Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 20/2021

22.09.2021

Flower-like CuO/NiO nanostructures decorated activated carbon nanofiber membranes for flexible, sensitive, and selective enzyme-free glucose detection

verfasst von: J. Saravanan, Mehboobali Pannipara, Abdullah G. Al-Sehemi, Sara Talebi, Vengadesh Periasamy, Syed Shaheen Shah, Md. Abdul Aziz, G. Gnana kumar

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 20/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The conversion of insulating polymeric membrane into conducting activated carbon nanofiber (ACF) membrane and the decoration of consequent fibers with flower-like CuO/NiO nanoarchitectures are accomplished, respectively, via the carbonization and electrodeposition processes. The glucose utilization efficacy of CuO/NiO/ACF is accelerated through the diffusion and adsorption of analyte into the nanofibers’ voids and stacked layers, respectively, of ACF and flower-like architectures. The conducting carbon web, binary metal oxide synergism, and porous architecture of CuO/NiO/ACF proliferate the considerable sensitivity (247 µA mM−1 cm−2), low sensing limit (146 nM), and wide linear range (0.00025–5 mM) on glucose sensing along with the real sample analysis. The concordant electrochemical glucose oxidation behavior realized at different bending angles exposes the flexibility of CuO/NiO/ACF. Thus, the free-standing, flexible, binder-less, recyclable, and cost-and time-effective features of CuO/NiO/ACF convenience the glucose detection, affording an innovative technological platform for the evolution of high performance and durable glucose sensors.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat J. Tsai, E.S. Ford, C. Li, G. Zhao, L.S. Balluz, Physical activity and optimal self-rated health of adults with and without diabetes. BMC Public Health 10, 365–373 (2010)CrossRef J. Tsai, E.S. Ford, C. Li, G. Zhao, L.S. Balluz, Physical activity and optimal self-rated health of adults with and without diabetes. BMC Public Health 10, 365–373 (2010)CrossRef
2.
Zurück zum Zitat C. Rivet, H. Lee, A. Hirsch, S. Hamilton, H. Lu, Microfluidics for medical diagnostics and biosensors. Chem. Eng. Sci. 66, 1490–1507 (2011)CrossRef C. Rivet, H. Lee, A. Hirsch, S. Hamilton, H. Lu, Microfluidics for medical diagnostics and biosensors. Chem. Eng. Sci. 66, 1490–1507 (2011)CrossRef
3.
Zurück zum Zitat S.A. Zaidi, J.H. Shin, Recent developments in nanostructures based elecrochemcial glucose sensors. Talanta 149, 30–42 (2016)CrossRef S.A. Zaidi, J.H. Shin, Recent developments in nanostructures based elecrochemcial glucose sensors. Talanta 149, 30–42 (2016)CrossRef
4.
Zurück zum Zitat G.G. Kumar, G. Amala, S.M. Gowtham, Recent advancements, key challenges and solutions in non-enzymatic electrochemical glucose sensors based on graphene platforms. RSC Adv. 7, 36949–36976 (2017)CrossRef G.G. Kumar, G. Amala, S.M. Gowtham, Recent advancements, key challenges and solutions in non-enzymatic electrochemical glucose sensors based on graphene platforms. RSC Adv. 7, 36949–36976 (2017)CrossRef
5.
Zurück zum Zitat P.P. Tomanin, P.V. Cherepanov, Q.A. Besford, A.J. Christofferson, A. Amodio, C.F. McConville, I. Yarovsky, F. Caruso, F. Cavalieri, Cobalt phosphate nanostructures for non-enzymatic glucose sensing at physiological pH. ACS Appl. Mater. Inter. 10, 42786–42795 (2018)CrossRef P.P. Tomanin, P.V. Cherepanov, Q.A. Besford, A.J. Christofferson, A. Amodio, C.F. McConville, I. Yarovsky, F. Caruso, F. Cavalieri, Cobalt phosphate nanostructures for non-enzymatic glucose sensing at physiological pH. ACS Appl. Mater. Inter. 10, 42786–42795 (2018)CrossRef
6.
