Skip to main content
Erschienen in: International Journal of Mechanics and Materials in Design 3/2020

12.02.2020

Flutter and bifurcation instability analysis of fluid-conveying micro-pipes sandwiched by magnetostrictive smart layers under thermal and magnetic field

verfasst von: Ahad Amiri, Arian Masoumi, Roohollah Talebitooti

Erschienen in: International Journal of Mechanics and Materials in Design | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fluid-conveying micro/Nano structures are key tools in MEMS and NEMS applications especially for drug delivery systems to attack a specific tumor like cancer cells. Vibrational characteristics of such tools play a crucial role in delivering efficient and reliable performance in various applications. As a result, vibration and instability control of such systems is of great importance. Vibration and instability response of magnetostrictive sandwich cantilever fluid-conveying micro-pipes is investigated in this paper utilizing smart magnetostrictive layers as actuators. Euler–Bernoulli beam model together with modified couple stress theory (MCST) are used to model the problem. As main properties of these smart layers, magnetic intensity effect, velocity feedback gain and thermal effects are taken into account in the modeling. The governing equation is extracted employing Hamilton’s principle. Extended Galerkin procedure is applied to discretize the governing equation and obtain the eigenvalue problem which is solved straightforwardly to reach the eigenvalues. Afterwards, eigenvalue diagrams are studied to analyze the vibrational characteristics and possible instabilities (flutter and bifurcation) occurring in first three modes of the system. Throughout this analysis, the role of various intrinsic properties of the magnetostrictive layers on the critical flow velocity and frequency is studied in detail. The numerical results show a good ability for the used smart layers to control the instability of fluid-conveying micro-pipes. Therefore, these sandwich structures may be helpful for achieving a novel design for such systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abbasnejad, B., et al.: Stability analysis of a piezoelectrically actuated micro-pipe conveying fluid. Microfluid. Nanofluid. 19(3), 577–584 (2015)CrossRef Abbasnejad, B., et al.: Stability analysis of a piezoelectrically actuated micro-pipe conveying fluid. Microfluid. Nanofluid. 19(3), 577–584 (2015)CrossRef
Zurück zum Zitat Ahangar, S., et al.: On the stability of a microbeam conveying fluid considering modified couple stress theory. Int. J. Mech. Mater. Des. 7(4), 327 (2011)CrossRef Ahangar, S., et al.: On the stability of a microbeam conveying fluid considering modified couple stress theory. Int. J. Mech. Mater. Des. 7(4), 327 (2011)CrossRef
Zurück zum Zitat Amiri, A., et al.: Vibration and instability of fluid-conveyed smart micro-tubes based on magneto-electro-elasticity beam model. Microfluid. Nanofluid. 20(2), 38 (2016a)CrossRef Amiri, A., et al.: Vibration and instability of fluid-conveyed smart micro-tubes based on magneto-electro-elasticity beam model. Microfluid. Nanofluid. 20(2), 38 (2016a)CrossRef
Zurück zum Zitat Amiri, A., et al.: Coupled vibrations of a magneto-electro-elastic micro-diaphragm in micro-pumps. Microfluid. Nanofluid. 20(1), 18 (2016b)CrossRef Amiri, A., et al.: Coupled vibrations of a magneto-electro-elastic micro-diaphragm in micro-pumps. Microfluid. Nanofluid. 20(1), 18 (2016b)CrossRef
