585, 197 – 204 (2013).CrossRef J. Hu, L. X. Du, J. J. Wang, et al., “Structure-mechanical property relationship in low carbon microalloyed steel plate processed using controlled rolling and two-stage continuous cooling,” Mater. Sci. Eng. A, 585, 197 – 204 (2013).CrossRef
10.
Zurück zum Zitat X. Li, T. F. Jing, M. M. Lu, et al., “Property of nano-grained delaminated low-carbon steel sheet,” J. Mater. Process. Tech., 27, 364 – 368 (2011). X. Li, T. F. Jing, M. M. Lu, et al., “Property of nano-grained delaminated low-carbon steel sheet,” J. Mater. Process. Tech., 27, 364 – 368 (2011).
11.
Zurück zum Zitat X. W. Yang and W. Y. Li, “Flow behavior and processing maps of a low-carbon steel during hot deformation,” Metall. Mater. Trans. A, 46(12), 6052 – 6064 (2015).CrossRef X. W. Yang and W. Y. Li, “Flow behavior and processing maps of a low-carbon steel during hot deformation,” Metall. Mater. Trans. A, 46(12), 6052 – 6064 (2015).CrossRef
12.
Zurück zum Zitat J. H. Kim, S. K. Kim, C. S. Lee, et al., “A constitutive equation for predicting the material nonlinear behavior of AISI 316L, 321, and 347 stainless steel under low-temperature conditions,” Int. J. Mech. Sci., 87, 218 – 225 (2014).CrossRef J. H. Kim, S. K. Kim, C. S. Lee, et al., “A constitutive equation for predicting the material nonlinear behavior of AISI 316L, 321, and 347 stainless steel under low-temperature conditions,” Int. J. Mech. Sci., 87, 218 – 225 (2014).CrossRef
13.
Zurück zum Zitat X. J. Gao, Z. Y. Jiang, D. B. Wei, et al., “Constitutive analysis for hot deformation behavior of novel bimetal consisting of pearlitic steel and low carbon steel,” Mater. Sci. Eng. A, 595, 1 – 9 (2014).CrossRef X. J. Gao, Z. Y. Jiang, D. B. Wei, et al., “Constitutive analysis for hot deformation behavior of novel bimetal consisting of pearlitic steel and low carbon steel,” Mater. Sci. Eng. A, 595, 1 – 9 (2014).CrossRef
14.
Zurück zum Zitat B. Vadavadagi, S. Shekhawat, I. Samajdar, and K. Narasimhan, “Forming limit curves in low-carbon steels: improved prediction by incorporating microstructural evolution,” Int. J. Adv. Manuf. Tech., 86, 1027 – 1036 (2016).CrossRef B. Vadavadagi, S. Shekhawat, I. Samajdar, and K. Narasimhan, “Forming limit curves in low-carbon steels: improved prediction by incorporating microstructural evolution,” Int. J. Adv. Manuf. Tech., 86, 1027 – 1036 (2016).CrossRef
15.
Zurück zum Zitat S. Siamak, “Modelling the warm rolling of a low carbon steel,” Mater. Sci. Eng. A, 371, 318 – 323 (2004).CrossRef S. Siamak, “Modelling the warm rolling of a low carbon steel,” Mater. Sci. Eng. A, 371, 318 – 323 (2004).CrossRef
16.
Zurück zum Zitat Y. Sun, K. Maciejewski, and H. Ghonem, “Simulation of viscoplastic deformation of low carbon steel structures at elevated temperatures,” J. Mater. Eng. Perform., 21, 1151 – 1159 (2012).CrossRef Y. Sun, K. Maciejewski, and H. Ghonem, “Simulation of viscoplastic deformation of low carbon steel structures at elevated temperatures,” J. Mater. Eng. Perform., 21, 1151 – 1159 (2012).CrossRef
17.
Zurück zum Zitat V. I. Gorynin, S. Yu. Kondratyev, and M. I. Olenin, “Raising the resistance of pearlitic and martensiticsteels to brittle fracture under thermal action on the morphologyof the carbide phase,” Met. Sci. Heat Treat., 55, 9 – 10, 533 – 539 (2014).CrossRef V. I. Gorynin, S. Yu. Kondratyev, and M. I. Olenin, “Raising the resistance of pearlitic and martensiticsteels to brittle fracture under thermal action on the morphologyof the carbide phase,” Met. Sci. Heat Treat., 55, 9 – 10, 533 – 539 (2014).CrossRef
18.
Zurück zum Zitat J. Wang, H. Xiao, H. B. Xie, et al., “Study on hot deformation behavior of carbon structural steel with flow stress,” Mater. Sci. Eng. A, 539, 294 – 300 (2012).CrossRef J. Wang, H. Xiao, H. B. Xie, et al., “Study on hot deformation behavior of carbon structural steel with flow stress,” Mater. Sci. Eng. A, 539, 294 – 300 (2012).CrossRef
19.
Zurück zum Zitat J. H. Chung, J. K. Park, T. H. Kim, et al., “Study of deformation- induced phase transformation in plain low carbon steel at low strain rate,” Mater. Sci. Eng. A, 527(20), 5072 – 5077 (2010).CrossRef J. H. Chung, J. K. Park, T. H. Kim, et al., “Study of deformation- induced phase transformation in plain low carbon steel at low strain rate,” Mater. Sci. Eng. A, 527(20), 5072 – 5077 (2010).CrossRef
20.