Zurück zum Zitat L. Zhao, G. Wu, Z. Cai, T. Zhao, Q. Yao, X. Chen, Ultrasensitive non-enzymatic glucose sensing at near-neutral pH values via anodic stripping voltammetry using a glassy Carbon electrode modified with Pt3Pd nanoparticles and reduced graphene oxide. Microchim. Acta 182, 2055–2060 (2015)CrossRef L. Zhao, G. Wu, Z. Cai, T. Zhao, Q. Yao, X. Chen, Ultrasensitive non-enzymatic glucose sensing at near-neutral pH values via anodic stripping voltammetry using a glassy Carbon electrode modified with Pt3Pd nanoparticles and reduced graphene oxide. Microchim. Acta 182, 2055–2060 (2015)CrossRef
7.
Zurück zum Zitat X. Wang, Y. Zheng, J. Yuan, J. Shen, J. Hu, A.J. Wang, L. Wu, L. Niu, Three-dimensional NiCo layered double hydroxide nanosheets array on carbon cloth, facile preparation and its application in highly sensitive enzymeless glucose detection. Electrochim. Acta 224, 628–635 (2017)CrossRef X. Wang, Y. Zheng, J. Yuan, J. Shen, J. Hu, A.J. Wang, L. Wu, L. Niu, Three-dimensional NiCo layered double hydroxide nanosheets array on carbon cloth, facile preparation and its application in highly sensitive enzymeless glucose detection. Electrochim. Acta 224, 628–635 (2017)CrossRef
8.
Zurück zum Zitat G. Wang, X. He, L. Wang, A. Gu, Y. Huang, B. Fang, B. Geng, X. Zhang, Non-enzymatic electrochemical sensing of glucose. Microchim. Acta 180, 161–186 (2013)CrossRef G. Wang, X. He, L. Wang, A. Gu, Y. Huang, B. Fang, B. Geng, X. Zhang, Non-enzymatic electrochemical sensing of glucose. Microchim. Acta 180, 161–186 (2013)CrossRef
9.
Zurück zum Zitat Y. Bai, W. Yang, Y. Sun, C. Sun, Enzyme-free glucose sensor based on a three-dimensional gold film electrode. Sens. Actuators B Chem. 134, 471–476 (2008)CrossRef Y. Bai, W. Yang, Y. Sun, C. Sun, Enzyme-free glucose sensor based on a three-dimensional gold film electrode. Sens. Actuators B Chem. 134, 471–476 (2008)CrossRef
10.
Zurück zum Zitat J. Zhang, X. Xiao, Q. He, L. Huang, S. Li, F. Wang, A nonenzymatic glucose sensor based on a copper nanoparticle-zinc oxide nanorod array. Anal. Lett. 47, 1147–1161 (2014)CrossRef J. Zhang, X. Xiao, Q. He, L. Huang, S. Li, F. Wang, A nonenzymatic glucose sensor based on a copper nanoparticle-zinc oxide nanorod array. Anal. Lett. 47, 1147–1161 (2014)CrossRef
11.
Zurück zum Zitat T. Wang, Y. Yu, H. Tian, J. Hu, A novel non-enzymatic glucose sensor based on cobalt nanoparticles implantation-modified indium tin oxide electrode. Electroanalysis 26, 1–9 (2014)CrossRef T. Wang, Y. Yu, H. Tian, J. Hu, A novel non-enzymatic glucose sensor based on cobalt nanoparticles implantation-modified indium tin oxide electrode. Electroanalysis 26, 1–9 (2014)CrossRef
12.
Zurück zum Zitat Y.L.T. Ngo, L. Sui, W. Ahn, J.S. Chung, S.H. Hur, NiMnO4 spinel binary nanostructure decorated on three-dimensional reduced graphene oxide hydrogel for bifunctional materials for non-enzymatic glucose sensor. Nanoscale 9, 19318–19327 (2017)CrossRef Y.L.T. Ngo, L. Sui, W. Ahn, J.S. Chung, S.H. Hur, NiMnO4 spinel binary nanostructure decorated on three-dimensional reduced graphene oxide hydrogel for bifunctional materials for non-enzymatic glucose sensor. Nanoscale 9, 19318–19327 (2017)CrossRef
13.
Zurück zum Zitat J. Yang, W. Tan, C. Chen, Y. Tao, Y. Qin, Y. Kong, Nonenzymatic glucose sensing by CuO nanoparticles decorated nitrogen-doped graphene aerogel. Mater. Sci. Eng. C 78, 210–217 (2017)CrossRef J. Yang, W. Tan, C. Chen, Y. Tao, Y. Qin, Y. Kong, Nonenzymatic glucose sensing by CuO nanoparticles decorated nitrogen-doped graphene aerogel. Mater. Sci. Eng. C 78, 210–217 (2017)CrossRef
14.