Zurück zum Zitat Amiri, A., et al.: Wave propagation in viscous-fluid-conveying piezoelectric nanotubes considering surface stress effects and Knudsen number based on nonlocal strain gradient theory. Eur. Phys. J. Plus 133(7), 252 (2018)CrossRef Amiri, A., et al.: Wave propagation in viscous-fluid-conveying piezoelectric nanotubes considering surface stress effects and Knudsen number based on nonlocal strain gradient theory. Eur. Phys. J. Plus 133(7), 252 (2018)CrossRef
Zurück zum Zitat Amiri, A., et al.: Flexoelectric and surface effects on size-dependent flow-induced vibration and instability analysis of fluid-conveying nanotubes based on flexoelectricity beam model. Int. J. Mech. Sci. 156, 474–485 (2019)CrossRef Amiri, A., et al.: Flexoelectric and surface effects on size-dependent flow-induced vibration and instability analysis of fluid-conveying nanotubes based on flexoelectricity beam model. Int. J. Mech. Sci. 156, 474–485 (2019)CrossRef
Zurück zum Zitat Arani, A.G., et al.: Strain gradient shell model for nonlinear vibration analysis of visco-elastically coupled Boron Nitride nano-tube reinforced composite micro-tubes conveying viscous fluid. Comput. Mater. Sci. 96, 448–458 (2015)CrossRef Arani, A.G., et al.: Strain gradient shell model for nonlinear vibration analysis of visco-elastically coupled Boron Nitride nano-tube reinforced composite micro-tubes conveying viscous fluid. Comput. Mater. Sci. 96, 448–458 (2015)CrossRef
Zurück zum Zitat Arani, A.G., et al.: Electro-thermo-mechanical nonlinear nonlocal vibration and instability of embedded micro-tube reinforced by BNNT, conveying fluid. Physica E 45, 109–121 (2012)CrossRef Arani, A.G., et al.: Electro-thermo-mechanical nonlinear nonlocal vibration and instability of embedded micro-tube reinforced by BNNT, conveying fluid. Physica E 45, 109–121 (2012)CrossRef
Zurück zum Zitat Chang, T.-P., Liu, M.-F.: Small scale effect on flow-induced instability of double-walled carbon nanotubes. Eur. J. Mech. A/Solids 30(6), 992–998 (2011)MathSciNetMATHCrossRef Chang, T.-P., Liu, M.-F.: Small scale effect on flow-induced instability of double-walled carbon nanotubes. Eur. J. Mech. A/Solids 30(6), 992–998 (2011)MathSciNetMATHCrossRef
Zurück zum Zitat Ebrahimi, F., Dabbagh, A.: Thermo-magnetic field effects on the wave propagation behavior of smart magnetostrictive sandwich nanoplates. Eur. Phys. J. Plus 133(3), 97 (2018)CrossRef Ebrahimi, F., Dabbagh, A.: Thermo-magnetic field effects on the wave propagation behavior of smart magnetostrictive sandwich nanoplates. Eur. Phys. J. Plus 133(3), 97 (2018)CrossRef
Zurück zum Zitat Ghorbanpour, A.A., et al.: Nonlinear vibration of smart micro-tube conveying fluid under electro-thermal fields. J. Solid. Mech. 4(1), 1–14 (2012)MathSciNet Ghorbanpour, A.A., et al.: Nonlinear vibration of smart micro-tube conveying fluid under electro-thermal fields. J. Solid. Mech. 4(1), 1–14 (2012)MathSciNet
Zurück zum Zitat Hong, C.: Transient responses of magnetostrictive plates by using the GDQ method. Eur. J. Mech. A/Solids 29(6), 1015–1021 (2010)CrossRef Hong, C.: Transient responses of magnetostrictive plates by using the GDQ method. Eur. J. Mech. A/Solids 29(6), 1015–1021 (2010)CrossRef
Zurück zum Zitat Hong, C.: Thermal vibration of magnetostrictive functionally graded material shells. Eur. J. Mech. A/Solids 40, 114–122 (2013)MathSciNetMATHCrossRef Hong, C.: Thermal vibration of magnetostrictive functionally graded material shells. Eur. J. Mech. A/Solids 40, 114–122 (2013)MathSciNetMATHCrossRef