Zurück zum Zitat Y. C. Lin, M. S. Chen, and J. Zhong, “Numerical simulation for stress–strain distribution and microstructural evolution in 42CrMo steel during hot upsetting process,” Comp. Mater. Sci., 43, 1117 – 1122 (2008).CrossRef Y. C. Lin, M. S. Chen, and J. Zhong, “Numerical simulation for stress–strain distribution and microstructural evolution in 42CrMo steel during hot upsetting process,” Comp. Mater. Sci., 43, 1117 – 1122 (2008).CrossRef
21.
Zurück zum Zitat Y. Lin and M. S. Chen, “Study of microstructural evolution during static recrystallization in a low alloy steel,” J. Mater. Sci., 44, 835 – 842 (2009).CrossRef Y. Lin and M. S. Chen, “Study of microstructural evolution during static recrystallization in a low alloy steel,” J. Mater. Sci., 44, 835 – 842 (2009).CrossRef
22.
Zurück zum Zitat R. M. Su, Y. D. Qu, J. H. You, and R. D. Li, “Effect of pre-aging on stress corrosion cracking of spray-formed 7075 alloy in retrogression and re-aging,” J. Mater. Eng. Perform., 24, 4328 – 4332 (2015).CrossRef R. M. Su, Y. D. Qu, J. H. You, and R. D. Li, “Effect of pre-aging on stress corrosion cracking of spray-formed 7075 alloy in retrogression and re-aging,” J. Mater. Eng. Perform., 24, 4328 – 4332 (2015).CrossRef
23.
Zurück zum Zitat B. Chen, W. M. Zhou, S. Li, et al., “Hot compression deformation behavior and processing maps of Mg – Gd – Y – Zr alloy,” J. Mater. Eng. Perform., 22(9), 2458 – 2466 (2013).CrossRef B. Chen, W. M. Zhou, S. Li, et al., “Hot compression deformation behavior and processing maps of Mg – Gd – Y – Zr alloy,” J. Mater. Eng. Perform., 22(9), 2458 – 2466 (2013).CrossRef
24.
Zurück zum Zitat V. I. Gorynin, S. Yu. Kondrat’ev, M. I. Olenin, and V. V. Rogozhkin, “A Concept of carbide design of steels with improved cold resistance,” Met. Sci. Heat Treat., 56(9 – 10), 548 – 554 (2015). V. I. Gorynin, S. Yu. Kondrat’ev, M. I. Olenin, and V. V. Rogozhkin, “A Concept of carbide design of steels with improved cold resistance,” Met. Sci. Heat Treat., 56(9 – 10), 548 – 554 (2015).
25.
Zurück zum Zitat H. E. Hu, X. Y. Wang, and L. Deng, “Comparative study of hot-processing maps for 6061 aluminium alloy constructed from power constitutive equation and hyperbolic sine constitutive equation,” J. Mater. Process. Tech., 30(11), 1321 – 1327 (2014). H. E. Hu, X. Y. Wang, and L. Deng, “Comparative study of hot-processing maps for 6061 aluminium alloy constructed from power constitutive equation and hyperbolic sine constitutive equation,” J. Mater. Process. Tech., 30(11), 1321 – 1327 (2014).
26.
Zurück zum Zitat S. Wang, A. Nagao, P. Sofronis, and L. M. Robertson, “Hydrogen-modified dislocation structures in a cyclically deformed ferritic-pearlitic low carbon steel,” Acta Mater., 144, 164 – 176 (2018).CrossRef S. Wang, A. Nagao, P. Sofronis, and L. M. Robertson, “Hydrogen-modified dislocation structures in a cyclically deformed ferritic-pearlitic low carbon steel,” Acta Mater., 144, 164 – 176 (2018).CrossRef
27.
Zurück zum Zitat W. J. Li, M. Y. Cai, D. Wang, et al., “Studying on tempering transformation and internal friction for low carbon bainitic steel,” Mater. Sci. Eng. A, 679, 410 – 416 (2017).CrossRef W. J. Li, M. Y. Cai, D. Wang, et al., “Studying on tempering transformation and internal friction for low carbon bainitic steel,” Mater. Sci. Eng. A, 679, 410 – 416 (2017).CrossRef
28.
Zurück zum Zitat R. Feng, S. L. Li, Z. S. Li, and L. Tian, “Variations of microstructure and properties of 690 MPa grade low carbon bainitic steel after tempering,” Mater. Sci. Eng. A, 558, 205 – 210 (2012).CrossRef R. Feng, S. L. Li, Z. S. Li, and L. Tian, “Variations of microstructure and properties of 690 MPa grade low carbon bainitic steel after tempering,” Mater. Sci. Eng. A, 558, 205 – 210 (2012).CrossRef
29.
Zurück zum Zitat S. Sun, S.W. Yang, and G. L. Liu, “Evolution of microstructures of a low carbon bainitic steel held at high service temperature,” Acta Metall. Sin. (English Lett.), 27, 436 – 443 (2014).CrossRef S. Sun, S.W. Yang, and G. L. Liu, “Evolution of microstructures of a low carbon bainitic steel held at high service temperature,” Acta Metall. Sin. (English Lett.), 27, 436 – 443 (2014).CrossRef
Metadaten
Titel
Flow Stress Behavior and Governing Equation of Plastic Flow of Low-Carbon Steel at Elevated Temperatures
verfasst von
Z. Y. Wang
M. X. Ma
S. Zhong
S. Zhang
J. Feng
H. L. Wu
Yu. Cao
Publikationsdatum
10.11.2023
Verlag
Springer US
Erschienen in
Metal Science and Heat Treatment / Ausgabe 5-6/2023
Print ISSN: 0026-0673
Elektronische ISSN: 1573-8973
DOI
https://doi.org/10.1007/s11041-023-00939-6

Weitere Artikel der Ausgabe 5-6/2023

Metal Science and Heat Treatment 5-6/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.