Skip to main content

2021 | OriginalPaper | Buchkapitel

11. Fractionation, Characterization, and Valorization of Lignin Derived from Engineered Plants

verfasst von : Enshi Liu, Wenqi Li, Seth DeBolt, Sue E. Nokes, Jian Shi

Erschienen in: Emerging Technologies for Biorefineries, Biofuels, and Value-Added Commodities

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

There is an urgent need to address the societal and sustainability challenges in the food, energy, and water (FEW) nexus at the global level. Research on improving the efficiency and sustainability of lignocellulosic conversion technologies and development of biomass feedstocks that are amenable to pretreatments has become a focus of the research community over the past few years. Genetic manipulation of lignin is a promising approach to generate biomass feedstocks with favorable properties. However, it is relatively unexplored in the area of understanding the effects of lignin modification on fractionation, characterization, and upgrading of lignin streams from engineered biomass feedstocks. There is a knowledge gap in linking the chemical complexity of lignin with its biological, spatial, and functional deposition with respect to how to separate and utilize the feedstock in a biorefinery. This knowledge is necessary for development of lignin-engineered plants and downstream processing technologies. This review recapitulates recent progress in lignin genetic modification and the leading technologies to fractionate and characterize lignin streams. Possible lignin valorization pathways including oxidative and reductive catalysis, electrocatalysis, and biological upgrading, in particular for use with engineered biomass feedstocks, are also discussed. Challenges and the outlook for future development are also briefly reviewed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Obama, B. (2017). The irreversible momentum of clean energy. Science, 355(6321), 126–129.CrossRef Obama, B. (2017). The irreversible momentum of clean energy. Science, 355(6321), 126–129.CrossRef
2.
Zurück zum Zitat Ragauskas, A. J., Williams, C. K., Davison, B. H., Britovsek, G., Cairney, J., Eckert, C. A., Frederick, W. J., Hallett, J. P., Leak, D. J., & Liotta, C. L. (2006). The path forward for biofuels and biomaterials. Science, 311(5760), 484–489.CrossRef Ragauskas, A. J., Williams, C. K., Davison, B. H., Britovsek, G., Cairney, J., Eckert, C. A., Frederick, W. J., Hallett, J. P., Leak, D. J., & Liotta, C. L. (2006). The path forward for biofuels and biomaterials. Science, 311(5760), 484–489.CrossRef
3.
Zurück zum Zitat Chundawat, S. P., Beckham, G. T., Himmel, M. E., & Dale, B. E. (2011). Deconstruction of lignocellulosic biomass to fuels and chemicals. Annual Review of Chemical and Biomolecular Engineering, 2, 121–145.CrossRef Chundawat, S. P., Beckham, G. T., Himmel, M. E., & Dale, B. E. (2011). Deconstruction of lignocellulosic biomass to fuels and chemicals. Annual Review of Chemical and Biomolecular Engineering, 2, 121–145.CrossRef
4.
Zurück zum Zitat Tuck, C. O., Pérez, E., Horváth, I. T., Sheldon, R. A., & Poliakoff, M. (2012). Valorization of biomass: Deriving more value from waste. Science, 337(6095), 695–699.CrossRef Tuck, C. O., Pérez, E., Horváth, I. T., Sheldon, R. A., & Poliakoff, M. (2012). Valorization of biomass: Deriving more value from waste. Science, 337(6095), 695–699.CrossRef
5.
Zurück zum Zitat Hisano, H., Nandakumar, R., & Wang, Z.-Y. (2011). Genetic modification of lignin biosynthesis for improved biofuel production. In Biofuels (pp. 223–235). New York: Springer.CrossRef Hisano, H., Nandakumar, R., & Wang, Z.-Y. (2011). Genetic modification of lignin biosynthesis for improved biofuel production. In Biofuels (pp. 223–235). New York: Springer.CrossRef
