Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 10/2021

15.01.2021 | Research Article-Electrical Engineering

Fractional LMS and NLMS Algorithms for Line Echo Cancellation

verfasst von: Akhtar Ali Khan, Syed Muslim Shah, Muhammad Asif Zahoor Raja, Naveed Ishtiaq Chaudhary, Yigang He, J. A. Tenreiro Machado

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 10/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In long haul communication environments, speech data transmission is severely affected by echoes. This phenomenon results in high bit errors as well as in degraded and annoying performance. Traditionally these problems, including hybrid and acoustic echoes, have been controlled through the use of echo suppressors. These suppressors were subsequently replaced by line echo cancellers using adaptive Finite Impulse Response filters. Fractional calculus has been applied successfully for fixed filtering with constant coefficients and in discrete time adaptive filtering that adjusts the weights according to the environment. This paper presents the Fractional Least Mean Square (FLMS) and Fractional Normalized LMS (FNLMS) algorithms for application in echo cancellation. Moreover, the performances of the FLMS and FNLMS are compared with those provided by the standard LMS, NLMS and Block Discrete Fourier Transform solutions. The mean square error criterion is used as the performance comparison criterion for two types of voice signals namely real and synthetic. The simulation results show a performance improvement of about 50% over the traditional counterparts.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Lillian, G.: Telecommunications essentials: the complete global source for communications fundamentals, data networking and the Internet, and next-generation networks. Addison-Wesley Professional, Boston (2002) Lillian, G.: Telecommunications essentials: the complete global source for communications fundamentals, data networking and the Internet, and next-generation networks. Addison-Wesley Professional, Boston (2002)
2.
Zurück zum Zitat Fontolliet, P.-G.: ”Telecommunication system engineering:, by Roger L. Freeman, Raytheon Company, Marlborough, MA, USA. Publishers: John Wiley and Sons, Inc., Baffins Lane, Chichester, West Sussex PO19 1UD, United Kingdom, 1989, xxix+ 752 pp., ISBN 0-471-63423-9.” : 107 (1991) Fontolliet, P.-G.: ”Telecommunication system engineering:, by Roger L. Freeman, Raytheon Company, Marlborough, MA, USA. Publishers: John Wiley and Sons, Inc., Baffins Lane, Chichester, West Sussex PO19 1UD, United Kingdom, 1989, xxix+ 752 pp., ISBN 0-471-63423-9.” : 107 (1991)
3.
Zurück zum Zitat Riverside, H.: Recommended Standard for the UK National Transmission Plan for Public Networks, (2005) Riverside, H.: Recommended Standard for the UK National Transmission Plan for Public Networks, (2005)
4.
Zurück zum Zitat Ouyang, Y.; Yan, T.; Wang, G.: CrowdMi: scalable and diagnosable mobile voice quality assessment through wireless analytics. IEEE Int. Things J. 2(4), 287–294 (2015)CrossRef Ouyang, Y.; Yan, T.; Wang, G.: CrowdMi: scalable and diagnosable mobile voice quality assessment through wireless analytics. IEEE Int. Things J. 2(4), 287–294 (2015)CrossRef
5.
Zurück zum Zitat Hoffmann, K.: ”Runtime-dependent switching off of the echo compensation in packet networks.” U.S. Patent Application 10/519,626, filed October 6, (2005) Hoffmann, K.: ”Runtime-dependent switching off of the echo compensation in packet networks.” U.S. Patent Application 10/519,626, filed October 6, (2005)
6.
Zurück zum Zitat Gut-Mostowy, H.; Marian, K.; Piotr, B.; MichaÅ, P.; Grzegorz, S.: ”Charakterystyki i obszary zastosowaÅ telekomunikacyjnych usÅug multimedialnych.” Telekomunikacja i Techniki Informacyjne 19–40 (2002) Gut-Mostowy, H.; Marian, K.; Piotr, B.; MichaÅ, P.; Grzegorz, S.: ”Charakterystyki i obszary zastosowaÅ telekomunikacyjnych usÅug multimedialnych.” Telekomunikacja i Techniki Informacyjne 19–40 (2002)
7.
Zurück zum Zitat Standard, Australian. ”Alliance Ltd.” (2015) Standard, Australian. ”Alliance Ltd.” (2015)
8.