Zurück zum Zitat M. Ma, W. Zhu, D. Zhao, Y. Ma, N. Hu, Y. Suo, J. Wang, Surface engineering of nickel selenide nanosheets array on nickel foam: an integrated anode for glucose sensing. Sens. Actuators B Chem. 278, 110-116[J] (2019)CrossRef M. Ma, W. Zhu, D. Zhao, Y. Ma, N. Hu, Y. Suo, J. Wang, Surface engineering of nickel selenide nanosheets array on nickel foam: an integrated anode for glucose sensing. Sens. Actuators B Chem. 278, 110-116[J] (2019)CrossRef
15.
Zurück zum Zitat M. Zhang, A. Halder, C. Hou, J. Ulstrup, Q. Chi, Free-standing and flexible graphene papers as disposable non-enzymatic electrochemical sensors. Bioelectrochemistry 109, 87–94 (2016)CrossRef M. Zhang, A. Halder, C. Hou, J. Ulstrup, Q. Chi, Free-standing and flexible graphene papers as disposable non-enzymatic electrochemical sensors. Bioelectrochemistry 109, 87–94 (2016)CrossRef
16.
Zurück zum Zitat A. Senthamizhan, B. Balusamy, T. Uyar, Glucose sensors based on electrospun nanofibers: a review. Anal. Bioanal. Chem. 408, 1285–1306 (2016)CrossRef A. Senthamizhan, B. Balusamy, T. Uyar, Glucose sensors based on electrospun nanofibers: a review. Anal. Bioanal. Chem. 408, 1285–1306 (2016)CrossRef
17.
Zurück zum Zitat D.W. Twang, S. Lee, M. Seo, T.D. Chung, Recent advances in electrochemical non-enzymatic glucose sensors—a review. Anal. Chim. Acta 1033, 1–34 (2018)CrossRef D.W. Twang, S. Lee, M. Seo, T.D. Chung, Recent advances in electrochemical non-enzymatic glucose sensors—a review. Anal. Chim. Acta 1033, 1–34 (2018)CrossRef
18.
Zurück zum Zitat K. Tian, M. Prestgard, A. Tiwari, A review of recent advances in nonenzymatic glucose sensors. Mater. Sci. Eng. 41, 100–118 (2018)CrossRef K. Tian, M. Prestgard, A. Tiwari, A review of recent advances in nonenzymatic glucose sensors. Mater. Sci. Eng. 41, 100–118 (2018)CrossRef
19.
Zurück zum Zitat Q. Bao, C.M. Li, L. Liao, H. Yang, W. Wang, C. Ke, Q. Song, H. Bao, T. Yu, K.P. Loh, J. Guo, Electrical transport and photovoltaic effects of core–shell CuO/C60 nanowire hetero structure. Nanotechnology 20, 065203–065210 (2009)CrossRef Q. Bao, C.M. Li, L. Liao, H. Yang, W. Wang, C. Ke, Q. Song, H. Bao, T. Yu, K.P. Loh, J. Guo, Electrical transport and photovoltaic effects of core–shell CuO/C60 nanowire hetero structure. Nanotechnology 20, 065203–065210 (2009)CrossRef
20.
Zurück zum Zitat Y. Zhong, T. Shi, Z. Liu, S. Cheng, Y. Huang, X. Taol, G. Liao, Z. Tang, Ultrasensitive non-enzymatic glucose sensors based on different copper oxide nanostructures by in-situ growth. Sens. Actuators B Chem. 236, 326–333 (2016)CrossRef Y. Zhong, T. Shi, Z. Liu, S. Cheng, Y. Huang, X. Taol, G. Liao, Z. Tang, Ultrasensitive non-enzymatic glucose sensors based on different copper oxide nanostructures by in-situ growth. Sens. Actuators B Chem. 236, 326–333 (2016)CrossRef
21.
Zurück zum Zitat P. Thongbai, T. Yamwong, S. Maensiri, Correlation between giant dielectric response and electrical conductivity of CuO ceramic. Solid State Commun. 147, 385–387 (2008)CrossRef P. Thongbai, T. Yamwong, S. Maensiri, Correlation between giant dielectric response and electrical conductivity of CuO ceramic. Solid State Commun. 147, 385–387 (2008)CrossRef
22.
