Skip to main content

2023 | OriginalPaper | Buchkapitel

3. Fluoride Pollution Control Techniques and Principles

verfasst von : Divyadeepika, Krishna Yadav, Jyoti Joshi

Erschienen in: Advanced Treatment Technologies for Fluoride Removal in Water

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The lesser and excessive amounts of F ions are both unhealthy for human health. Due to an insufficient amount of F, the formation and decay of teeth is observed, but excessive fluoride is linked to the diagnosis of fluorosis leading to hyperactivity, Musculoskeletal abnormalities, and brain damage due to excessive fluoride exposure during the development of tooth enamel. Before opting for the method of treatment for the fluoride-contaminated water, the chemical composition of surface and subsurface water is imperative. The presence of volcanic ash and some fertilizers in the soil also leads to an increase in the concentration of F. Sometimes a low concentration of F also has effective health benefits, but F at concertation > 1 ppm can lead to several health hazards. Excessive use of it over a long period of time can cause changes in DNA structure. In order to produce usable water, numerous technologies are being used for the removal of F and its derivatives. The major technologies used for the removal of F from waste water are green nanomaterials, capacitive deionization (CDI), membrane technology, and electrocoagulation. Apart from F removal from waste water, techniques used for natural water are equally important, viz. adsorption technology using various adsorbents. Some effective adsorbents are namely zeolites, alumina, organic based, Shell based including carbon-based nanotubes and graphite, metallopolymers and variety of microspheres. The defluoridation of water using modified activated alumina, chitosan derivatives, clays and muds, composites, and various separation techniques having merits and demerits are in use. Mechanisms used in the fluoride removal techniques are generally Adsorption, Nano-adsorption, Reverse-osmosis, Coagulation-Precipitation, Electrodialysis, Electrocoagulation, Nanofiltration, Ion exchange, Membrane dialysis etc.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abe, I., Iwasaki, S., Tokimoto, T., Kawasaki, N., Nakamura, T., & Tanada, S. (2004). Adsorption of fluoride ions onto carbonaceous materials. Journal of Colloid Interface Sciience, 275, 35–39.ADSCrossRef Abe, I., Iwasaki, S., Tokimoto, T., Kawasaki, N., Nakamura, T., & Tanada, S. (2004). Adsorption of fluoride ions onto carbonaceous materials. Journal of Colloid Interface Sciience, 275, 35–39.ADSCrossRef
Zurück zum Zitat Ajisha, M. A. T., & Rajagopal, K. (2015). Fluoride removal study using pyrolyzed Delonix regia pod, an unconventional adsorbent. International Journal of Environmental Science and Technology, 12, 223–236.CrossRef Ajisha, M. A. T., & Rajagopal, K. (2015). Fluoride removal study using pyrolyzed Delonix regia pod, an unconventional adsorbent. International Journal of Environmental Science and Technology, 12, 223–236.CrossRef
Zurück zum Zitat Aksu, Z., & Gönen, F. (2004). Biosorption of phenol by immobilized activated sludge in a continuous packed bed: Prediction of breakthrough curves. Process Biochemistry, 39, 599–613. Aksu, Z., & Gönen, F. (2004). Biosorption of phenol by immobilized activated sludge in a continuous packed bed: Prediction of breakthrough curves. Process Biochemistry, 39, 599–613.
Zurück zum Zitat Ali, S., Thakur, S. K., Sarkar, A., & Shekhar, S. (2019). Worldwide contamination of water by fluoride. Environmental Chemistry Letters, 14, 291–315.CrossRef Ali, S., Thakur, S. K., Sarkar, A., & Shekhar, S. (2019). Worldwide contamination of water by fluoride. Environmental Chemistry Letters, 14, 291–315.CrossRef
Zurück zum Zitat Ayoob, S., Gupta, A. K., & Bhat, V. T. (2008). A conceptual overview on sustainable technologies for the defluoridation of drinking water. Journal of Environmental Science and Technology, 38, 401–470. Ayoob, S., Gupta, A. K., & Bhat, V. T. (2008). A conceptual overview on sustainable technologies for the defluoridation of drinking water. Journal of Environmental Science and Technology, 38, 401–470.