6.
Zurück zum Zitat Carroll, A., & Somerville, C. (2009). Cellulosic biofuels. Annual Review of Plant Biology, 60, 165–182.CrossRef Carroll, A., & Somerville, C. (2009). Cellulosic biofuels. Annual Review of Plant Biology, 60, 165–182.CrossRef
7.
Zurück zum Zitat Wyman, C. E., Dale, B. E., Elander, R. T., Holtzapple, M., Ladisch, M. R., & Lee, Y. (2005). Coordinated development of leading biomass pretreatment technologies. Bioresource Technology, 96(18), 1959–1966.CrossRef Wyman, C. E., Dale, B. E., Elander, R. T., Holtzapple, M., Ladisch, M. R., & Lee, Y. (2005). Coordinated development of leading biomass pretreatment technologies. Bioresource Technology, 96(18), 1959–1966.CrossRef
8.
Zurück zum Zitat Kim, S., & Dale, B. E. (2004). Global potential bioethanol production from wasted crops and crop residues. Biomass & Bioenergy, 26(4), 361–375.CrossRef Kim, S., & Dale, B. E. (2004). Global potential bioethanol production from wasted crops and crop residues. Biomass & Bioenergy, 26(4), 361–375.CrossRef
9.
Zurück zum Zitat Lynd, L. R., Laser, M. S., Bransby, D., Dale, B. E., Davison, B., Hamilton, R., Himmel, M., Keller, M., McMillan, J. D., & Sheehan, J. (2008). How biotech can transform biofuels. Nature Biotechnology, 26(2), 169.CrossRef Lynd, L. R., Laser, M. S., Bransby, D., Dale, B. E., Davison, B., Hamilton, R., Himmel, M., Keller, M., McMillan, J. D., & Sheehan, J. (2008). How biotech can transform biofuels. Nature Biotechnology, 26(2), 169.CrossRef
10.
Zurück zum Zitat Lynd, L. R., Van Zyl, W. H., McBride, J. E., & Laser, M. (2005). Consolidated bioprocessing of cellulosic biomass: An update. Current Opinion in Biotechnology, 16(5), 577–583.CrossRef Lynd, L. R., Van Zyl, W. H., McBride, J. E., & Laser, M. (2005). Consolidated bioprocessing of cellulosic biomass: An update. Current Opinion in Biotechnology, 16(5), 577–583.CrossRef
11.
Zurück zum Zitat Beckham, G. T., Johnson, C. W., Karp, E. M., Salvachúa, D., & Vardon, D. R. (2016). Opportunities and challenges in biological lignin valorization. Current Opinion in Biotechnology, 42, 40–53.CrossRef Beckham, G. T., Johnson, C. W., Karp, E. M., Salvachúa, D., & Vardon, D. R. (2016). Opportunities and challenges in biological lignin valorization. Current Opinion in Biotechnology, 42, 40–53.CrossRef
12.
Zurück zum Zitat Ragauskas, A. J., Beckham, G. T., Biddy, M. J., Chandra, R., Chen, F., Davis, M. F., Davison, B. H., Dixon, R. A., Gilna, P., Keller, M., Langan, P., Naskar, A. K., Saddler, J. N., Tschaplinski, T. J., Tuskan, G. A., & Wyman, C. E. (2014). Lignin valorization: Improving lignin processing in the biorefinery. Science, 344(6185), 1246843.CrossRef Ragauskas, A. J., Beckham, G. T., Biddy, M. J., Chandra, R., Chen, F., Davis, M. F., Davison, B. H., Dixon, R. A., Gilna, P., Keller, M., Langan, P., Naskar, A. K., Saddler, J. N., Tschaplinski, T. J., Tuskan, G. A., & Wyman, C. E. (2014). Lignin valorization: Improving lignin processing in the biorefinery. Science, 344(6185), 1246843.CrossRef
13.
Zurück zum Zitat Azadi, P., Inderwildi, O. R., Farnood, R., & King, D. A. (2013). Liquid fuels, hydrogen and chemicals from lignin: A critical review. Renewable and Sustainable Energy Reviews, 21, 506–523.CrossRef Azadi, P., Inderwildi, O. R., Farnood, R., & King, D. A. (2013). Liquid fuels, hydrogen and chemicals from lignin: A critical review. Renewable and Sustainable Energy Reviews, 21, 506–523.CrossRef
14.