Zurück zum Zitat Y.B. Zhang, J. Yin, L. Li, L.X. Zhang, L.J. Bie, Enhanced ethanol gas-sensing properties of flower-like p-CuO/n-ZnO heterojunction nanorods. Sens. Actuators B Chem. 202, 500–507 (2014)CrossRef Y.B. Zhang, J. Yin, L. Li, L.X. Zhang, L.J. Bie, Enhanced ethanol gas-sensing properties of flower-like p-CuO/n-ZnO heterojunction nanorods. Sens. Actuators B Chem. 202, 500–507 (2014)CrossRef
23.
Zurück zum Zitat T.R. Kumar, K.J. Babu, D.J. Yoo, A.R. Kim, G.G. Kumar, Binder free and free-standing electrospun membrane architecture for sensitive and selective non-enzymatic glucose sensors. RSC Adv. 5, 41457–41467 (2015)CrossRef T.R. Kumar, K.J. Babu, D.J. Yoo, A.R. Kim, G.G. Kumar, Binder free and free-standing electrospun membrane architecture for sensitive and selective non-enzymatic glucose sensors. RSC Adv. 5, 41457–41467 (2015)CrossRef
24.
Zurück zum Zitat J. Zhang, X. Zhu, H. Dong, X. Zhang, W. Wang, Z. Chen, In situ growth cupric oxide nanoparticles on carbon nanofibers for sensitive non enzymatic sensing of glucose. Electrochim. Acta 105, 433–438 (2013)CrossRef J. Zhang, X. Zhu, H. Dong, X. Zhang, W. Wang, Z. Chen, In situ growth cupric oxide nanoparticles on carbon nanofibers for sensitive non enzymatic sensing of glucose. Electrochim. Acta 105, 433–438 (2013)CrossRef
25.
Zurück zum Zitat Y. Zhong, T. Shi, Z. Liu, S. Cheng, Y. Huang, X. Tao, G. Liao, Z. Tang, Ultrasensitive non-enzymatic glucose sensors based on different copper oxide nanostructures by in-situ growth. Sens. Actuators B Chem. 236, 326–333 (2016)CrossRef Y. Zhong, T. Shi, Z. Liu, S. Cheng, Y. Huang, X. Tao, G. Liao, Z. Tang, Ultrasensitive non-enzymatic glucose sensors based on different copper oxide nanostructures by in-situ growth. Sens. Actuators B Chem. 236, 326–333 (2016)CrossRef
26.
Zurück zum Zitat S.M. Saufi, A.F. Ismail, Development and characterization of polyacrylonitrile (PAN) based carbon hollow fiber membrane. Membr. Sci. Technol. 24, 843–854 (2002) S.M. Saufi, A.F. Ismail, Development and characterization of polyacrylonitrile (PAN) based carbon hollow fiber membrane. Membr. Sci. Technol. 24, 843–854 (2002)
27.
Zurück zum Zitat B. Zhang, Y. Yu, Z.L. Xu, S. Abouali, M. Akbari, Y.B. He, F. Kang, J.K. Kim, Correlation between atomic structure and electrochemical performance of anodes made from electrospun carbon nanofiber films. Adv. Energy Mater. 4, 1301448–1301456 (2013)CrossRef B. Zhang, Y. Yu, Z.L. Xu, S. Abouali, M. Akbari, Y.B. He, F. Kang, J.K. Kim, Correlation between atomic structure and electrochemical performance of anodes made from electrospun carbon nanofiber films. Adv. Energy Mater. 4, 1301448–1301456 (2013)CrossRef
28.
Zurück zum Zitat M. Figiela, M. Wysokowski, M. Galinski, T. Jesionowski, I. Stepniak, Synthesis and characterization of novel copper oxide-chitosan nanocomposites for non-enzymatic glucose sensing. Sens. Actuators B Chem. 272, 296–307 (2018)CrossRef M. Figiela, M. Wysokowski, M. Galinski, T. Jesionowski, I. Stepniak, Synthesis and characterization of novel copper oxide-chitosan nanocomposites for non-enzymatic glucose sensing. Sens. Actuators B Chem. 272, 296–307 (2018)CrossRef
29.
Zurück zum Zitat S.K. Shinde, D.P. Dubal, G.S. Ghodake, V.J. Fulari, Hierarchical 3D-flower-like CuO nanosructure on copper foil for supercapacitors. RSC Adv. 5, 1–19 (2015)CrossRef S.K. Shinde, D.P. Dubal, G.S. Ghodake, V.J. Fulari, Hierarchical 3D-flower-like CuO nanosructure on copper foil for supercapacitors. RSC Adv. 5, 1–19 (2015)CrossRef
30.