Zurück zum Zitat Bjorsell, J.E.V.; Maksym S.: ”Emergency assistance calling for voice over IP communications systems.” U.S. Patent 8,537,805, issued September 17 (2013) Bjorsell, J.E.V.; Maksym S.: ”Emergency assistance calling for voice over IP communications systems.” U.S. Patent 8,537,805, issued September 17 (2013)
9.
Zurück zum Zitat Novoselov, S.A.; Topnikov, A.I.; Savvatin, A.I.: ”Algorithm for noise removal of speech commands by spectral tracking.” In Dokl. , pp. 224-226. (2011) Novoselov, S.A.; Topnikov, A.I.; Savvatin, A.I.: ”Algorithm for noise removal of speech commands by spectral tracking.” In Dokl. , pp. 224-226. (2011)
10.
Zurück zum Zitat Sector, Standardization, and of ITU. ”ITU-Tg. 108.2.” Sector, Standardization, and of ITU. ”ITU-Tg. 108.2.”
11.
Zurück zum Zitat LeBlanc, W.: ”Interaction between echo canceller and packet voice processing.” U.S. Patent 8,472,617, issued June 25, (2013) LeBlanc, W.: ”Interaction between echo canceller and packet voice processing.” U.S. Patent 8,472,617, issued June 25, (2013)
13.
Zurück zum Zitat Zahoor, R.M.A.; Qureshi, I.M.: A modified least mean square algorithm using fractional derivative and its application to system identification. Eur. J. Sci. Res. 35(1), 14–21 (2009) Zahoor, R.M.A.; Qureshi, I.M.: A modified least mean square algorithm using fractional derivative and its application to system identification. Eur. J. Sci. Res. 35(1), 14–21 (2009)
14.
Zurück zum Zitat Shah, S.M.; Samar, R.; Noor, R.; han, N.M.; Raja, M.A.Z.: ”Design of fractional-order variants of complex LMS and NLMS algorithms for adaptive channel equalization”, Nonlinear Dynamics, pp. 1–20, (2017) Shah, S.M.; Samar, R.; Noor, R.; han, N.M.; Raja, M.A.Z.: ”Design of fractional-order variants of complex LMS and NLMS algorithms for adaptive channel equalization”, Nonlinear Dynamics, pp. 1–20, (2017)
15.
Zurück zum Zitat Shah, S.M.; Samar, R.; Khan, N.M.; Raja, M.A.Z.: Fractional-order adaptive signal processing strategies for active noise control systems. Nonlinear Dyn. 85(3), 1363–1376 (2016)MathSciNetCrossRef Shah, S.M.; Samar, R.; Khan, N.M.; Raja, M.A.Z.: Fractional-order adaptive signal processing strategies for active noise control systems. Nonlinear Dyn. 85(3), 1363–1376 (2016)MathSciNetCrossRef
16.
Zurück zum Zitat Machado, J. T.; Lopes, A. M.: . multidimensional scaling locus of memristor and fractional order elements. J. Adv. Res. (2020) Machado, J. T.; Lopes, A. M.: . multidimensional scaling locus of memristor and fractional order elements. J. Adv. Res. (2020)
17.
Zurück zum Zitat Sweilam, N.H.; Al-Mekhlafi, S.M.; Baleanu, D.: Optimal control for a fractional tuberculosis infection model including the impact of diabetes and resistant strains. J. Adv. Res. 17, 125–137 (2019)CrossRef Sweilam, N.H.; Al-Mekhlafi, S.M.; Baleanu, D.: Optimal control for a fractional tuberculosis infection model including the impact of diabetes and resistant strains. J. Adv. Res. 17, 125–137 (2019)CrossRef
18.
Zurück zum Zitat Ortigueira, M.D.; Bengochea, G.: Non-commensurate fractional linear systems: new results. Journal of Advanced Research (2020) Ortigueira, M.D.; Bengochea, G.: Non-commensurate fractional linear systems: new results. Journal of Advanced Research (2020)
19.
Zurück zum Zitat Tufenkci, S.; Senol, B.; Alagoz, B.B.; MatuÅÅ, R.: Disturbance Rejection FOPID Controller Design in v-domain. J. Adv. Res. (2020) Tufenkci, S.; Senol, B.; Alagoz, B.B.; MatuÅÅ, R.: Disturbance Rejection FOPID Controller Design in v-domain. J. Adv. Res. (2020)
20.
