Skip to main content
Erschienen in: International Journal of Mechanics and Materials in Design 3/2020

18.03.2020

Geometrically nonlinear analysis of 3D fluid actuated cellular structures using extended multiscale finite element method

verfasst von: Jun Lv, Minghui Zheng, Liang Zhang, Chang Song, Hongwu Zhang

Erschienen in: International Journal of Mechanics and Materials in Design | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An efficient three-dimensional (3D) multiscale method has been introduced to simulate the geometrically nonlinear behaviors of the plant inspired smart cellular structures. In this method, the scale gap between the geometrical information of motor cells in the small-scale and mechanical behaviors of the cellular structures at the macroscale is bridged through a multiscale framework named multiscale finite element method. The heterogeneous information of the microstructure is then equivalent to the macroscopic coarse elements through the multiscale base functions about the displacements for the solid matrix as well as the fluid pressure. Combined with the “element-independent” corotational algorithm, both the tangent stiffness matrix of the coarse grid elements and their nodal forces can be directly deduced, which will be utilized to decompose the geometrically nonlinear motions of equivalent coarse grid elements at the macroscale level. Consequently, the initial geometrically nonlinear behaviors of the 3D fluidic cellular structures could be simulated by the iteration procedures on the coarse-grid meshes, which will greatly reduce the computation time and memory cost. At the same time, the mechanical responses of the motor cells in the microscale could be easily computed from the obtained macroscopic solutions by the downscaling technique of the multiscale method. To verify the proposed nonlinear multiscale method, some numerical examples are presented. The results demonstrated that the developed nonlinear multiscale formulation for the 3D problems could provide high precision solutions as well as acceptable numerical efficiencies.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Barrett, R., Barrett, C.: Biomimetic FAA-certifiable, artificial muscle structures for commercial aircraft wings. Smart Mater. Struct. 23, 074011 (2014)CrossRef Barrett, R., Barrett, C.: Biomimetic FAA-certifiable, artificial muscle structures for commercial aircraft wings. Smart Mater. Struct. 23, 074011 (2014)CrossRef
Zurück zum Zitat Chen, Z.D.: Large Deflection Theory of Truss, Plate and Shell. Science Press, Beijing (1996). (in Chinese) Chen, Z.D.: Large Deflection Theory of Truss, Plate and Shell. Science Press, Beijing (1996). (in Chinese)
Zurück zum Zitat Chillara, V.S.C., Headings, L.M., Dapino, M.J.: Multifunctional composites with intrinsic pressure actuation and prestress for morphing structures. Compos. Struct. 157, 265–274 (2016)CrossRef Chillara, V.S.C., Headings, L.M., Dapino, M.J.: Multifunctional composites with intrinsic pressure actuation and prestress for morphing structures. Compos. Struct. 157, 265–274 (2016)CrossRef
Zurück zum Zitat Forterre, Y., Skotheim, J.M., Dumals, J., Mahadevan, L.: How the venus flytrap snaps. Nature 433, 421–425 (2005)CrossRef Forterre, Y., Skotheim, J.M., Dumals, J., Mahadevan, L.: How the venus flytrap snaps. Nature 433, 421–425 (2005)CrossRef
Zurück zum Zitat Freeman, E., Weiland, L.: High energy density nastic materials: parameters for tailoring active response. J. Intell. Mater. Syst. Struct. 20(1), 233–243 (2009)CrossRef Freeman, E., Weiland, L.: High energy density nastic materials: parameters for tailoring active response. J. Intell. Mater. Syst. Struct. 20(1), 233–243 (2009)CrossRef
Zurück zum Zitat Gramüller, B., Hühne, C.: PACS: numerical approach and evaluation of a concept for dimensioning pressure-actuated cellular structures. CEAS Aeronaut. J. 6(4), 575–588 (2015)CrossRef Gramüller, B., Hühne, C.: PACS: numerical approach and evaluation of a concept for dimensioning pressure-actuated cellular structures. CEAS Aeronaut. J. 6(4), 575–588 (2015)CrossRef
Zurück zum Zitat Gramüller, B., Tempel, A., Hühne, C.: Shape variable seals for pressure actuated cellular structures. Smart Mater. Struct. 24(9), 095005 (2015)CrossRef Gramüller, B., Tempel, A., Hühne, C.: Shape variable seals for pressure actuated cellular structures. Smart Mater. Struct. 24(9), 095005 (2015)CrossRef