Zurück zum Zitat Bhargava, D. S., & Killedar, D. J. (1992). Fluoride adsorption on fishbone charcoal through a moving media adsorber. Water Research, 26, 781–788. Bhargava, D. S., & Killedar, D. J. (1992). Fluoride adsorption on fishbone charcoal through a moving media adsorber. Water Research, 26, 781–788.
Zurück zum Zitat Biswas, K., Saha, S. K., & Ghosh, U. C. (2007). Adsorption of fluoride from aqueous solution by a synthetic iron(III)–aluminum(III) mixed oxide. Industrial Engineering Chemistry Research, 46, 5346–5356.CrossRef Biswas, K., Saha, S. K., & Ghosh, U. C. (2007). Adsorption of fluoride from aqueous solution by a synthetic iron(III)–aluminum(III) mixed oxide. Industrial Engineering Chemistry Research, 46, 5346–5356.CrossRef
Zurück zum Zitat Cengeloglu, Y., Kir, E., & Ersoz, M. (2002). Removal of fluoride from aqueous solution by using red mud. Seperation and Purification Technology, 28, 81–86.CrossRef Cengeloglu, Y., Kir, E., & Ersoz, M. (2002). Removal of fluoride from aqueous solution by using red mud. Seperation and Purification Technology, 28, 81–86.CrossRef
Zurück zum Zitat Chai, L., Wang, Y., Zhao, N., Yang, W., & You, X. (2013). Sulfate-doped Fe3O4/Al2O3 nanoparticles as a novel adsorbent for fluoride removal from drinking water. Water Research, 47, 4040–4049.PubMedCrossRef Chai, L., Wang, Y., Zhao, N., Yang, W., & You, X. (2013). Sulfate-doped Fe3O4/Al2O3 nanoparticles as a novel adsorbent for fluoride removal from drinking water. Water Research, 47, 4040–4049.PubMedCrossRef
Zurück zum Zitat Chakrabortty, S., Roy, M., & Pal, P. (2013). Removal of fluoride from contaminated groundwater by cross flow nanofiltration: Transport modeling and economic evaluation. Desalination, 313, 115–124.CrossRef Chakrabortty, S., Roy, M., & Pal, P. (2013). Removal of fluoride from contaminated groundwater by cross flow nanofiltration: Transport modeling and economic evaluation. Desalination, 313, 115–124.CrossRef
Zurück zum Zitat Chaudhary, V., & Prasad, S. (2015). Rapid removal of fluoride from aqueous media using activated dolomite. Analytical Methods, 7, 8304–8314.CrossRef Chaudhary, V., & Prasad, S. (2015). Rapid removal of fluoride from aqueous media using activated dolomite. Analytical Methods, 7, 8304–8314.CrossRef
Zurück zum Zitat Chen, Y., Zhang, Q., Chen, L., Bai, H., & Li, L. (2013). Basic aluminum sulfate@graphene hydrogel composites: Preparation and application for removal of fluoride. Journal of Materials Chemistry, 1, 13101–13110. Chen, Y., Zhang, Q., Chen, L., Bai, H., & Li, L. (2013). Basic aluminum sulfate@graphene hydrogel composites: Preparation and application for removal of fluoride. Journal of Materials Chemistry, 1, 13101–13110.
