Skip to main content
Erschienen in: International Journal of Steel Structures 2/2021

20.02.2021

Flutter Control of Long Span Suspension Bridges in Time Domain Using Optimized TMD

verfasst von: Hamed Alizadeh, Seyed Hossein Hosseni Lavassani

Erschienen in: International Journal of Steel Structures | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Suspension bridges due to their long span are susceptible against dynamic events, like air flow which can cause considerable problems for them. Flutter, as an aerodynamic phenomenon, makes bridges vibrate, whereas their amplitude gradually diverges, needed the vibration control strategies. Tuned mass damper or in brief TMD, as the simplest passive device, can be used for this purpose. The performance of it can be enhanced when it’s parameters are adjusted to their optimum values. In this paper, the TMD was optimized by meta-heuristic optimization algorithms to control the flutter of long span suspension bridges. In this regard, the Golden Gate suspension bridge and Car tracking algorithm were selected for case study and optimization process, respectively. Firstly, the flutter analysis of bridge was done by multi-mode method in the time domain, and at second part, the TMD’s parameters were simultaneously optimized for maximum increase of flutter velocity of all the vulnerable modes. The results indicated that TMD was perfectly suitable device to control the flutter of long span bridges.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abdel-Rohman, M., & John, M. J. (2006). Control of wind-induced nonlinear oscillations in suspension bridges using a semi-active tuned mass damper. Journal of Vibration and Control, 12(10), 1049–1080.MathSciNetCrossRef Abdel-Rohman, M., & John, M. J. (2006). Control of wind-induced nonlinear oscillations in suspension bridges using a semi-active tuned mass damper. Journal of Vibration and Control, 12(10), 1049–1080.MathSciNetCrossRef
Zurück zum Zitat Alizadeh, H., & Lavasani, H. H. (2020). TMD parameters optimization in different length suspension bridges using OTLBO algorithm under near and far field ground motions. Earthquakes and Structures, 30(5), 625–635. Alizadeh, H., & Lavasani, H. H. (2020). TMD parameters optimization in different length suspension bridges using OTLBO algorithm under near and far field ground motions. Earthquakes and Structures, 30(5), 625–635.
Zurück zum Zitat Alizadeh, H., Lavasani, H. H., & Pourzeynali, S. (2018). Flutter instability control in suspension bridge by TMD. Proceedings of the 11th International Congress on Civil Engineering, Tehran, Iran, May. Alizadeh, H., Lavasani, H. H., & Pourzeynali, S. (2018). Flutter instability control in suspension bridge by TMD. Proceedings of the 11th International Congress on Civil Engineering, Tehran, Iran, May.
Zurück zum Zitat Amini, F., & Doroudi, R. (2010). Control of a building complex with magneto-rheological dampers and tuned mass damper. Structural Engineering and Mechanics, 36(2), 181–195.CrossRef Amini, F., & Doroudi, R. (2010). Control of a building complex with magneto-rheological dampers and tuned mass damper. Structural Engineering and Mechanics, 36(2), 181–195.CrossRef
Zurück zum Zitat Andersen, M. S., Johansson, J., Brandt, A., & Hansen, S. O. (2016). Aerodynamic stability of long span suspension bridges with low torsional natural frequencies. Engineering Structures, 120, 82–91.CrossRef Andersen, M. S., Johansson, J., Brandt, A., & Hansen, S. O. (2016). Aerodynamic stability of long span suspension bridges with low torsional natural frequencies. Engineering Structures, 120, 82–91.CrossRef
Zurück zum Zitat Bortoluzzi, D., Casciati, S., Elia, L., & Faravelli, L. (2015). Design of a TMD solution to mitigate wind-induced local vibrations in an existing timber footbridge. Smart Structures and Systems, 16(3), 459–478.CrossRef Bortoluzzi, D., Casciati, S., Elia, L., & Faravelli, L. (2015). Design of a TMD solution to mitigate wind-induced local vibrations in an existing timber footbridge. Smart Structures and Systems, 16(3), 459–478.CrossRef
Zurück zum Zitat Chen, J., Cai, H., & Wang, W. (2018). A new metaheuristic algorithm: car tracking optimization algorithm. Soft Computing, 22(12), 3857–3878.CrossRef Chen, J., Cai, H., & Wang, W. (2018). A new metaheuristic algorithm: car tracking optimization algorithm. Soft Computing, 22(12), 3857–3878.CrossRef
Zurück zum Zitat Chen, S. R., & Cai, C. S. (2004). Coupled vibration control with tuned mass damper for long-span bridges. Journal of Sound and Vibration, 278(1), 449–459.CrossRef Chen, S. R., & Cai, C. S. (2004). Coupled vibration control with tuned mass damper for long-span bridges. Journal of Sound and Vibration, 278(1), 449–459.CrossRef