Zurück zum Zitat Lv, J., Liu, H., Zhang, H.W.: A multiscale co-rotational method for geometrically nonlinear shape morphing of 2D fluid actuated cellular structures. Mech. Mater. 79, 1–14 (2014a)CrossRef Lv, J., Liu, H., Zhang, H.W.: A multiscale co-rotational method for geometrically nonlinear shape morphing of 2D fluid actuated cellular structures. Mech. Mater. 79, 1–14 (2014a)CrossRef
Zurück zum Zitat Lv, J., Liu, H., Zhang, H.W., Liu, L.: Multiscale method for geometrical nonlinear analysis of fluid actuated cellular structures with arbitrary polygonal microstructures. J. Aerosp. Eng. 29(4), 04015082 (2015) CrossRef Lv, J., Liu, H., Zhang, H.W., Liu, L.: Multiscale method for geometrical nonlinear analysis of fluid actuated cellular structures with arbitrary polygonal microstructures. J. Aerosp. Eng. 29(4), 04015082 (2015) CrossRef
Zurück zum Zitat Lv, J., Zhang, H.W., Chen, B.S.: Shape and topology optimization for closed liquid cell materials using extended multiscale finite element method. Struct. Multidiscip. Optim. 49(3), 367–385 (2014b)MathSciNetCrossRef Lv, J., Zhang, H.W., Chen, B.S.: Shape and topology optimization for closed liquid cell materials using extended multiscale finite element method. Struct. Multidiscip. Optim. 49(3), 367–385 (2014b)MathSciNetCrossRef
Zurück zum Zitat Li, S., Wang, K.W.: Fluidic origami with embedded pressure dependent multi-stability: a plant inspired innovation. J. R. Soc. Interface 12(111), 20150639 (2015)CrossRef Li, S., Wang, K.W.: Fluidic origami with embedded pressure dependent multi-stability: a plant inspired innovation. J. R. Soc. Interface 12(111), 20150639 (2015)CrossRef
Zurück zum Zitat Moita, G., Crisfield, M.: A finite element formulation for 3-d continua using the co-rotational technique. Int. J. Numer. Methods Eng. 39, 3775–3792 (1996)MathSciNetCrossRef Moita, G., Crisfield, M.: A finite element formulation for 3-d continua using the co-rotational technique. Int. J. Numer. Methods Eng. 39, 3775–3792 (1996)MathSciNetCrossRef
Zurück zum Zitat Pagitz, M., Lamacchia, E., Hol, J.M.A.M.: Pressure-actuated cellular structures. Bioinspiration Biomim. 7(1), 016007 (2012)CrossRef Pagitz, M., Lamacchia, E., Hol, J.M.A.M.: Pressure-actuated cellular structures. Bioinspiration Biomim. 7(1), 016007 (2012)CrossRef
Zurück zum Zitat Pagitz, M., Pagitz, M., Hühne, C.: A modular approach to adaptive structures. Bioinspiration Biomim. 9(4), 046005 (2014)CrossRef Pagitz, M., Pagitz, M., Hühne, C.: A modular approach to adaptive structures. Bioinspiration Biomim. 9(4), 046005 (2014)CrossRef
Zurück zum Zitat Pagitz, M., Leine, R.I.: Shape optimization of compliant pressure actuated cellular structures. Int. J. Non-Linear Mech. 94, 268–280 (2017)CrossRef Pagitz, M., Leine, R.I.: Shape optimization of compliant pressure actuated cellular structures. Int. J. Non-Linear Mech. 94, 268–280 (2017)CrossRef
Zurück zum Zitat Poppinga, S., Zollfrank, C., Prucker, O., Rühe, J., Menges, A., Cheng, T., Speck, T.: Toward a new generation of smart biomimetic actuators for architecture. Adv. Mater. 30(19), 1703653 (2018)CrossRef Poppinga, S., Zollfrank, C., Prucker, O., Rühe, J., Menges, A., Cheng, T., Speck, T.: Toward a new generation of smart biomimetic actuators for architecture. Adv. Mater. 30(19), 1703653 (2018)CrossRef
Zurück zum Zitat Skotheim, J.M., Mahadevan, L.: Physical limits and design principles for plant and fungal movements. Science (New York, N.Y.) 308(5726), 1308–1310 (2005)CrossRef Skotheim, J.M., Mahadevan, L.: Physical limits and design principles for plant and fungal movements. Science (New York, N.Y.) 308(5726), 1308–1310 (2005)CrossRef
Zurück zum Zitat Sundaresan, V., Homison, C.: Biological transport processes for microhydraulic actuation. Sens. Actuators, B 123, 685–695 (2007)CrossRef Sundaresan, V., Homison, C.: Biological transport processes for microhydraulic actuation. Sens. Actuators, B 123, 685–695 (2007)CrossRef
Zurück zum Zitat Sun, J., Gao, H., Scarpa, F.L., Lira, C., Liu, Y.J., Leng, J.S.: Active inflatable auxetic honeycomb structural concept for morphing wingtips. Smart Mater. Struct. 23(12), 125023 (2014)CrossRef Sun, J., Gao, H., Scarpa, F.L., Lira, C., Liu, Y.J., Leng, J.S.: Active inflatable auxetic honeycomb structural concept for morphing wingtips. Smart Mater. Struct. 23(12), 125023 (2014)CrossRef