Zurück zum Zitat Chubar, N. I., Samanidou, V. F., Kouts, V. S., Gallios, G. G., Kanibolotsky, V. A., Strelko, V. V., & Zhuravlev, I. Z. (2005). Adsorption of fluoride, chloride, bromide, and bromate ions on a novel ion exchanger. Journal of Colloid and Interface Science, 291, 67–74.ADSPubMedCrossRef Chubar, N. I., Samanidou, V. F., Kouts, V. S., Gallios, G. G., Kanibolotsky, V. A., Strelko, V. V., & Zhuravlev, I. Z. (2005). Adsorption of fluoride, chloride, bromide, and bromate ions on a novel ion exchanger. Journal of Colloid and Interface Science, 291, 67–74.ADSPubMedCrossRef
Zurück zum Zitat Cruz, E. F. D. L., Zheng, Y., Torres, E., Li, W., Song, W., & Burugapalli, K. (2012). Zeta potential of modified multi-walled carbon nanotubes in presence of poly (vinyl alcohol) hydrogel. International Journal of Electrochemical Science, 7, 3577–3590.CrossRef Cruz, E. F. D. L., Zheng, Y., Torres, E., Li, W., Song, W., & Burugapalli, K. (2012). Zeta potential of modified multi-walled carbon nanotubes in presence of poly (vinyl alcohol) hydrogel. International Journal of Electrochemical Science, 7, 3577–3590.CrossRef
Zurück zum Zitat Dey, S., Goswami, S., & Ghosh, U. C. (2004). Hydrous ferric oxides: A scavenger of fluoride from contaminated water. Water Air and Soil Pollution, 158, 311–323.ADSCrossRef Dey, S., Goswami, S., & Ghosh, U. C. (2004). Hydrous ferric oxides: A scavenger of fluoride from contaminated water. Water Air and Soil Pollution, 158, 311–323.ADSCrossRef
Zurück zum Zitat Dhillon, A., & Kumar, D. (2015). Nanocomposite for the detoxification of drinking water: Effective and efficient removal of fluoride and bactericidal activity. New Journal of Chemistry, 39, 9143–9154.CrossRef Dhillon, A., & Kumar, D. (2015). Nanocomposite for the detoxification of drinking water: Effective and efficient removal of fluoride and bactericidal activity. New Journal of Chemistry, 39, 9143–9154.CrossRef
Zurück zum Zitat Dissanayake, C. B. (1991). The fluoride problem in the groundwater of Sri Lanka: Environmental management and health. International Journal of Environmental Studies, 38, 137–155. Dissanayake, C. B. (1991). The fluoride problem in the groundwater of Sri Lanka: Environmental management and health. International Journal of Environmental Studies, 38, 137–155.
Zurück zum Zitat El-Gohary, F., Tawfik, A., & Mahmoud, U. (2010). Comparative study between chemical coagulation/precipitation (C/P) versus coagulation/dissolved air flotation (D/DAF) for pre-treatment of personal care products (PCPs) wastewater. Desalination, 252, 106–112. El-Gohary, F., Tawfik, A., & Mahmoud, U. (2010). Comparative study between chemical coagulation/precipitation (C/P) versus coagulation/dissolved air flotation (D/DAF) for pre-treatment of personal care products (PCPs) wastewater. Desalination, 252, 106–112.
Zurück zum Zitat Elazhar, F., Tahaikt, M., Zouahri, A., Taky, M., Hafsi, M., & Elmidaoui, A. (2013). Defluoridation of moroccan groundwater by nanofiltration and electrodialysis: Performances and cost comparison. Journal of World Applied Science, 22, 844–850. Elazhar, F., Tahaikt, M., Zouahri, A., Taky, M., Hafsi, M., & Elmidaoui, A. (2013). Defluoridation of moroccan groundwater by nanofiltration and electrodialysis: Performances and cost comparison. Journal of World Applied Science, 22, 844–850.