Zurück zum Zitat P. Tamilarasan, S. Ramaprabhu, Graphene based all-solid-state supercapacitors with ionic liquid incorporated polyacrylonitrile electrolyte. Energy 51, 374–381 (2013)CrossRef P. Tamilarasan, S. Ramaprabhu, Graphene based all-solid-state supercapacitors with ionic liquid incorporated polyacrylonitrile electrolyte. Energy 51, 374–381 (2013)CrossRef
31.
Zurück zum Zitat Y. Huang, F. Cui, Y. Zhao, J. Lian, J. Bao, H. Li, Controlled growth of ultrathin NiMoO4 nanosheets on carbon nanofiber membrane as advanced electrodes for asymmetric supercapacitors. J. Alloys Compd. 753, 176–185 (2018)CrossRef Y. Huang, F. Cui, Y. Zhao, J. Lian, J. Bao, H. Li, Controlled growth of ultrathin NiMoO4 nanosheets on carbon nanofiber membrane as advanced electrodes for asymmetric supercapacitors. J. Alloys Compd. 753, 176–185 (2018)CrossRef
32.
Zurück zum Zitat X. Duan, H. Huang, S. Xiao, J. Deng, G. Zhou, Q. Li, T. Wang, 3D herarchical CuO mesocrystals from ionic liquid precursor: towards better electrochemical performance for Li-ion Batteries. J. Mater. Chem. A 4, 8402–8411 (2016)CrossRef X. Duan, H. Huang, S. Xiao, J. Deng, G. Zhou, Q. Li, T. Wang, 3D herarchical CuO mesocrystals from ionic liquid precursor: towards better electrochemical performance for Li-ion Batteries. J. Mater. Chem. A 4, 8402–8411 (2016)CrossRef
33.
Zurück zum Zitat C. Dong, X. Xiao, G. Chen, H. Guan, Y. Wang, I. Djerdj, Porous NiO nanosheets self-grown on alumina tube using a novel flash synthesis and their gas sensing properties. RSC Adv. 5, 4880–4885 (2015)CrossRef C. Dong, X. Xiao, G. Chen, H. Guan, Y. Wang, I. Djerdj, Porous NiO nanosheets self-grown on alumina tube using a novel flash synthesis and their gas sensing properties. RSC Adv. 5, 4880–4885 (2015)CrossRef
34.
Zurück zum Zitat R. Zhao, Y. Wang, X. Li, B. Sun, Y. Li, H. Ji, J. Qiu, C. Wang, Surface activated hydrothermal carbon-coated electrospun PAN fiber membrane with enhanced adsorption properties for herbicide. ACS Sustain. Chem. Eng. 4, 2584–2592 (2016)CrossRef R. Zhao, Y. Wang, X. Li, B. Sun, Y. Li, H. Ji, J. Qiu, C. Wang, Surface activated hydrothermal carbon-coated electrospun PAN fiber membrane with enhanced adsorption properties for herbicide. ACS Sustain. Chem. Eng. 4, 2584–2592 (2016)CrossRef
35.
Zurück zum Zitat J.H. Zhou, Z.J. Sui, J. Zhu, P. Li, D. Chen, Y.C. Dai, W.K. Yuan, Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR. Carbon 45, 785–796 (2007)CrossRef J.H. Zhou, Z.J. Sui, J. Zhu, P. Li, D. Chen, Y.C. Dai, W.K. Yuan, Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR. Carbon 45, 785–796 (2007)CrossRef
36.
Zurück zum Zitat G.H. Tsai, P.H. Fei, C.M. Lin, S.L. Shiu, CuO and CuO/Graphene nanostructured thin films as counter electrodes for Pt-Free dye-sensitized solar cells. Coatings 8, 21–33 (2018)CrossRef G.H. Tsai, P.H. Fei, C.M. Lin, S.L. Shiu, CuO and CuO/Graphene nanostructured thin films as counter electrodes for Pt-Free dye-sensitized solar cells. Coatings 8, 21–33 (2018)CrossRef
37.
Zurück zum Zitat J. Saravanan, R. Ramasamy, H.A. Therese, G. Amala, G.G. Kumar, Electrospun CuO/NiO composite nanofibers for sensitive and selective non-enzymatic nitrite sensors. New J. Chem. 41, 14766–14771 (2017)CrossRef J. Saravanan, R. Ramasamy, H.A. Therese, G. Amala, G.G. Kumar, Electrospun CuO/NiO composite nanofibers for sensitive and selective non-enzymatic nitrite sensors. New J. Chem. 41, 14766–14771 (2017)CrossRef
38.