Zurück zum Zitat Hong, C.: Thermal vibration and transient response of magnetostrictive functionally graded material plates. Eur. J. Mech. A/Solids 43, 78–88 (2014)MathSciNetMATHCrossRef Hong, C.: Thermal vibration and transient response of magnetostrictive functionally graded material plates. Eur. J. Mech. A/Solids 43, 78–88 (2014)MathSciNetMATHCrossRef
Zurück zum Zitat Hosseini, M., Bahaadini, R.: Size dependent stability analysis of cantilever micro-pipes conveying fluid based on modified strain gradient theory. Int. J. Eng. Sci. 101, 1–13 (2016)CrossRef Hosseini, M., Bahaadini, R.: Size dependent stability analysis of cantilever micro-pipes conveying fluid based on modified strain gradient theory. Int. J. Eng. Sci. 101, 1–13 (2016)CrossRef
Zurück zum Zitat Li, L., Hu, Y.: Critical flow velocity of fluid-conveying magneto-electro-elastic pipe resting on an elastic foundation. Int. J. Mech. Sci. 119, 273–282 (2016)CrossRef Li, L., Hu, Y.: Critical flow velocity of fluid-conveying magneto-electro-elastic pipe resting on an elastic foundation. Int. J. Mech. Sci. 119, 273–282 (2016)CrossRef
Zurück zum Zitat Liang, F., et al.: Transverse free vibration and stability analysis of spinning pipes conveying fluid. Int. J. Mech. Sci. 137, 195–204 (2018)CrossRef Liang, F., et al.: Transverse free vibration and stability analysis of spinning pipes conveying fluid. Int. J. Mech. Sci. 137, 195–204 (2018)CrossRef
Zurück zum Zitat Linnemann, K., et al.: A constitutive model for magnetostrictive and piezoelectric materials. Int. J. Solids Struct. 46(5), 1149–1166 (2009)MATHCrossRef Linnemann, K., et al.: A constitutive model for magnetostrictive and piezoelectric materials. Int. J. Solids Struct. 46(5), 1149–1166 (2009)MATHCrossRef
Zurück zum Zitat Lotfan, S., et al.: Size-dependent nonlinear vibration analysis of carbon nanotubes conveying multiphase flow. Int. J. Mech. Sci. 115, 723–735 (2016)CrossRef Lotfan, S., et al.: Size-dependent nonlinear vibration analysis of carbon nanotubes conveying multiphase flow. Int. J. Mech. Sci. 115, 723–735 (2016)CrossRef
Zurück zum Zitat Mashrouteh, S., et al.: Nonlinear free vibration analysis of a fluid-conveying microtube. In: ASME 2014 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers (2014) Mashrouteh, S., et al.: Nonlinear free vibration analysis of a fluid-conveying microtube. In: ASME 2014 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers (2014)
Zurück zum Zitat Mashrouteh, S., et al.: Nonlinear vibration analysis of fluid-conveying microtubes. Nonlinear Dyn. 85(2), 1007–1021 (2016)MathSciNetCrossRef Mashrouteh, S., et al.: Nonlinear vibration analysis of fluid-conveying microtubes. Nonlinear Dyn. 85(2), 1007–1021 (2016)MathSciNetCrossRef
Zurück zum Zitat Ni, Q., et al.: Free vibration and stability of a cantilever beam attached to an axially moving base immersed in fluid. J. Sound Vib. 333(9), 2543–2555 (2014)CrossRef Ni, Q., et al.: Free vibration and stability of a cantilever beam attached to an axially moving base immersed in fluid. J. Sound Vib. 333(9), 2543–2555 (2014)CrossRef
Zurück zum Zitat Paidoussis, M.P.: Fluid-Structure Interactions: Slender Structures and Axial Flow. Academic Press, Cambridge (1998) Paidoussis, M.P.: Fluid-Structure Interactions: Slender Structures and Axial Flow. Academic Press, Cambridge (1998)
Zurück zum Zitat Setoodeh, A., Afrahim, S.: Nonlinear dynamic analysis of FG micro-pipes conveying fluid based on strain gradient theory. Compos. Struct. 116, 128–135 (2014)CrossRef Setoodeh, A., Afrahim, S.: Nonlinear dynamic analysis of FG micro-pipes conveying fluid based on strain gradient theory. Compos. Struct. 116, 128–135 (2014)CrossRef