Zurück zum Zitat Fan, X., Parker, D. J., & Smith, M. D. (2003). Adsorption kinetics of fluoride on low-cost materials. Journal of Water Research, 37, 4929–4937.PubMedCrossRef Fan, X., Parker, D. J., & Smith, M. D. (2003). Adsorption kinetics of fluoride on low-cost materials. Journal of Water Research, 37, 4929–4937.PubMedCrossRef
Zurück zum Zitat Getachew, T., Hussen, A., & Rao, V. (2015). Defluoridation of water by activated carbon prepared from banana (Musa paradisiaca) peel and coffee (Coffea arabica) husk. International Journal of Environmental Science and Technology, 12, 1857–1866.CrossRef Getachew, T., Hussen, A., & Rao, V. (2015). Defluoridation of water by activated carbon prepared from banana (Musa paradisiaca) peel and coffee (Coffea arabica) husk. International Journal of Environmental Science and Technology, 12, 1857–1866.CrossRef
Zurück zum Zitat Gregory, J., & Duan, J. (2001). Hydrolyzing metal salts as coagulants. Pure and Applied Chemistry, 73, 2017–2026.CrossRef Gregory, J., & Duan, J. (2001). Hydrolyzing metal salts as coagulants. Pure and Applied Chemistry, 73, 2017–2026.CrossRef
Zurück zum Zitat Gupta, A. K., Deva, D., Sharma, A., & Verma, N. (2009). Adsorptive removal of fluoride by micro nanohierarchal web of activated carbon fibers. Industrial & Engineering Chemistry Research, 48, 9697–9707.CrossRef Gupta, A. K., Deva, D., Sharma, A., & Verma, N. (2009). Adsorptive removal of fluoride by micro nanohierarchal web of activated carbon fibers. Industrial & Engineering Chemistry Research, 48, 9697–9707.CrossRef
Zurück zum Zitat Hayat, E., & Baba, A. (2017). Quality of groundwater resources in Afghanistan. Environmental Monitoring Assessment, 189, 318.PubMedCrossRef Hayat, E., & Baba, A. (2017). Quality of groundwater resources in Afghanistan. Environmental Monitoring Assessment, 189, 318.PubMedCrossRef
Zurück zum Zitat He, J., & Chen, J. P. (2014). A zirconium-based nanoparticle: Essential factors for sustainable application in treatment of fluoride containing water. Journal of Colloid Interface Science, 416, 227–234.ADSPubMedCrossRef He, J., & Chen, J. P. (2014). A zirconium-based nanoparticle: Essential factors for sustainable application in treatment of fluoride containing water. Journal of Colloid Interface Science, 416, 227–234.ADSPubMedCrossRef
Zurück zum Zitat Hu, C. Y., Lo, S. L., & Kuan, W. H. (2003). Effects of co-existing anions on fluoride removal in electrocoagulation (EC) process using aluminium electrodes. Water Research, 37, 4513–4523.PubMedCrossRef Hu, C. Y., Lo, S. L., & Kuan, W. H. (2003). Effects of co-existing anions on fluoride removal in electrocoagulation (EC) process using aluminium electrodes. Water Research, 37, 4513–4523.PubMedCrossRef
Zurück zum Zitat Johnston, R., & Heijnen, H. (2002). Safe water technology for arsenic removal. Report. World Health Organization (WHO). Johnston, R., & Heijnen, H. (2002). Safe water technology for arsenic removal. Report. World Health Organization (WHO).
Zurück zum Zitat Kobya, M., Demirbas, E., & Ulu, F. (2016). Evaluation of operating parameters with respect to charge loading on the removal efficiency of arsenic from potable water by electrocoagulation. Journal of Environmental Chemical Engineering, 4, 1484–1494. Kobya, M., Demirbas, E., & Ulu, F. (2016). Evaluation of operating parameters with respect to charge loading on the removal efficiency of arsenic from potable water by electrocoagulation. Journal of Environmental Chemical Engineering, 4, 1484–1494.
Zurück zum Zitat Ku, Y., Chiou, H. M., & Wang, W. (2002). The removal of fluoride ion from aqueous solution by a cation synthetic resin. Seperation Science and Technology, 37, 89–103. Ku, Y., Chiou, H. M., & Wang, W. (2002). The removal of fluoride ion from aqueous solution by a cation synthetic resin. Seperation Science and Technology, 37, 89–103.
Zurück zum Zitat Kut, K. M. K., Sarswat, A., Srivastava, A., Pittman, C. U., & Mohan, D. (2016). Groundwater for Sustainable Development, 2–3, 190–212. Kut, K. M. K., Sarswat, A., Srivastava, A., Pittman, C. U., & Mohan, D. (2016). Groundwater for Sustainable Development, 2–3, 190–212.
Zurück zum Zitat Lacson, C. F. Z., Lu, M. C., & Huang, Y. H. (2021). Fluoride containing water: A global perspective and a pursuit to sustainable water defluoridation management-an overview. Journal of Cleaner Production, 280, 124236.CrossRef Lacson, C. F. Z., Lu, M. C., & Huang, Y. H. (2021). Fluoride containing water: A global perspective and a pursuit to sustainable water defluoridation management-an overview. Journal of Cleaner Production, 280, 124236.CrossRef
Zurück zum Zitat Lawler, D., Katz, L., Gee, I., Yeo, S., & Herrboldt, J. (2016). Sub-project A2: Simultaneous removal of inorganic contaminants, DBP precursors, and particles in alum and ferric coagulation. University of Texas at Austin. Lawler, D., Katz, L., Gee, I., Yeo, S., & Herrboldt, J. (2016). Sub-project A2: Simultaneous removal of inorganic contaminants, DBP precursors, and particles in alum and ferric coagulation. University of Texas at Austin.