Zurück zum Zitat Y. Wang, F. Qu, J. Liu, Y. Wang, J. Zhou, S. Ruan, Enhanced H2S sensing characteristics of CuO-NiO core-shell microspheres sensors. Sens. Actuators B Chem. 209, 515–523 (2015)CrossRef Y. Wang, F. Qu, J. Liu, Y. Wang, J. Zhou, S. Ruan, Enhanced H2S sensing characteristics of CuO-NiO core-shell microspheres sensors. Sens. Actuators B Chem. 209, 515–523 (2015)CrossRef
39.
Zurück zum Zitat E.A.D.S. Filho, E.F. Pieretti, R.T. Bento, M.F. Pillis, Effect of nitrogen-doping on the surface chemistry and corrosion stability of TiO2 films. J. Mater. Res. Technol. 9(1)), 922–934 (2020)CrossRef E.A.D.S. Filho, E.F. Pieretti, R.T. Bento, M.F. Pillis, Effect of nitrogen-doping on the surface chemistry and corrosion stability of TiO2 films. J. Mater. Res. Technol. 9(1)), 922–934 (2020)CrossRef
40.
Zurück zum Zitat S. Zhu, J. Lei, Y. Qin, L. Zhang, L. Lu, Spinal oxide CoFe2O4 grown on Ni foam as an efficient electrocatalyst for oxygen evolution reaction. RSC Adv. 9, 13269–13274 (2019)CrossRef S. Zhu, J. Lei, Y. Qin, L. Zhang, L. Lu, Spinal oxide CoFe2O4 grown on Ni foam as an efficient electrocatalyst for oxygen evolution reaction. RSC Adv. 9, 13269–13274 (2019)CrossRef
41.
Zurück zum Zitat D.P. Dubal, G.S. Gund, R. Holze, H.S. Jadhav, C.D. Lokhande, C.J. Park, Surfactant-assisted morphological tuning of hierarchical CuO thin films for electrochemical supercapacitors. Dalton Trans. 42, 6459–6467 (2013)CrossRef D.P. Dubal, G.S. Gund, R. Holze, H.S. Jadhav, C.D. Lokhande, C.J. Park, Surfactant-assisted morphological tuning of hierarchical CuO thin films for electrochemical supercapacitors. Dalton Trans. 42, 6459–6467 (2013)CrossRef
42.
Zurück zum Zitat Z. Qiu, H. Gong, G. Zheng, S. Yuan, H. Zhang, X. Zhu, H. Zhou, B. Cao, Enhanced physical properties of pulsed laser deposited NiO films via annealing and lithium doping for improving perovskite solar cell efficiency. J. Mater. Chem. C 5, 7084–7094 (2017)CrossRef Z. Qiu, H. Gong, G. Zheng, S. Yuan, H. Zhang, X. Zhu, H. Zhou, B. Cao, Enhanced physical properties of pulsed laser deposited NiO films via annealing and lithium doping for improving perovskite solar cell efficiency. J. Mater. Chem. C 5, 7084–7094 (2017)CrossRef
43.
Zurück zum Zitat E. Mirzael, J. Ai, M. Sorouri, H. Ghanbari, J. Verdi, R.F. Majidi, Functionalization of PAN based electrospun carbon nanofibers by acid oxidation: study of structural, electrical and mechanical properties. Fuller. Nanotubes Carbon Nanostruct. 3, 1–30 (2015) E. Mirzael, J. Ai, M. Sorouri, H. Ghanbari, J. Verdi, R.F. Majidi, Functionalization of PAN based electrospun carbon nanofibers by acid oxidation: study of structural, electrical and mechanical properties. Fuller. Nanotubes Carbon Nanostruct. 3, 1–30 (2015)
44.
Zurück zum Zitat Y. Hou, S. Cui, Z. Wen, X. Guo, X. Feng, J. Chen, Strongly coupled 3D hybrids of N-doped porous carbon nanosheet/CoNi alloy-encapsulated carbon nanotubes for enhanced Electrocatalysis. Small 11, 5940–5948 (2015)CrossRef Y. Hou, S. Cui, Z. Wen, X. Guo, X. Feng, J. Chen, Strongly coupled 3D hybrids of N-doped porous carbon nanosheet/CoNi alloy-encapsulated carbon nanotubes for enhanced Electrocatalysis. Small 11, 5940–5948 (2015)CrossRef
45.