Zurück zum Zitat Tseng, C.C.: Design of variable and adaptive fractional order FIR differentiators. Sig. Process. 86, 2554–2566 (2006)CrossRef Tseng, C.C.: Design of variable and adaptive fractional order FIR differentiators. Sig. Process. 86, 2554–2566 (2006)CrossRef
21.
Zurück zum Zitat Shah, S.M.: Riemann-Liouville operator-based fractional normalised least mean square algorithmwith application to decision feedback equalisation of multipath channels. IET Signal Proc. 10(6), 575–582 (2016)CrossRef Shah, S.M.: Riemann-Liouville operator-based fractional normalised least mean square algorithmwith application to decision feedback equalisation of multipath channels. IET Signal Proc. 10(6), 575–582 (2016)CrossRef
22.
Zurück zum Zitat Adaptive filter design with RIDE-method national instruments Adaptive filter design with RIDE-method national instruments
23.
Zurück zum Zitat Qureshi, S.U.H.: Adaptive equalization. Proc. IEEE 73(9), 1349–1387 (1985)CrossRef Qureshi, S.U.H.: Adaptive equalization. Proc. IEEE 73(9), 1349–1387 (1985)CrossRef
24.
Zurück zum Zitat Shen Q.A.: Spanias, Time and frequency domain x-block LMS algorithms for single channel active noise control. International Congress on Recent Developments in Air- and Structure-Borne Sound and Vibration, pp. 353-360. (1992) Shen Q.A.: Spanias, Time and frequency domain x-block LMS algorithms for single channel active noise control. International Congress on Recent Developments in Air- and Structure-Borne Sound and Vibration, pp. 353-360. (1992)
25.
Zurück zum Zitat Reichard, K.M.; Swanson, D.C.: Frequency domain implementation of the filtered-x algorithm with online system identification. In Proceedings of the Recent Advances in Active Sound Vibration , pp. 562-573 (1993) Reichard, K.M.; Swanson, D.C.: Frequency domain implementation of the filtered-x algorithm with online system identification. In Proceedings of the Recent Advances in Active Sound Vibration , pp. 562-573 (1993)
26.
Zurück zum Zitat Park, S.J.; Yun, J.H.; Park, Y.C.; Youn, D.H.: A delay less subband active noise control system for wideband noise control. Trans. Speech Audio Process. IEEE 9(8), 892–899 (2001)CrossRef Park, S.J.; Yun, J.H.; Park, Y.C.; Youn, D.H.: A delay less subband active noise control system for wideband noise control. Trans. Speech Audio Process. IEEE 9(8), 892–899 (2001)CrossRef
27.
Zurück zum Zitat DeBrunner, V.; DeBrunner, L.; Wang, L.: Sub-band adaptive filtering with delay compensation for active control. Trans. Sig. Process. IEEE 52(10), 2932–2941 (2004)CrossRef DeBrunner, V.; DeBrunner, L.; Wang, L.: Sub-band adaptive filtering with delay compensation for active control. Trans. Sig. Process. IEEE 52(10), 2932–2941 (2004)CrossRef
28.
Zurück zum Zitat Siravara, B.; Magotra, N.; Loizou, P.: A novel approach for single microphone active noise cancellation. Circuits Syst. MWSCAS-2002, 3, III-469-III-472 (2002) Siravara, B.; Magotra, N.; Loizou, P.: A novel approach for single microphone active noise cancellation. Circuits Syst. MWSCAS-2002, 3, III-469-III-472 (2002)
29.
Zurück zum Zitat Bleanu, D.; Antnio M.L.: Handbook of Fractional Calculus with Applications, (De Gruyter) (2019) Bleanu, D.; Antnio M.L.: Handbook of Fractional Calculus with Applications, (De Gruyter) (2019)
30.
Zurück zum Zitat Miller, K.S.; Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)MATH Miller, K.S.; Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)MATH
31.
Zurück zum Zitat Oldham, K.B.; Spanier, J.: The Fractional Calculus. Mathematics in science and engineering. Vol. 111Academic Press, New York (1974)MATH Oldham, K.B.; Spanier, J.: The Fractional Calculus. Mathematics in science and engineering. Vol. 111Academic Press, New York (1974)MATH
32.
Zurück zum Zitat Samko, S.G.; Kilbas, A.A.; Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Reprint Taylor and Francis Books Ltd, London (2002)MATH Samko, S.G.; Kilbas, A.A.; Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Reprint Taylor and Francis Books Ltd, London (2002)MATH
33.