Zurück zum Zitat Li, W., Cao, C. Y., Wu, L. Y., Ge, M. F., & Song, W. G. (2011). Superb fluoride and arsenic removal performance of highly ordered mesoporous aluminas. Journal of Hazardous Material, 198, 143–150.CrossRef Li, W., Cao, C. Y., Wu, L. Y., Ge, M. F., & Song, W. G. (2011). Superb fluoride and arsenic removal performance of highly ordered mesoporous aluminas. Journal of Hazardous Material, 198, 143–150.CrossRef
Zurück zum Zitat Li, Y. H., Wang, S. G., Zhang, X. F., Wei, J. Q., Xu, C. L., Luan, Z. K., & Wu, D. H. (2003). Removal of fluoride from water by carbon nanotube supported alumina. Environmental Technology, 24, 391–398. Li, Y. H., Wang, S. G., Zhang, X. F., Wei, J. Q., Xu, C. L., Luan, Z. K., & Wu, D. H. (2003). Removal of fluoride from water by carbon nanotube supported alumina. Environmental Technology, 24, 391–398.
Zurück zum Zitat Liu, L., Cui, Z., Ma, Q., Cui, W., & Zhang, X. (2016). One-step synthesis of magnetic iron-aluminum oxide/graphene oxide nanoparticles as a selective adsorbent for fluoride removal from aqueous solution. RSC Advances, 6, 10783–10791.ADSCrossRef Liu, L., Cui, Z., Ma, Q., Cui, W., & Zhang, X. (2016). One-step synthesis of magnetic iron-aluminum oxide/graphene oxide nanoparticles as a selective adsorbent for fluoride removal from aqueous solution. RSC Advances, 6, 10783–10791.ADSCrossRef
Zurück zum Zitat Loganathan, P., Vigneswaran, S., Kandasamy, J., & Naidu, R. (2013). Defluoridation of drinking water using adsorption processes. Journal of Hazardous Materials, 248–249, 1–19.PubMedCrossRef Loganathan, P., Vigneswaran, S., Kandasamy, J., & Naidu, R. (2013). Defluoridation of drinking water using adsorption processes. Journal of Hazardous Materials, 248–249, 1–19.PubMedCrossRef
Zurück zum Zitat López-Guzmán, M., Alarcón-Herrera, M., Irigoyen-Campuzano, J., Torres-Castañón, L., & Reynoso-Cuevas, L. (2019). Simultaneous removal of fluoride and arsenic from well water by electrocoagulation. Science of the Total Environmental, 678, 181–187.ADSCrossRef López-Guzmán, M., Alarcón-Herrera, M., Irigoyen-Campuzano, J., Torres-Castañón, L., & Reynoso-Cuevas, L. (2019). Simultaneous removal of fluoride and arsenic from well water by electrocoagulation. Science of the Total Environmental, 678, 181–187.ADSCrossRef
Zurück zum Zitat Lounici, H., Adour, L., Belhocine, D., Elmidaoui, A., Bariou, B., & Mameri, N. (2001). Novel technique to regenerate activated alumina bed saturated by fluoride ions. Journal of Chemical Engineering, 81, 153–160.CrossRef Lounici, H., Adour, L., Belhocine, D., Elmidaoui, A., Bariou, B., & Mameri, N. (2001). Novel technique to regenerate activated alumina bed saturated by fluoride ions. Journal of Chemical Engineering, 81, 153–160.CrossRef
Zurück zum Zitat Lounici, H., Belhocine, D., Grib, H., Drouiche, M., Pauss, A., & Mameri, N. (2004). Fluoride removal with electro-activated alumina. Desalination, 161, 287–293.CrossRef Lounici, H., Belhocine, D., Grib, H., Drouiche, M., Pauss, A., & Mameri, N. (2004). Fluoride removal with electro-activated alumina. Desalination, 161, 287–293.CrossRef
Zurück zum Zitat Malik, A. H., Nasreen, S., Mahmood, Q., Khan, Z. M., Sarwar, R., Jilani, G., & Khan, A. (2010). Strategies for low-cost water defluoridation of drinking water—A review of progress. Journal of Chemical Society of Pakisthan, 32, 550–558. Malik, A. H., Nasreen, S., Mahmood, Q., Khan, Z. M., Sarwar, R., Jilani, G., & Khan, A. (2010). Strategies for low-cost water defluoridation of drinking water—A review of progress. Journal of Chemical Society of Pakisthan, 32, 550–558.