Zurück zum Zitat Y. Chen, H. Zhang, H. Xue, X. Hu, G. Wang, C. Wang, Construction of a non-enzymatic glucose sensor based on copolymer P4VP-co-PAN and Fe2O3 nanoparticles. Mater. Sci. Eng. 35, 420–425 (2014)CrossRef Y. Chen, H. Zhang, H. Xue, X. Hu, G. Wang, C. Wang, Construction of a non-enzymatic glucose sensor based on copolymer P4VP-co-PAN and Fe2O3 nanoparticles. Mater. Sci. Eng. 35, 420–425 (2014)CrossRef
46.
Zurück zum Zitat Z. Sun, Y. Jiang, L. Zeng, X. Zhang, S. Hu, L. Huang, Controllable local electronic migration induced charge separation and red-shift emission in carbon nitride for enhanced photocatalysis and potential phototherapy. Chem. Commun. 55, 6002–6005 (2019)CrossRef Z. Sun, Y. Jiang, L. Zeng, X. Zhang, S. Hu, L. Huang, Controllable local electronic migration induced charge separation and red-shift emission in carbon nitride for enhanced photocatalysis and potential phototherapy. Chem. Commun. 55, 6002–6005 (2019)CrossRef
47.
Zurück zum Zitat D. Geng, S. Yang, Y. Zhang, J. Yang, J. Liu, R. Li, T.K. Sham, X. Sun, S. Ye, S. Knights, Nitrogen doping effects on the structure of graphene. Appl. Surf. Sci. 257, 9193–9198 (2011)CrossRef D. Geng, S. Yang, Y. Zhang, J. Yang, J. Liu, R. Li, T.K. Sham, X. Sun, S. Ye, S. Knights, Nitrogen doping effects on the structure of graphene. Appl. Surf. Sci. 257, 9193–9198 (2011)CrossRef
48.
Zurück zum Zitat Q. Wang, Y. Ma, X. Jiang, N. Yang, Y. Coffinier, H. Belkhalfa, N. Dokhane, M. Li, R. Boukherroub, S. Szunerits, Electrophoretic deposition of carbon nanofibers/Co(OH)2 nanocomposites: application for non-enzymatic glucose sensing. Elecroanalysis 28, 119–125 (2016)CrossRef Q. Wang, Y. Ma, X. Jiang, N. Yang, Y. Coffinier, H. Belkhalfa, N. Dokhane, M. Li, R. Boukherroub, S. Szunerits, Electrophoretic deposition of carbon nanofibers/Co(OH)2 nanocomposites: application for non-enzymatic glucose sensing. Elecroanalysis 28, 119–125 (2016)CrossRef
49.
Zurück zum Zitat V. Archana, Y. Xia, R. Fang, G.G. Kumar, Hierarchical CuO/NiO-carbon nanocomposite derived from metal organic framework on cello tape for the flexible and high performance nonenzymatic electrochemical glucose sensors. ACS Sustain. Chem. Eng. 7, 6707–6719 (2019)CrossRef V. Archana, Y. Xia, R. Fang, G.G. Kumar, Hierarchical CuO/NiO-carbon nanocomposite derived from metal organic framework on cello tape for the flexible and high performance nonenzymatic electrochemical glucose sensors. ACS Sustain. Chem. Eng. 7, 6707–6719 (2019)CrossRef
50.
Zurück zum Zitat D. Pletcher, Electrocatalysis: present and future. J. Appl. Electrochem. 14, 403–415 (1984)CrossRef D. Pletcher, Electrocatalysis: present and future. J. Appl. Electrochem. 14, 403–415 (1984)CrossRef
51.
Zurück zum Zitat S.K. Meher, G.R. Rao, Archetypal sandwich-structured CuO for high performance non-enzymatic sensing of glucose. Nanoscale 5, 2089–2099 (2013)CrossRef S.K. Meher, G.R. Rao, Archetypal sandwich-structured CuO for high performance non-enzymatic sensing of glucose. Nanoscale 5, 2089–2099 (2013)CrossRef
52.
