Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 1-4/2019

06.08.2019 | ORIGINAL ARTICLE

Folding behavior of thermoplastic hinges fabricated with polymer extrusion additive manufacturing

verfasst von: Cesar Omar Balderrama-Armendariz, Eric MacDonald, David A. Roberson, Leopoldo Ruiz-Huerta, Aide Maldonado-Macias, Esdras Valadez-Gutierrez, Alberto Caballero-Ruiz, David Espalin

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 1-4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Due to the layer-by-layer nature of additive manufacturing, fabricated parts suffer from an anisotropic behavior with reduced mechanical performance when compared to traditional manufacturing. One specific mechanical property, folding endurance, requires both low flexural strength and simultaneously high elongation to achieve the flexibility needed to sustain repetitive bending. The present work provides an analysis of selected thermoplastics’ flexural capacity, including nylon (PA), polyethylene terephthalate (PETG), polylactide (PLA), thermoplastic polyurethane (TPU), polypropylene (PP), polyethylene (PE), and a TPR blend (ABSMG94: SEBS-g-MA 25:75), in order to evaluate the maximum number of folding cycles and load capacity sustained by a living hinge. A fractographic analysis was performed using scanning electron microscopy and computed tomography. Similar to the performance of injected molded products, the experimental results demonstrated that three of the tested materials behaved well in the context of a large number of folding cycles prior to an eventual detachment into two pieces; TPR blend, 244,424 cycles; PP endured one million cycles; and TPU, more than two million cycles, while the remaining materials failed to survive more than 1000 cycles. The hinges failure analysis revealed a wide variety of fracture morphologies and failure modes. In regard to the load capacity, PLA, PETG, and nylon provided the highest results in the ultimate strength of an axial static force applied (790.61 N, 656.06 N, and 652.75 N respectively), while the TPR blend was the highest (398.44 N) of the elastomeric materials (PP, TPU, and TPR blend). The evaluated materials demonstrated enough flexibility for use in specific applications such as stretchable electronics and wearable applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Melnikova R, Ehrmann A, Finsterbusch K (2014) 3D printing of textile-based structures by fused deposition modelling (FDM) with different polymer materials. IOP Conf Ser Mater Sci Eng 62:012018CrossRef Melnikova R, Ehrmann A, Finsterbusch K (2014) 3D printing of textile-based structures by fused deposition modelling (FDM) with different polymer materials. IOP Conf Ser Mater Sci Eng 62:012018CrossRef
2.
Zurück zum Zitat Irwin MD, Roberson DA, Olivas RI, Wicker RB, MacDonald E (2011) Conductive polymer-coated threads as electrical interconnects in e-textiles. Fibers Polym 12:904–910CrossRef Irwin MD, Roberson DA, Olivas RI, Wicker RB, MacDonald E (2011) Conductive polymer-coated threads as electrical interconnects in e-textiles. Fibers Polym 12:904–910CrossRef
3.
Zurück zum Zitat Rocío R, Ruiz-Huerta L, Almanza-Arjona YC et al (2017) Nanocomposites for additive manufacturing. Am J Chem Res 1:1–14 Rocío R, Ruiz-Huerta L, Almanza-Arjona YC et al (2017) Nanocomposites for additive manufacturing. Am J Chem Res 1:1–14
4.
Zurück zum Zitat Spahiu T, Piperi E, Grimmelsmann N et al (2016) 3D printing as a new technology for apparel designing and manufacturing. In: International Textile Conference Spahiu T, Piperi E, Grimmelsmann N et al (2016) 3D printing as a new technology for apparel designing and manufacturing. In: International Textile Conference
6.
Zurück zum Zitat Muth JT, Vogt DM, Truby RL, Mengüç Y, Kolesky DB, Wood RJ, Lewis JA (2014) Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv Mater 26:6307–6312CrossRef Muth JT, Vogt DM, Truby RL, Mengüç Y, Kolesky DB, Wood RJ, Lewis JA (2014) Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv Mater 26:6307–6312CrossRef
7.
Zurück zum Zitat Cao Q, Kim H-S, Pimparkar N, Kulkarni JP, Wang C, Shim M, Roy K, Alam MA, Rogers JA (2008) Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 454:495–500CrossRef Cao Q, Kim H-S, Pimparkar N, Kulkarni JP, Wang C, Shim M, Roy K, Alam MA, Rogers JA (2008) Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 454:495–500CrossRef
8.