Zurück zum Zitat Meenakshi, & Maheshwari, R. C. (2006). Fluoride in drinking water and its removal. Journal of Hazardous Material, 137, 456–463. Meenakshi, & Maheshwari, R. C. (2006). Fluoride in drinking water and its removal. Journal of Hazardous Material, 137, 456–463.
Zurück zum Zitat Mohan, S. V., Ramanaiah, S., Rajkumar, B., & Sarma, P. (2007). Removal of fluoride from aqueous phase by biosorption onto algal biosorbent Spirogyra s IO2: Sorption mechanism elucidation. Journal of Hazardous Material, 141, 465–474.CrossRef Mohan, S. V., Ramanaiah, S., Rajkumar, B., & Sarma, P. (2007). Removal of fluoride from aqueous phase by biosorption onto algal biosorbent Spirogyra s IO2: Sorption mechanism elucidation. Journal of Hazardous Material, 141, 465–474.CrossRef
Zurück zum Zitat Nandi, B. K., Uppaluri, R., & Purkait, M. K. (2008). Preparation and characterization of low-cost ceramic membranes for micro-filtration applications. Applied Clay Science, 42, 102–110.CrossRef Nandi, B. K., Uppaluri, R., & Purkait, M. K. (2008). Preparation and characterization of low-cost ceramic membranes for micro-filtration applications. Applied Clay Science, 42, 102–110.CrossRef
Zurück zum Zitat Nasr, A. B., Charcosset, C., Amar, R. B., & Walh, K. (2013). Defluoridation of water by nanofiltration. Journal of Fluorine Chemistry, 150, 92–97.CrossRef Nasr, A. B., Charcosset, C., Amar, R. B., & Walh, K. (2013). Defluoridation of water by nanofiltration. Journal of Fluorine Chemistry, 150, 92–97.CrossRef
Zurück zum Zitat Onipe, T., Edokpayi, J. N., & Odiyo, J. O. (2020). A review on the potential sources and health implications of fluoride in groundwater of Sub-Saharan Africa. Journal of Environmental Science and Health, 55, 1078–1093.PubMedCrossRef Onipe, T., Edokpayi, J. N., & Odiyo, J. O. (2020). A review on the potential sources and health implications of fluoride in groundwater of Sub-Saharan Africa. Journal of Environmental Science and Health, 55, 1078–1093.PubMedCrossRef
Zurück zum Zitat Pehlivan, E., Tran, H. T., Wki, O., Schmidt, C., Zachmann, D., & Bahadir, M. (2013). Sugarcane bagasse treated with hydrous ferric oxide as a potential adsorbent for the removal of As(V) from aqueous solutions. Food Chemistry, 138, 133–138.PubMedCrossRef Pehlivan, E., Tran, H. T., Wki, O., Schmidt, C., Zachmann, D., & Bahadir, M. (2013). Sugarcane bagasse treated with hydrous ferric oxide as a potential adsorbent for the removal of As(V) from aqueous solutions. Food Chemistry, 138, 133–138.PubMedCrossRef
Zurück zum Zitat Piddennavar, R. (2013). Review on defluoridation techniques of water. International Journal of Engineering Science, 2, 86–94. Piddennavar, R. (2013). Review on defluoridation techniques of water. International Journal of Engineering Science, 2, 86–94.