Zurück zum Zitat Chen, X., & Kareem, A. (2003). Efficacy of tuned mass dampers for bridge flutter control. Journal of Structural Engineering, 129(10), 1291–1300.CrossRef Chen, X., & Kareem, A. (2003). Efficacy of tuned mass dampers for bridge flutter control. Journal of Structural Engineering, 129(10), 1291–1300.CrossRef
Zurück zum Zitat Chobsilprakob, P., Kim, K. D., Suthasupradit, S., & Manovachirasan, A. (2014). Application of indicial function for the flutter analysis of long span suspension bridge during erection. International Journal of Steel Structures, 14, 185–194.CrossRef Chobsilprakob, P., Kim, K. D., Suthasupradit, S., & Manovachirasan, A. (2014). Application of indicial function for the flutter analysis of long span suspension bridge during erection. International Journal of Steel Structures, 14, 185–194.CrossRef
Zurück zum Zitat Debbarma, R., & Das, D. (2016). Vibration control of building using multiple tuned mass dampers considering real earthquake time history. International Journal of Civil and Environmental Engineering, 10(6), 694–704. Debbarma, R., & Das, D. (2016). Vibration control of building using multiple tuned mass dampers considering real earthquake time history. International Journal of Civil and Environmental Engineering, 10(6), 694–704.
Zurück zum Zitat Domaneschi, M., Martinelli, L., & Po, E. (2015). Control of wind buffeting vibrations in a suspension bridge by TMD: Hybridization and robustness issues. Computers and Structures, 155, 3–17.CrossRef Domaneschi, M., Martinelli, L., & Po, E. (2015). Control of wind buffeting vibrations in a suspension bridge by TMD: Hybridization and robustness issues. Computers and Structures, 155, 3–17.CrossRef
Zurück zum Zitat Eberhart, R. C., & Kannedy, J. (1995). A new optimizer using particle swarm theory. In Proceedings of the sixth international symposium on micro machine and human science, Nagoya, Japan, Piscataway: IEEE. Eberhart, R. C., & Kannedy, J. (1995). A new optimizer using particle swarm theory. In Proceedings of the sixth international symposium on micro machine and human science, Nagoya, Japan, Piscataway: IEEE.
Zurück zum Zitat Elias, S., & Matsagar, V. (2017). Research developments in vibration control of structures using passive tuned mass dampers. Annual Reviews in Control, 44, 1–28.CrossRef Elias, S., & Matsagar, V. (2017). Research developments in vibration control of structures using passive tuned mass dampers. Annual Reviews in Control, 44, 1–28.CrossRef
Zurück zum Zitat Gu, M., Chang, C., Wu, W., & Xiang, H. (1998). Increase of critical flutter wind speed of long-span bridges using tuned mass dampers. Journal of Wind Engineering and Industrial Aerodynamics, 73, 111–123.CrossRef Gu, M., Chang, C., Wu, W., & Xiang, H. (1998). Increase of critical flutter wind speed of long-span bridges using tuned mass dampers. Journal of Wind Engineering and Industrial Aerodynamics, 73, 111–123.CrossRef
Zurück zum Zitat Huang, M. H., Thabiratnam, D. P., & Perera, N. J. (2005). Vibration characteristic of shallow suspension bridge with pre-tensioned cables. Engineering Structures, 27(8), 1220–1233.CrossRef Huang, M. H., Thabiratnam, D. P., & Perera, N. J. (2005). Vibration characteristic of shallow suspension bridge with pre-tensioned cables. Engineering Structures, 27(8), 1220–1233.CrossRef
Zurück zum Zitat Kwon, S. D., Jung, M. S. S., & Chang, S. P. (2000). A new passive aerodynamic control method for bridge flutter. Journal of Wind Engineering and Industrial Aerodynamics, 86(2–3), 187–202.CrossRef Kwon, S. D., Jung, M. S. S., & Chang, S. P. (2000). A new passive aerodynamic control method for bridge flutter. Journal of Wind Engineering and Industrial Aerodynamics, 86(2–3), 187–202.CrossRef
Zurück zum Zitat Kwon, S. D., & Park, K. S. (2004). Suppression of bridge flutter using tuned mass dampers based on robust performance design. Journal of Wind Engineering and Industrial Aerodynamics, 92, 919–934.CrossRef Kwon, S. D., & Park, K. S. (2004). Suppression of bridge flutter using tuned mass dampers based on robust performance design. Journal of Wind Engineering and Industrial Aerodynamics, 92, 919–934.CrossRef
Zurück zum Zitat Larsen, A., & Larose, G. L. (2015). Dynamic wind effects on suspension and cable-stayed bridges. Journal of Sound and Vibration, 334, 2–28.CrossRef Larsen, A., & Larose, G. L. (2015). Dynamic wind effects on suspension and cable-stayed bridges. Journal of Sound and Vibration, 334, 2–28.CrossRef