Zurück zum Zitat Shaowei, W.; Mingyu, X.: Exact solution on unsteady Couette flow of generalized Maxwell fluid with fractional derivative. J. Acta Mech. 187(1), 103–112 (2006)CrossRef Shaowei, W.; Mingyu, X.: Exact solution on unsteady Couette flow of generalized Maxwell fluid with fractional derivative. J. Acta Mech. 187(1), 103–112 (2006)CrossRef
34.
Zurück zum Zitat Mbodje, B.; Montseny, G.: Boundary fractional derivative control of the wave equation. IEEE Trans. Autom. Contr. 40, 378–382 (1995)MathSciNetCrossRef Mbodje, B.; Montseny, G.: Boundary fractional derivative control of the wave equation. IEEE Trans. Autom. Contr. 40, 378–382 (1995)MathSciNetCrossRef
35.
Zurück zum Zitat Odibat, Z.; Momani, S.: Modified homotopy perturbation method: Application to quadratic Riccati differential equation of fractional order. Chaos Solitons Fractals 36(1), 167–174 (2008)MathSciNetCrossRef Odibat, Z.; Momani, S.: Modified homotopy perturbation method: Application to quadratic Riccati differential equation of fractional order. Chaos Solitons Fractals 36(1), 167–174 (2008)MathSciNetCrossRef
36.
Zurück zum Zitat Engheta, N.: On the role of fractional calculus in electromagnetic theory. IEEE Antennas Propagat. Mag. 39, 35–46 (1997)CrossRef Engheta, N.: On the role of fractional calculus in electromagnetic theory. IEEE Antennas Propagat. Mag. 39, 35–46 (1997)CrossRef
37.
Zurück zum Zitat Fenander, A.: A fractional derivative railpad model included in a railway track model. J. Sound Vib. 212(5), 889–903 (1998)CrossRef Fenander, A.: A fractional derivative railpad model included in a railway track model. J. Sound Vib. 212(5), 889–903 (1998)CrossRef
38.
Zurück zum Zitat Ortigueira, M.D.: Proceedings of the Institution of Electrical Engineering and proceedings of visual Image Signal Process 147, 71–78 (2000) Ortigueira, M.D.: Proceedings of the Institution of Electrical Engineering and proceedings of visual Image Signal Process 147, 71–78 (2000)
39.
Zurück zum Zitat Ortigueira, M.D.: Introduction to fractional linear systems-Part 2: Discrete-time case. Proc. Inst. Electr. Eng. Proc. Vis. Image Signal Process 147, 71–78 (2000)CrossRef Ortigueira, M.D.: Introduction to fractional linear systems-Part 2: Discrete-time case. Proc. Inst. Electr. Eng. Proc. Vis. Image Signal Process 147, 71–78 (2000)CrossRef
40.
Zurück zum Zitat Machado, T. J. A.: ”Analysis and Design of Fractional-Order Digital Control Systems, Systems Analysis Modelling Simulation,” Gordon and Breach Science Publishers, 27(2-3) 107-122, (1997) Machado, T. J. A.: ”Analysis and Design of Fractional-Order Digital Control Systems, Systems Analysis Modelling Simulation,” Gordon and Breach Science Publishers, 27(2-3) 107-122, (1997)
41.
Zurück zum Zitat Machado, T. J. A.: ”Fractional-Order Derivative Approximations in Discrete-Time Control Systems, Systems Analysis Modelling Simulation,” Gordon and Breach Science Publishers, vol. 34, pp. 419-434, ISSN: 0232-9298. (1999) Machado, T. J. A.: ”Fractional-Order Derivative Approximations in Discrete-Time Control Systems, Systems Analysis Modelling Simulation,” Gordon and Breach Science Publishers, vol. 34, pp. 419-434, ISSN: 0232-9298. (1999)
42.
Zurück zum Zitat Shah, S.M.; Samar, R.; Naqvi, S.M.; Chambers, J.A.: Fractional order constant modulus blind algorithms with application to channel equalisation. Electron. Lett. 50(23), 1702–1704 (2014)CrossRef Shah, S.M.; Samar, R.; Naqvi, S.M.; Chambers, J.A.: Fractional order constant modulus blind algorithms with application to channel equalisation. Electron. Lett. 50(23), 1702–1704 (2014)CrossRef
43.