Zurück zum Zitat Poonia, T., Singh, N., & Garg, M. (2021). Contamination of arsenic, chromium and fluoride in the Indian groundwater: A review, meta-analysis and cancer risk assessment. International Journal of Environmental Science and Technology, 18, 2891–2902.CrossRef Poonia, T., Singh, N., & Garg, M. (2021). Contamination of arsenic, chromium and fluoride in the Indian groundwater: A review, meta-analysis and cancer risk assessment. International Journal of Environmental Science and Technology, 18, 2891–2902.CrossRef
Zurück zum Zitat Puka, L. R. (2004). Fluoride adsorption modelling and the characterization of clays for defluoridation of natural waters. MSc dissertation, Faculty of Science, Rand Afrikaans University. Puka, L. R. (2004). Fluoride adsorption modelling and the characterization of clays for defluoridation of natural waters. MSc dissertation, Faculty of Science, Rand Afrikaans University.
Zurück zum Zitat Rao, M. S., & Mamatha, P. (2004). Water quality in sustainable water management. Current Science, 87, 942–947. Rao, M. S., & Mamatha, P. (2004). Water quality in sustainable water management. Current Science, 87, 942–947.
Zurück zum Zitat Reardon, J. E., & Wang, Y. (2000). A limestone reactor for fluoride removal from wastewaters. Environmental Science and Technology, 34, 3247–3253.ADSCrossRef Reardon, J. E., & Wang, Y. (2000). A limestone reactor for fluoride removal from wastewaters. Environmental Science and Technology, 34, 3247–3253.ADSCrossRef
Zurück zum Zitat Reddy, A. G. S., Reddy, D. V., Kumar, M. S., & Naik, P. K. (2016). Evaluation of fluoride enrichment processes in groundwater of Chimakurthy granitic pluton complex in Prakasam District India. African Journal of Environmental Science and Technollogy, 10, 350–379. Reddy, A. G. S., Reddy, D. V., Kumar, M. S., & Naik, P. K. (2016). Evaluation of fluoride enrichment processes in groundwater of Chimakurthy granitic pluton complex in Prakasam District India. African Journal of Environmental Science and Technollogy, 10, 350–379.
Zurück zum Zitat Rozic, L., Novakovic, T., Petrovic, S., Cupic, Z., Grbavcic, Z., & Rosic, A. (2006). The sorption and crystallographic characteristics of alumina activated in a reactor for pneumatic transport. Journal of Serbian Chemical Society, 71, 1237–1246.CrossRef Rozic, L., Novakovic, T., Petrovic, S., Cupic, Z., Grbavcic, Z., & Rosic, A. (2006). The sorption and crystallographic characteristics of alumina activated in a reactor for pneumatic transport. Journal of Serbian Chemical Society, 71, 1237–1246.CrossRef
Zurück zum Zitat Sathish, R. S., Raju, N., Raju, G., Nageswara Rao, G., Kumar, K. A., & Janardhana, C. (2007). Equilibrium and kinetic studies for fluoride adsorption from water on zirconium impregnated coconut shell carbon. Journal of Seperation Science and Technology, 42, 769–788.CrossRef Sathish, R. S., Raju, N., Raju, G., Nageswara Rao, G., Kumar, K. A., & Janardhana, C. (2007). Equilibrium and kinetic studies for fluoride adsorption from water on zirconium impregnated coconut shell carbon. Journal of Seperation Science and Technology, 42, 769–788.CrossRef
Zurück zum Zitat Sinha, R., Khazanchi, I., & Mathur, S. (2012). Fluoride removal by a continuous flow electrocoagulation reactor from groundwater of Shivdaspura. International Journal of Engineering and Research and Application, 2, 1336–1341. Sinha, R., Khazanchi, I., & Mathur, S. (2012). Fluoride removal by a continuous flow electrocoagulation reactor from groundwater of Shivdaspura. International Journal of Engineering and Research and Application, 2, 1336–1341.
Zurück zum Zitat Vinati, A., Mahanty, B., & Behera, S. (2015). Clay and clay minerals for fluoride removal from water: A state-of-the-art review. Journal of Applied Clay Science, 114, 340–348.CrossRef Vinati, A., Mahanty, B., & Behera, S. (2015). Clay and clay minerals for fluoride removal from water: A state-of-the-art review. Journal of Applied Clay Science, 114, 340–348.CrossRef
Zurück zum Zitat Vithanage, M., & Bhattachary, P. (2015). Fluoride in the environment: Sources, distribution and defluoridation. Environmental Chemical Letters, 13, 131–147. Vithanage, M., & Bhattachary, P. (2015). Fluoride in the environment: Sources, distribution and defluoridation. Environmental Chemical Letters, 13, 131–147.