Zurück zum Zitat Lavassani, H. H., Alizadeh, H., Doroudi, R., & Homami, P. (2020a). Vibration control of suspension bridge due to vertical ground motions. Advances in Structural Engineering, 23(12), 2626–2641.CrossRef Lavassani, H. H., Alizadeh, H., Doroudi, R., & Homami, P. (2020a). Vibration control of suspension bridge due to vertical ground motions. Advances in Structural Engineering, 23(12), 2626–2641.CrossRef
Zurück zum Zitat Lavassani, H. H., Alizadeh, H., & Homami, P. (2020b). Optimizing tuned mass damper parameters to mitigate the torsional vibration of a suspension bridge under pulsetype ground motion: A sensitivity analysis. Journal of Vibration and Control, 26(11–12), 1054–1067.MathSciNetCrossRef Lavassani, H. H., Alizadeh, H., & Homami, P. (2020b). Optimizing tuned mass damper parameters to mitigate the torsional vibration of a suspension bridge under pulsetype ground motion: A sensitivity analysis. Journal of Vibration and Control, 26(11–12), 1054–1067.MathSciNetCrossRef
Zurück zum Zitat Li, K., Ge, Y. J., Gue, Z. W., & Zhao, L. (2015). Theoretical framework of feedback aerodynamic control of flutter oscillation for long-span suspension bridges by the twin-winglet system. Journal of Wind Engineering and Industrial Aerodynamics, 145, 166–177.CrossRef Li, K., Ge, Y. J., Gue, Z. W., & Zhao, L. (2015). Theoretical framework of feedback aerodynamic control of flutter oscillation for long-span suspension bridges by the twin-winglet system. Journal of Wind Engineering and Industrial Aerodynamics, 145, 166–177.CrossRef
Zurück zum Zitat Lievens, K., Lombaert, G., De-Roeck, G., & Van-den-Broeck, P. (2016). Robust design of a TMD for the vibration serviceability of a footbridge. Engineering Structures, 123, 408–418.CrossRef Lievens, K., Lombaert, G., De-Roeck, G., & Van-den-Broeck, P. (2016). Robust design of a TMD for the vibration serviceability of a footbridge. Engineering Structures, 123, 408–418.CrossRef
Zurück zum Zitat Liu, T. (2015). Classical flutter and active control of wind turbine blade based on piezoelectric actuation. Shock and Vibration, 2015, 13. Liu, T. (2015). Classical flutter and active control of wind turbine blade based on piezoelectric actuation. Shock and Vibration, 2015, 13.
Zurück zum Zitat Miguel, L. F. F., Lopez, R. H., Torii, A. J., Miguel, L. F. F., & Beck, A. T. (2016). Robust design optimization of TMDs in vehicle-bridge coupled vibration problems. Engineering Structures, 126, 703–711.CrossRef Miguel, L. F. F., Lopez, R. H., Torii, A. J., Miguel, L. F. F., & Beck, A. T. (2016). Robust design optimization of TMDs in vehicle-bridge coupled vibration problems. Engineering Structures, 126, 703–711.CrossRef
Zurück zum Zitat Mortazavi, A., Togan, V., & Nuhoglu, A. (2018). Interactive search algorithm: A new hybrid metaheuristic optimization algorithm. Engineering Applications of Artificial Intelligence, 71, 275–292.CrossRef Mortazavi, A., Togan, V., & Nuhoglu, A. (2018). Interactive search algorithm: A new hybrid metaheuristic optimization algorithm. Engineering Applications of Artificial Intelligence, 71, 275–292.CrossRef
Zurück zum Zitat Pisal, A. Y., & Jangid, R. S. (2016). Vibration control of bridge subjected to multiaxle vehicle using multiple tuned mass friction dampers. International Journal of Advanced Structural Engineering, 8(2), 1–15.CrossRef Pisal, A. Y., & Jangid, R. S. (2016). Vibration control of bridge subjected to multiaxle vehicle using multiple tuned mass friction dampers. International Journal of Advanced Structural Engineering, 8(2), 1–15.CrossRef
Zurück zum Zitat Pourzeynali, S., Lavasani, H. H., & Modarayi, A. H. (2007). Active control of high rise building structures using fuzzy logic and genetic algorithms. Engineering Structures, 29(3), 346–357.CrossRef Pourzeynali, S., Lavasani, H. H., & Modarayi, A. H. (2007). Active control of high rise building structures using fuzzy logic and genetic algorithms. Engineering Structures, 29(3), 346–357.CrossRef
Zurück zum Zitat Rao, R. V., Savsani, V. J., & Vakharia, D. P. (2011). Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput-Aided Design, 43(3), 303–315.CrossRef Rao, R. V., Savsani, V. J., & Vakharia, D. P. (2011). Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput-Aided Design, 43(3), 303–315.CrossRef
Zurück zum Zitat Rubin, L. I., Abdel-Ghaffar, A. M., & Scanlan, R. H. (1983). Earthquake response of long-span suspension bridge. Research Report No. 83-SM-13; Department of civil engineering, Princeton University, Princeton, United States. Rubin, L. I., Abdel-Ghaffar, A. M., & Scanlan, R. H. (1983). Earthquake response of long-span suspension bridge. Research Report No. 83-SM-13; Department of civil engineering, Princeton University, Princeton, United States.