Zurück zum Zitat Shah, S.M.; Samar, R.; Raja, M.A.Z.; Chambers, J.A.: Fractional Normalized Filtered-error Least Mean Squares Algorithm for Applications in Active Noise Control Systems. Electron. Lett. 14, 973–975 (2014)CrossRef Shah, S.M.; Samar, R.; Raja, M.A.Z.; Chambers, J.A.: Fractional Normalized Filtered-error Least Mean Squares Algorithm for Applications in Active Noise Control Systems. Electron. Lett. 14, 973–975 (2014)CrossRef
44.
Zurück zum Zitat Shah, S.M.; Samar, R.; Raja, M.A.Z.: Fractional-order algorithms for tracking Rayleigh fading channels. Nonlinear Dyn. 92, 1243–1259 (2018)CrossRef Shah, S.M.; Samar, R.; Raja, M.A.Z.: Fractional-order algorithms for tracking Rayleigh fading channels. Nonlinear Dyn. 92, 1243–1259 (2018)CrossRef
45.
Zurück zum Zitat Wang, Y.: Dynamic analysis and synchronization of conformable fractional-order chaotic systems. Eur. Phys. J. Plus 133, 481 (2018)CrossRef Wang, Y.: Dynamic analysis and synchronization of conformable fractional-order chaotic systems. Eur. Phys. J. Plus 133, 481 (2018)CrossRef
46.
Zurück zum Zitat Morales-Delgado, V.F.; Gómez-Aguilar, J.F.; Kumar, S.; Taneco-Hernndez, M.A.: Analytical solutions of the Keller-Segel chemotaxis model involving fractional operators without singular kernel. Eur. Phys. J. Plus 133, 200 (2018)CrossRef Morales-Delgado, V.F.; Gómez-Aguilar, J.F.; Kumar, S.; Taneco-Hernndez, M.A.: Analytical solutions of the Keller-Segel chemotaxis model involving fractional operators without singular kernel. Eur. Phys. J. Plus 133, 200 (2018)CrossRef
47.
Zurück zum Zitat Zuiga-Aguilar, C.J.; Gómez-Aguilar, J.F.; Escobar-Jimánez, R.F.; Romero-Ugalde, H.M.: Robust control for fractional variable-order chaotic systems with non-singular kernel. Eur. Phys. J. Plus 133, 103 (2018)CrossRef Zuiga-Aguilar, C.J.; Gómez-Aguilar, J.F.; Escobar-Jimánez, R.F.; Romero-Ugalde, H.M.: Robust control for fractional variable-order chaotic systems with non-singular kernel. Eur. Phys. J. Plus 133, 103 (2018)CrossRef
48.
Zurück zum Zitat Roohi, R.; Heydari, M.H.; Aslami, M.; Mahmoudi, M.R.: A comprehensive numerical study of space-time fractional bioheat equation using fractional-order Legendre functions. Eur. Phys. J. Plus 133(10), 412 (2018)CrossRef Roohi, R.; Heydari, M.H.; Aslami, M.; Mahmoudi, M.R.: A comprehensive numerical study of space-time fractional bioheat equation using fractional-order Legendre functions. Eur. Phys. J. Plus 133(10), 412 (2018)CrossRef
49.
Zurück zum Zitat Machado, J.T.; Kiryakova, V.; Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16, 1140 (2011)MathSciNetCrossRef Machado, J.T.; Kiryakova, V.; Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16, 1140 (2011)MathSciNetCrossRef
50.
Zurück zum Zitat Chaudhary, N.I.; Ahmed, M.; Khan, Z.A.; Zubair, S.; Raja, M.A.Z.; Dedovic, N.: Design of normalized fractional adaptive algorithms for parameter estimation of control autoregressive autoregressive systems. Appl. Math. Model. 55, 698 (2018)MathSciNetCrossRef Chaudhary, N.I.; Ahmed, M.; Khan, Z.A.; Zubair, S.; Raja, M.A.Z.; Dedovic, N.: Design of normalized fractional adaptive algorithms for parameter estimation of control autoregressive autoregressive systems. Appl. Math. Model. 55, 698 (2018)MathSciNetCrossRef
51.