Zurück zum Zitat Ko SH, Pan H, Grigoropoulos CP, Luscombe CK, Fréchet JMJ, Poulikakos D (2007) All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles. Nanotechnology 18:345202CrossRef Ko SH, Pan H, Grigoropoulos CP, Luscombe CK, Fréchet JMJ, Poulikakos D (2007) All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles. Nanotechnology 18:345202CrossRef
9.
Zurück zum Zitat Ahn J-H, Kim H-S, Lee KJ, Jeon S, Kang SJ, Sun Y, Nuzzo RG, Rogers JA (2006) Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials. Science 314:1754–1757CrossRef Ahn J-H, Kim H-S, Lee KJ, Jeon S, Kang SJ, Sun Y, Nuzzo RG, Rogers JA (2006) Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials. Science 314:1754–1757CrossRef
10.
Zurück zum Zitat Telfer S, Munguia J, Pallari J, Dalgarno K, Steultjens M, Woodburn J (2014) Personalized foot orthoses with embedded temperature sensing: proof of concept and relationship with activity. Med Eng Phys 36:9–15CrossRef Telfer S, Munguia J, Pallari J, Dalgarno K, Steultjens M, Woodburn J (2014) Personalized foot orthoses with embedded temperature sensing: proof of concept and relationship with activity. Med Eng Phys 36:9–15CrossRef
11.
Zurück zum Zitat Ma RR, Odhner LU, Dollar AM (2013) A modular, open-source 3D printed underactuated hand. In: 2013 IEEE International Conference on Robotics and Automation Ma RR, Odhner LU, Dollar AM (2013) A modular, open-source 3D printed underactuated hand. In: 2013 IEEE International Conference on Robotics and Automation
12.
Zurück zum Zitat Lipson H (2014) Challenges and opportunities for design, simulation, and fabrication of soft robots. Soft Rob 1:21–27CrossRef Lipson H (2014) Challenges and opportunities for design, simulation, and fabrication of soft robots. Soft Rob 1:21–27CrossRef
13.
Zurück zum Zitat Umedachi T, Vikas V, Trimmer BA (2013) Highly deformable 3-D printed soft robot generating inching and crawling locomotions with variable friction legs. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems Umedachi T, Vikas V, Trimmer BA (2013) Highly deformable 3-D printed soft robot generating inching and crawling locomotions with variable friction legs. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems
14.
Zurück zum Zitat Rossiter J, Walters P, Stoimenov B (2009) Printing 3D dielectric elastomer actuators for soft robotics. In: Electroactive Polymer Actuators and Devices (EAPAD) 2009 Rossiter J, Walters P, Stoimenov B (2009) Printing 3D dielectric elastomer actuators for soft robotics. In: Electroactive Polymer Actuators and Devices (EAPAD) 2009
15.
Zurück zum Zitat Bartlett NW, Tolley MT, Overvelde JTB, Weaver JC, Mosadegh B, Bertoldi K, Whitesides GM, Wood RJ (2015) SOFT ROBOTICS. A 3D-printed, functionally graded soft robot powered by combustion. Science 349:161–165CrossRef Bartlett NW, Tolley MT, Overvelde JTB, Weaver JC, Mosadegh B, Bertoldi K, Whitesides GM, Wood RJ (2015) SOFT ROBOTICS. A 3D-printed, functionally graded soft robot powered by combustion. Science 349:161–165CrossRef
16.
Zurück zum Zitat Croccolo D, De Agostinis M, Olmi G (2013) Experimental characterization and analytical modelling of the mechanical behaviour of fused deposition processed parts made of ABS-M30. Comput Mater Sci 79:506–518CrossRef Croccolo D, De Agostinis M, Olmi G (2013) Experimental characterization and analytical modelling of the mechanical behaviour of fused deposition processed parts made of ABS-M30. Comput Mater Sci 79:506–518CrossRef
17.