Zurück zum Zitat Scanlan, R. H., & Tomko, J. J. (1971). Airfoil and bridge deck flutter derivatives. Journal of the Engineering Mechanics, 97, 1717–1737. Scanlan, R. H., & Tomko, J. J. (1971). Airfoil and bridge deck flutter derivatives. Journal of the Engineering Mechanics, 97, 1717–1737.
Zurück zum Zitat Shahrouzi, M., Aghabagloua, M., & Rafiee, F. (2017). Observer-teacher-learner-based optimization: An enhanced metaheuristic for structural sizing design. Structural Engineering and Mechanics, 62(5), 537–550. Shahrouzi, M., Aghabagloua, M., & Rafiee, F. (2017). Observer-teacher-learner-based optimization: An enhanced metaheuristic for structural sizing design. Structural Engineering and Mechanics, 62(5), 537–550.
Zurück zum Zitat Strommen, E. N. (2016). Theory of bridge aerodynamics (2nd ed.). Netherland: Springer. Strommen, E. N. (2016). Theory of bridge aerodynamics (2nd ed.). Netherland: Springer.
Zurück zum Zitat Tao, T., Wang, H., Yao, C., & He, X. (2017). Parametric sensitivity analysis on the buffeting control of a long-span triple-tower suspension bridge with MTMD. Applied Science, 7(4), 395.CrossRef Tao, T., Wang, H., Yao, C., & He, X. (2017). Parametric sensitivity analysis on the buffeting control of a long-span triple-tower suspension bridge with MTMD. Applied Science, 7(4), 395.CrossRef
Zurück zum Zitat Vallada, E., & Ruiz, R. (2011). Genetic algorithms with path re linking for the minimum tardiness permutation flowshop problem. Omega, 38, 57–67.CrossRef Vallada, E., & Ruiz, R. (2011). Genetic algorithms with path re linking for the minimum tardiness permutation flowshop problem. Omega, 38, 57–67.CrossRef
Zurück zum Zitat Wen, Y. K., & Sun, L. M. (2015). Distributed ATMD for Buffeting Control of Cable-Stayed Bridges Under Construction. International Journal of Structural Stability and Dynamics, 15(3), 1450054.MathSciNetCrossRef Wen, Y. K., & Sun, L. M. (2015). Distributed ATMD for Buffeting Control of Cable-Stayed Bridges Under Construction. International Journal of Structural Stability and Dynamics, 15(3), 1450054.MathSciNetCrossRef
Zurück zum Zitat Xue, Y., Li, J., Li, F., & Song, Zh. (2020). Flutter and thermal buckling properties and active control of functionally graded piezoelectric material plate in supersonic airflow. Acta Mechanica Solida Sinica, 33, 692–706.CrossRef Xue, Y., Li, J., Li, F., & Song, Zh. (2020). Flutter and thermal buckling properties and active control of functionally graded piezoelectric material plate in supersonic airflow. Acta Mechanica Solida Sinica, 33, 692–706.CrossRef
Metadaten
Titel
Flutter Control of Long Span Suspension Bridges in Time Domain Using Optimized TMD
verfasst von
Hamed Alizadeh
Seyed Hossein Hosseni Lavassani
Publikationsdatum
20.02.2021
Verlag
Korean Society of Steel Construction
Erschienen in
International Journal of Steel Structures / Ausgabe 2/2021
Print ISSN: 1598-2351
Elektronische ISSN: 2093-6311
DOI
https://doi.org/10.1007/s13296-021-00469-y

Weitere Artikel der Ausgabe 2/2021

International Journal of Steel Structures 2/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.