Zurück zum Zitat Sane, H., Bhovad, P., Li, S.: Actuation performance of fluidic origami cellular structure: a holistic investigation. Smart Mater. Struct. 27, 115014 (2018)CrossRef Sane, H., Bhovad, P., Li, S.: Actuation performance of fluidic origami cellular structure: a holistic investigation. Smart Mater. Struct. 27, 115014 (2018)CrossRef
Zurück zum Zitat Vos, R.: Mechanics and applications of pressure adaptive honeycomb. PhD Dissertation, Aerospace Engineering Department, University of Kansas (2009) Vos, R.: Mechanics and applications of pressure adaptive honeycomb. PhD Dissertation, Aerospace Engineering Department, University of Kansas (2009)
Zurück zum Zitat Vos, R., Barrett, R.: Mechanics of pressure-adaptive honeycomb and its application to wing morphing. Smart Mater. Struct. 20(9), 094010 (2011)CrossRef Vos, R., Barrett, R.: Mechanics of pressure-adaptive honeycomb and its application to wing morphing. Smart Mater. Struct. 20(9), 094010 (2011)CrossRef
Zurück zum Zitat Vasista, S., Tong, L.: Design and testing of pressurized cellular planar morphing structures. AIAA J 50(6), 1328–1338 (2012)CrossRef Vasista, S., Tong, L.: Design and testing of pressurized cellular planar morphing structures. AIAA J 50(6), 1328–1338 (2012)CrossRef
Zurück zum Zitat Vasista, S., Tong, L.: Topology-optimized design and testing of a pressure-driven morphing-aerofoil trailing- edge structure. AIAA J. 51(8), 1898–1907 (2013)CrossRef Vasista, S., Tong, L.: Topology-optimized design and testing of a pressure-driven morphing-aerofoil trailing- edge structure. AIAA J. 51(8), 1898–1907 (2013)CrossRef
Zurück zum Zitat Vasista, S., Riemenschneider, J., Mendrock, T., Monner, H. P. (2018). Pressure-driven morphing devices for 3D shape changes with multiple degrees-of-freedom. In: Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Proceeding of the ASME, pp. 1–11. (2018) Vasista, S., Riemenschneider, J., Mendrock, T., Monner, H. P. (2018). Pressure-driven morphing devices for 3D shape changes with multiple degrees-of-freedom. In: Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Proceeding of the ASME, pp. 1–11. (2018)
Zurück zum Zitat Zhang, H.W., Lv, J.: Two-scale model for mechanical analysis of nastic materials. J. Intell. Mater. Syst. Struct. 22(6), 593–609 (2011)CrossRef Zhang, H.W., Lv, J.: Two-scale model for mechanical analysis of nastic materials. J. Intell. Mater. Syst. Struct. 22(6), 593–609 (2011)CrossRef
Zurück zum Zitat Zhang, H.W., Lv, J.: A multiscale method for the numerical analysis of active response characterization of 3D nastic structures. Smart Mater. Struct. 21, 085009 (2012)CrossRef Zhang, H.W., Lv, J.: A multiscale method for the numerical analysis of active response characterization of 3D nastic structures. Smart Mater. Struct. 21, 085009 (2012)CrossRef
Zurück zum Zitat Zhang, L., Dong, K.J., Zhang, H.T., Yan, B.: A 3D PVP co-rotational formulation for large-displacement and small-strain analysis of bi-modulus materials. Finite Elem. Anal. Des. 110, 20–31 (2016)CrossRef Zhang, L., Dong, K.J., Zhang, H.T., Yan, B.: A 3D PVP co-rotational formulation for large-displacement and small-strain analysis of bi-modulus materials. Finite Elem. Anal. Des. 110, 20–31 (2016)CrossRef
Zurück zum Zitat Zhang, H.W., Wu, J., Lü, J., Fu, Z.D.: Extended multiscale finite element method for mechanical analysis of heterogeneous materials. Acta. Mech. Sin. 26, 899–920 (2010)MathSciNetCrossRef Zhang, H.W., Wu, J., Lü, J., Fu, Z.D.: Extended multiscale finite element method for mechanical analysis of heterogeneous materials. Acta. Mech. Sin. 26, 899–920 (2010)MathSciNetCrossRef
Metadaten
Titel
Geometrically nonlinear analysis of 3D fluid actuated cellular structures using extended multiscale finite element method
verfasst von
Jun Lv
Minghui Zheng
Liang Zhang
Chang Song
Hongwu Zhang
Publikationsdatum
18.03.2020
Verlag
Springer Netherlands
Erschienen in
International Journal of Mechanics and Materials in Design / Ausgabe 3/2020
Print ISSN: 1569-1713
Elektronische ISSN: 1573-8841
DOI
https://doi.org/10.1007/s10999-020-09491-0

Weitere Artikel der Ausgabe 3/2020

International Journal of Mechanics and Materials in Design 3/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.