Zurück zum Zitat Torrado Perez AR, Roberson DA, Wicker RB (2014) Erratum to: Fracture surface analysis of 3D-printed tensile specimens of novel ABS-based materials. J Fail Anal Prev 14:549–549CrossRef Torrado Perez AR, Roberson DA, Wicker RB (2014) Erratum to: Fracture surface analysis of 3D-printed tensile specimens of novel ABS-based materials. J Fail Anal Prev 14:549–549CrossRef
18.
Zurück zum Zitat Bellini A, Güçeri S (2003) Mechanical characterization of parts fabricated using fused deposition modeling. Rapid Prototyp J 9:252–264CrossRef Bellini A, Güçeri S (2003) Mechanical characterization of parts fabricated using fused deposition modeling. Rapid Prototyp J 9:252–264CrossRef
19.
Zurück zum Zitat Es-Said OS, Foyos J, Noorani R, Mendelson M, Marloth R, Pregger BA (2000) Effect of layer orientation on mechanical properties of rapid prototyped samples. Mater Manuf Process 15:107–122CrossRef Es-Said OS, Foyos J, Noorani R, Mendelson M, Marloth R, Pregger BA (2000) Effect of layer orientation on mechanical properties of rapid prototyped samples. Mater Manuf Process 15:107–122CrossRef
20.
Zurück zum Zitat Bagsik A, Schöppner V, Klemp E (2010) FDM part quality manufactured with Ultem* 9085. In: DMRC (ed) International Science Conference Polymeric Materials Bagsik A, Schöppner V, Klemp E (2010) FDM part quality manufactured with Ultem* 9085. In: DMRC (ed) International Science Conference Polymeric Materials
21.
Zurück zum Zitat Torrado AR, Shemelya CM, English JD, Lin Y, Wicker RB, Roberson DA (2015) Characterizing the effect of additives to ABS on the mechanical property anisotropy of specimens fabricated by material extrusion 3D printing. Addit Manuf 6:16–29CrossRef Torrado AR, Shemelya CM, English JD, Lin Y, Wicker RB, Roberson DA (2015) Characterizing the effect of additives to ABS on the mechanical property anisotropy of specimens fabricated by material extrusion 3D printing. Addit Manuf 6:16–29CrossRef
22.
Zurück zum Zitat Lee CS, Kim SG, Kim HJ, Ahn SH (2007) Measurement of anisotropic compressive strength of rapid prototyping parts. J Mater Process Technol 187-188:627–630CrossRef Lee CS, Kim SG, Kim HJ, Ahn SH (2007) Measurement of anisotropic compressive strength of rapid prototyping parts. J Mater Process Technol 187-188:627–630CrossRef
23.
Zurück zum Zitat Wu W, Geng P, Li G, Zhao D, Zhang H, Zhao J (2015) Influence of layer thickness and raster angle on the mechanical properties of 3D-printed PEEK and a comparative mechanical study between PEEK and ABS. Materials 8:5834–5846CrossRef Wu W, Geng P, Li G, Zhao D, Zhang H, Zhao J (2015) Influence of layer thickness and raster angle on the mechanical properties of 3D-printed PEEK and a comparative mechanical study between PEEK and ABS. Materials 8:5834–5846CrossRef
24.
Zurück zum Zitat Lee BH, Abdullah J, Khan ZA (2005) Optimization of rapid prototyping parameters for production of flexible ABS object. J Mater Process Technol 169:54–61CrossRef Lee BH, Abdullah J, Khan ZA (2005) Optimization of rapid prototyping parameters for production of flexible ABS object. J Mater Process Technol 169:54–61CrossRef
25.
Zurück zum Zitat Vega V, Clements J, Lam T et al (2010) The effect of layer orientation on the mechanical properties and microstructure of a polymer. J Mater Eng Perform 20:978–988CrossRef Vega V, Clements J, Lam T et al (2010) The effect of layer orientation on the mechanical properties and microstructure of a polymer. J Mater Eng Perform 20:978–988CrossRef
26.
Zurück zum Zitat Roberson DA, Torrado Perez AR, Shemelya CM, Rivera A, MacDonald E, Wicker RB (2015) Comparison of stress concentrator fabrication for 3D printed polymeric izod impact test specimens. Addit Manuf 7:1–11CrossRef Roberson DA, Torrado Perez AR, Shemelya CM, Rivera A, MacDonald E, Wicker RB (2015) Comparison of stress concentrator fabrication for 3D printed polymeric izod impact test specimens. Addit Manuf 7:1–11CrossRef
28.