Zurück zum Zitat Tang, M., et al.: Nonlinear modeling and size-dependent vibration analysis of curved microtubes conveying fluid based on modified couple stress theory. Int. J. Eng. Sci. 84, 1–10 (2014)MathSciNetMATHCrossRef Tang, M., et al.: Nonlinear modeling and size-dependent vibration analysis of curved microtubes conveying fluid based on modified couple stress theory. Int. J. Eng. Sci. 84, 1–10 (2014)MathSciNetMATHCrossRef
Zurück zum Zitat Wang, L.: Vibration and instability analysis of tubular nano-and micro-beams conveying fluid using nonlocal elastic theory. Physica E 41(10), 1835–1840 (2009)CrossRef Wang, L.: Vibration and instability analysis of tubular nano-and micro-beams conveying fluid using nonlocal elastic theory. Physica E 41(10), 1835–1840 (2009)CrossRef
Zurück zum Zitat Wang, L., et al.: Flexural vibrations of microscale pipes conveying fluid by considering the size effects of micro-flow and micro-structure. Int. J. Eng. Sci. 71, 92–101 (2013)MathSciNetMATHCrossRef Wang, L., et al.: Flexural vibrations of microscale pipes conveying fluid by considering the size effects of micro-flow and micro-structure. Int. J. Eng. Sci. 71, 92–101 (2013)MathSciNetMATHCrossRef
Zurück zum Zitat Wang, Y.Q., et al.: A nonlinear surface-stress-dependent model for vibration analysis of cylindrical nanoscale shells conveying fluid. Appl. Math. Model. 64, 55–70 (2018)MathSciNetMATHCrossRef Wang, Y.Q., et al.: A nonlinear surface-stress-dependent model for vibration analysis of cylindrical nanoscale shells conveying fluid. Appl. Math. Model. 64, 55–70 (2018)MathSciNetMATHCrossRef
Zurück zum Zitat Wang, Y.Q., et al.: Nonlinear dynamic characteristics of functionally graded sandwich thin nanoshells conveying fluid incorporating surface stress influence. Thin Walled Struct. 135, 537–547 (2019)CrossRef Wang, Y.Q., et al.: Nonlinear dynamic characteristics of functionally graded sandwich thin nanoshells conveying fluid incorporating surface stress influence. Thin Walled Struct. 135, 537–547 (2019)CrossRef
Zurück zum Zitat Yin, L., et al.: Strain gradient beam model for dynamics of microscale pipes conveying fluid. Appl. Math. Model. 35(6), 2864–2873 (2011)MathSciNetMATHCrossRef Yin, L., et al.: Strain gradient beam model for dynamics of microscale pipes conveying fluid. Appl. Math. Model. 35(6), 2864–2873 (2011)MathSciNetMATHCrossRef
Zurück zum Zitat Zhang, J., Meguid, S.: Effect of surface energy on the dynamic response and instability of fluid-conveying nanobeams. Eur. J. Mech. A/Solids 58, 1–9 (2016)MathSciNetMATHCrossRef Zhang, J., Meguid, S.: Effect of surface energy on the dynamic response and instability of fluid-conveying nanobeams. Eur. J. Mech. A/Solids 58, 1–9 (2016)MathSciNetMATHCrossRef
Metadaten
Titel
Flutter and bifurcation instability analysis of fluid-conveying micro-pipes sandwiched by magnetostrictive smart layers under thermal and magnetic field
verfasst von
Ahad Amiri
Arian Masoumi
Roohollah Talebitooti
Publikationsdatum
12.02.2020
Verlag
Springer Netherlands
Erschienen in
International Journal of Mechanics and Materials in Design / Ausgabe 3/2020
Print ISSN: 1569-1713
Elektronische ISSN: 1573-8841
DOI
https://doi.org/10.1007/s10999-020-09487-w

Weitere Artikel der Ausgabe 3/2020

International Journal of Mechanics and Materials in Design 3/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.