Zurück zum Zitat Wang, L., Wu, X. L., Xu, W. H., Huang, X. J., Liu, J. H., & Xu, A. W. (2012). Stable Organic–inorganic hybrid of polyaniline/a–zirconium phosphate for efficient removal of organic pollutants in water environment. ACS Applied Materials & Interfaces, 4, 2686–2692.CrossRef Wang, L., Wu, X. L., Xu, W. H., Huang, X. J., Liu, J. H., & Xu, A. W. (2012). Stable Organic–inorganic hybrid of polyaniline/a–zirconium phosphate for efficient removal of organic pollutants in water environment. ACS Applied Materials & Interfaces, 4, 2686–2692.CrossRef
Zurück zum Zitat Wang, Y., & Reardon, E. J. (2001). Activation and regeneration of a soil sorbent for defluoridation of drinking water. Journal of Applied Geochemistry, 16, 531–539.ADSCrossRef Wang, Y., & Reardon, E. J. (2001). Activation and regeneration of a soil sorbent for defluoridation of drinking water. Journal of Applied Geochemistry, 16, 531–539.ADSCrossRef
Zurück zum Zitat WHO. (2017). Guidelines for drinking-water quality (4th ed.). World Health Organization. WHO. (2017). Guidelines for drinking-water quality (4th ed.). World Health Organization.
Zurück zum Zitat WHO, G. (2011). Guidelines for drinking-water quality. World Health Organization, 216, 303–304. WHO, G. (2011). Guidelines for drinking-water quality. World Health Organization, 216, 303–304.
Zurück zum Zitat Yadav, A. K., Sahoo, S. K., Mahapatra, S., Kumar, A. V., Pandey, G., Lenka, P., & Tripathi, R. M. (2014). Concentrations of uranium in drinking water and cumulative, age-dependent radiation doses in four districts of Uttar Pradesh, India. Toxicological and Environmental Chemistry, 96, 192–200. https://doi.org/10.1080/02772248.2014.934247CrossRef Yadav, A. K., Sahoo, S. K., Mahapatra, S., Kumar, A. V., Pandey, G., Lenka, P., & Tripathi, R. M. (2014). Concentrations of uranium in drinking water and cumulative, age-dependent radiation doses in four districts of Uttar Pradesh, India. Toxicological and Environmental Chemistry, 96, 192–200. https://​doi.​org/​10.​1080/​02772248.​2014.​934247CrossRef
Zurück zum Zitat Zhang, Q., Du, Q., Jiao, T., Zhang, Z., Wang, S., Sun, Q., & Gao, F. (2013). Rationally designed porous polystyrene encapsulated zirconium phosphate nanocomposite for highly efficient fluoride uptake in waters. Scientific Reports, 3, 2551–2559.ADSPubMedPubMedCentralCrossRef Zhang, Q., Du, Q., Jiao, T., Zhang, Z., Wang, S., Sun, Q., & Gao, F. (2013). Rationally designed porous polystyrene encapsulated zirconium phosphate nanocomposite for highly efficient fluoride uptake in waters. Scientific Reports, 3, 2551–2559.ADSPubMedPubMedCentralCrossRef
Zurück zum Zitat Zhang, Z., Wang, J. J., Ali, A., & DeLaune, R. D. (2016). Heavy metal distribution and water quality characterization of water bodies in Louisiana’s Lake Pontchartrain Basin, USA. Environmental Monitoring Assessment, 188, 1–14.PubMedCrossRef Zhang, Z., Wang, J. J., Ali, A., & DeLaune, R. D. (2016). Heavy metal distribution and water quality characterization of water bodies in Louisiana’s Lake Pontchartrain Basin, USA. Environmental Monitoring Assessment, 188, 1–14.PubMedCrossRef
Metadaten
Titel
Fluoride Pollution Control Techniques and Principles
verfasst von
Divyadeepika
Krishna Yadav
Jyoti Joshi
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-38845-3_3