Zurück zum Zitat Torres J, Cotelo J, Karl J, Gordon AP (2015) Mechanical property optimization of FDM PLA in shear with multiple objectives. JOM 67:1183–1193CrossRef Torres J, Cotelo J, Karl J, Gordon AP (2015) Mechanical property optimization of FDM PLA in shear with multiple objectives. JOM 67:1183–1193CrossRef
29.
Zurück zum Zitat ASTM (2007) Standard test method for folding endurance of paper by the M.I.T. tester. ASTM International ASTM (2007) Standard test method for folding endurance of paper by the M.I.T. tester. ASTM International
30.
Zurück zum Zitat International Organization for Standardization (1993) Test method for folding endurance of paper by the M.I.T. tester. ISO International Organization for Standardization (1993) Test method for folding endurance of paper by the M.I.T. tester. ISO
33.
Zurück zum Zitat Siqueiros JG, Gilberto Siqueiros J, Schnittker K, Roberson DA (2016) ABS-maleated SEBS blend as a 3D printable material. Virtual Phys Prototyp 11:123–131CrossRef Siqueiros JG, Gilberto Siqueiros J, Schnittker K, Roberson DA (2016) ABS-maleated SEBS blend as a 3D printable material. Virtual Phys Prototyp 11:123–131CrossRef
34.
Zurück zum Zitat Meng Q, Li Y, Xu J (2013) New empirical stiffness equations for corner-filleted flexure hinges. Mech Sci 4:345–356CrossRef Meng Q, Li Y, Xu J (2013) New empirical stiffness equations for corner-filleted flexure hinges. Mech Sci 4:345–356CrossRef
35.
Zurück zum Zitat Dirksen F, Lammering R (2011) On mechanical properties of planar flexure hinges of compliant mechanisms. Mech Sci 2:109–117CrossRef Dirksen F, Lammering R (2011) On mechanical properties of planar flexure hinges of compliant mechanisms. Mech Sci 2:109–117CrossRef
36.
Zurück zum Zitat Zhu Z, Zhou X, Wang R, Liu Q (2014) A simple compliance modeling method for flexure hinges. Sci China Technol Sci 58:56–63CrossRef Zhu Z, Zhou X, Wang R, Liu Q (2014) A simple compliance modeling method for flexure hinges. Sci China Technol Sci 58:56–63CrossRef
37.
Zurück zum Zitat Smyth CT (2017) Functional design for 3D printing: designing 3D printed things for everyday use, 3rd edn Smyth CT (2017) Functional design for 3D printing: designing 3D printed things for everyday use, 3rd edn
38.
Zurück zum Zitat ASTM Committee F42 on Additive Manufacturing Technologies, ASTM Committee F42 on Additive Manufacturing Technologies. Subcommittee F42.01 on Test Methods, Technical Committee ISO/TC 261, Additive Manufacturing (2013) Standard terminology for additive manufacturing--coordinate systems and test methodologies ASTM Committee F42 on Additive Manufacturing Technologies, ASTM Committee F42 on Additive Manufacturing Technologies. Subcommittee F42.01 on Test Methods, Technical Committee ISO/TC 261, Additive Manufacturing (2013) Standard terminology for additive manufacturing--coordinate systems and test methodologies
39.
Zurück zum Zitat Engel L (1981) An atlas of polymer damage: surface examination by scanning electron microscope, Wiley-Blackwell Engel L (1981) An atlas of polymer damage: surface examination by scanning electron microscope, Wiley-Blackwell
Metadaten
Titel
Folding behavior of thermoplastic hinges fabricated with polymer extrusion additive manufacturing
verfasst von
Cesar Omar Balderrama-Armendariz
Eric MacDonald
David A. Roberson
Leopoldo Ruiz-Huerta
Aide Maldonado-Macias
Esdras Valadez-Gutierrez
Alberto Caballero-Ruiz
David Espalin
Publikationsdatum
06.08.2019
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 1-4/2019
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-019-04196-x

Weitere Artikel der Ausgabe 1-4/2019

The International Journal of Advanced Manufacturing Technology 1-4/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.