Zurück zum Zitat L. Liu, Z. Wang, J. Yang, G. Liu, J. Li, S. Chen, Q. Guo, NiCo2O4 nanoneedle-decorated electrospun carbon nanofiber nanohybrids for sensitive non-enzymatic glucose sensors. Sens. Actuators B Chem. 258, 920–928 (2018)CrossRef L. Liu, Z. Wang, J. Yang, G. Liu, J. Li, S. Chen, Q. Guo, NiCo2O4 nanoneedle-decorated electrospun carbon nanofiber nanohybrids for sensitive non-enzymatic glucose sensors. Sens. Actuators B Chem. 258, 920–928 (2018)CrossRef
53.
Zurück zum Zitat K.J. Babu, S. Sheet, Y.S. Lee, G.G. Kumar, Three-dimensional dendrite Cu-Co/reduced graphene oxide architectures on a disposable pencil graphite electrode as an electrochemical sensor for nonenzymatic glucose detection. ACS Sustain. Chem. Eng. 6, 1909–1918 (2018)CrossRef K.J. Babu, S. Sheet, Y.S. Lee, G.G. Kumar, Three-dimensional dendrite Cu-Co/reduced graphene oxide architectures on a disposable pencil graphite electrode as an electrochemical sensor for nonenzymatic glucose detection. ACS Sustain. Chem. Eng. 6, 1909–1918 (2018)CrossRef
54.
Zurück zum Zitat R. Qiu, X.L. Zhang, R. Qiao, Y. Li, Y. Kim, Y.S. Kang, CuNi dendritic material: synthesis, mechanism discussion, and application as glucose sensor. Chem. Mater. 19, 4174–4180 (2007)CrossRef R. Qiu, X.L. Zhang, R. Qiao, Y. Li, Y. Kim, Y.S. Kang, CuNi dendritic material: synthesis, mechanism discussion, and application as glucose sensor. Chem. Mater. 19, 4174–4180 (2007)CrossRef
55.
Zurück zum Zitat K.J. Babu, T. Rajkumar, D.J. Yoo, P. Siew-Moi, G.G. Kumar, Electrodeposited nickel cobalt sulphide flower-like architectures on disposable cellulose filter paper for enzyme-free glucose sensor applications. ACS Sustain. Chem. Eng. 6, 16982–16989 (2018)CrossRef K.J. Babu, T. Rajkumar, D.J. Yoo, P. Siew-Moi, G.G. Kumar, Electrodeposited nickel cobalt sulphide flower-like architectures on disposable cellulose filter paper for enzyme-free glucose sensor applications. ACS Sustain. Chem. Eng. 6, 16982–16989 (2018)CrossRef
56.
Zurück zum Zitat S. Shakir, J. Saravanan, N. Rizan, K.J. Babu, Md.A. Aziz, P.S. Moi, V. Periasamy, G.G. Kumar, Fabrication of capillary force induced DNA template Ag nanopatterns for sensitive and selective enzyme-free glucose sensors. Sens. Actuators B Chem. 256, 820–827 (2018)CrossRef S. Shakir, J. Saravanan, N. Rizan, K.J. Babu, Md.A. Aziz, P.S. Moi, V. Periasamy, G.G. Kumar, Fabrication of capillary force induced DNA template Ag nanopatterns for sensitive and selective enzyme-free glucose sensors. Sens. Actuators B Chem. 256, 820–827 (2018)CrossRef
57.
Zurück zum Zitat P. Salazar, V. Rico, A.R. Gonzalez-Elipe, Nickel–copper bilayer nanoporous electrode prepared by physical vapor deposition at oblique angles for the non-enzymatic determination of glucose. Sens. Actuators B Chem. 226, 436–443 (2016)CrossRef P. Salazar, V. Rico, A.R. Gonzalez-Elipe, Nickel–copper bilayer nanoporous electrode prepared by physical vapor deposition at oblique angles for the non-enzymatic determination of glucose. Sens. Actuators B Chem. 226, 436–443 (2016)CrossRef
Metadaten
Titel
Flower-like CuO/NiO nanostructures decorated activated carbon nanofiber membranes for flexible, sensitive, and selective enzyme-free glucose detection
verfasst von
J. Saravanan
Mehboobali Pannipara
Abdullah G. Al-Sehemi
Sara Talebi
Vengadesh Periasamy
Syed Shaheen Shah
Md. Abdul Aziz
G. Gnana kumar
Publikationsdatum
22.09.2021
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 20/2021
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-021-06927-x

Weitere Artikel der Ausgabe 20/2021

Journal of Materials Science: Materials in Electronics 20/2021 Zur Ausgabe

Neuer Inhalt