Zurück zum Zitat Chaudhary, N.I.; Manzar, M.A.; Raja, M.A.Z.: Fractional Volterra LMS algorithm with application to Hammerstein control autoregressive model identification. Neural Comput. Appl. 31(9), 5227–5240 (2019)CrossRef Chaudhary, N.I.; Manzar, M.A.; Raja, M.A.Z.: Fractional Volterra LMS algorithm with application to Hammerstein control autoregressive model identification. Neural Comput. Appl. 31(9), 5227–5240 (2019)CrossRef
52.
Zurück zum Zitat Sayed, Ali H.: Adaptive Filters, (Wiley Interscience), (2008) Sayed, Ali H.: Adaptive Filters, (Wiley Interscience), (2008)
53.
Zurück zum Zitat Agarwal, A.; Mammone, R.J.: Long-term memory for neural networks. In: Memmone, R.J. (ed.) Artificial Neural Networks for Speech and Vision. Chapman and Hall, London (1993) Agarwal, A.; Mammone, R.J.: Long-term memory for neural networks. In: Memmone, R.J. (ed.) Artificial Neural Networks for Speech and Vision. Chapman and Hall, London (1993)
54.
Zurück zum Zitat Douglas, S.C.: Adaptive filters employing partial updates. IEEE Trans. Circuit Syst. II Analog Digit. Signal Process. 44, 209–216 (1997)CrossRef Douglas, S.C.: Adaptive filters employing partial updates. IEEE Trans. Circuit Syst. II Analog Digit. Signal Process. 44, 209–216 (1997)CrossRef
55.
Zurück zum Zitat Aslam, M.S.; Chaudhary, N.I.; Raja, M.A.Z.: A sliding-window approximation-based fractional adaptive strategy for Hammerstein nonlinear ARMAX systems. Nonlinear Dyn. 87(1), 519–533 (2017)CrossRef Aslam, M.S.; Chaudhary, N.I.; Raja, M.A.Z.: A sliding-window approximation-based fractional adaptive strategy for Hammerstein nonlinear ARMAX systems. Nonlinear Dyn. 87(1), 519–533 (2017)CrossRef
57.
Zurück zum Zitat Chaudhary, N.I.; Zubair, S.; Aslam, M.S.; Raja, M.A.Z.; Machado, J.T.: Design of momentum fractional LMS for Hammerstein nonlinear system identification with application to electrically stimulated muscle model. Eur. Phys. J. Plus 134(8), 407 (2019)CrossRef Chaudhary, N.I.; Zubair, S.; Aslam, M.S.; Raja, M.A.Z.; Machado, J.T.: Design of momentum fractional LMS for Hammerstein nonlinear system identification with application to electrically stimulated muscle model. Eur. Phys. J. Plus 134(8), 407 (2019)CrossRef
58.
Zurück zum Zitat Chaudhary, N.I.; Zubair, S.; Khan, Z.A.; Raja, M.A.Z.; Dedovic, N.: Normalized fractional adaptive methods for nonlinear control autoregressive systems. Appl. Math. Model. 66, 457–471 (2019)MathSciNetCrossRef Chaudhary, N.I.; Zubair, S.; Khan, Z.A.; Raja, M.A.Z.; Dedovic, N.: Normalized fractional adaptive methods for nonlinear control autoregressive systems. Appl. Math. Model. 66, 457–471 (2019)MathSciNetCrossRef
59.
Zurück zum Zitat Ortigueira, M.D.; Machado, J.T.: New discrete-time fractional derivatives based on the bilinear transformation: definitions and properties. J. Adv. Res. (2020) Ortigueira, M.D.; Machado, J.T.: New discrete-time fractional derivatives based on the bilinear transformation: definitions and properties. J. Adv. Res. (2020)
60.
Zurück zum Zitat Boroujeny, B.F.: Adaptive filters theory and applications. John Wiley and Sons, Boston (2013)CrossRef Boroujeny, B.F.: Adaptive filters theory and applications. John Wiley and Sons, Boston (2013)CrossRef
Metadaten
Titel
Fractional LMS and NLMS Algorithms for Line Echo Cancellation
verfasst von
Akhtar Ali Khan
Syed Muslim Shah
Muhammad Asif Zahoor Raja
Naveed Ishtiaq Chaudhary
Yigang He
J. A. Tenreiro Machado
Publikationsdatum
15.01.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 10/2021
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-020-05264-1

Weitere Artikel der Ausgabe 10/2021

Arabian Journal for Science and Engineering 10/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.