Zurück zum Zitat Linger, J. G., Vardon, D. R., Guarnieri, M. T., Karp, E. M., Hunsinger, G. B., Franden, M. A., Johnson, C. W., Chupka, G., Strathmann, T. J., & Pienkos, P. T. (2014). Lignin valorization through integrated biological funneling and chemical catalysis. Proceedings of the National Academy of Sciences of the United States of America, 111(33), 12013–12018.CrossRef Linger, J. G., Vardon, D. R., Guarnieri, M. T., Karp, E. M., Hunsinger, G. B., Franden, M. A., Johnson, C. W., Chupka, G., Strathmann, T. J., & Pienkos, P. T. (2014). Lignin valorization through integrated biological funneling and chemical catalysis. Proceedings of the National Academy of Sciences of the United States of America, 111(33), 12013–12018.CrossRef
15.
Zurück zum Zitat Xu, C., Arancon, R. A. D., Labidi, J., & Luque, R. (2014). Lignin depolymerisation strategies: Towards valuable chemicals and fuels. Chemical Society Reviews, 43(22), 7485–7500.CrossRef Xu, C., Arancon, R. A. D., Labidi, J., & Luque, R. (2014). Lignin depolymerisation strategies: Towards valuable chemicals and fuels. Chemical Society Reviews, 43(22), 7485–7500.CrossRef
16.
Zurück zum Zitat Behling, R., Valange, S., & Chatel, G. (2016). Heterogeneous catalytic oxidation for lignin valorization into valuable chemicals: What results? What limitations? What trends? Green Chemistry, 18(7), 1839–1854.CrossRef Behling, R., Valange, S., & Chatel, G. (2016). Heterogeneous catalytic oxidation for lignin valorization into valuable chemicals: What results? What limitations? What trends? Green Chemistry, 18(7), 1839–1854.CrossRef
17.
Zurück zum Zitat Sathitsuksanoh, N., Holtman, K. M., Yelle, D. J., Morgan, T., Stavila, V., Pelton, J., Blanch, H., Simmons, B. A., & George, A. (2014). Lignin fate and characterization during ionic liquid biomass pretreatment for renewable chemicals and fuels production. Green Chemistry, 16(3), 1236–1247.CrossRef Sathitsuksanoh, N., Holtman, K. M., Yelle, D. J., Morgan, T., Stavila, V., Pelton, J., Blanch, H., Simmons, B. A., & George, A. (2014). Lignin fate and characterization during ionic liquid biomass pretreatment for renewable chemicals and fuels production. Green Chemistry, 16(3), 1236–1247.CrossRef
18.
Zurück zum Zitat Shi, J., Pattathil, S., Parthasarathi, R., Anderson, N. A., Im Kim, J., Venketachalam, S., Hahn, M. G., Chapple, C., Simmons, B. A., & Singh, S. (2016). Impact of engineered lignin composition on biomass recalcitrance and ionic liquid pretreatment efficiency. Green Chemistry, 18(18), 4884–4895.CrossRef Shi, J., Pattathil, S., Parthasarathi, R., Anderson, N. A., Im Kim, J., Venketachalam, S., Hahn, M. G., Chapple, C., Simmons, B. A., & Singh, S. (2016). Impact of engineered lignin composition on biomass recalcitrance and ionic liquid pretreatment efficiency. Green Chemistry, 18(18), 4884–4895.CrossRef
19.
Zurück zum Zitat Tolbert, A., Akinosho, H., Khunsupat, R., Naskar, A. K., & Ragauskas, A. J. (2014). Characterization and analysis of the molecular weight of lignin for biorefining studies. Biofuels, Bioproducts and Biorefining, 8(6), 836–856.CrossRef Tolbert, A., Akinosho, H., Khunsupat, R., Naskar, A. K., & Ragauskas, A. J. (2014). Characterization and analysis of the molecular weight of lignin for biorefining studies. Biofuels, Bioproducts and Biorefining, 8(6), 836–856.CrossRef
20.
Zurück zum Zitat Cabello, J. V., Lodeyro, A. F., & Zurbriggen, M. D. (2014). Novel perspectives for the engineering of abiotic stress tolerance in plants. Current Opinion in Biotechnology, 26, 62–70.CrossRef Cabello, J. V., Lodeyro, A. F., & Zurbriggen, M. D. (2014). Novel perspectives for the engineering of abiotic stress tolerance in plants. Current Opinion in Biotechnology, 26, 62–70.CrossRef
21.
Zurück zum Zitat Roy, S. J., Negrão, S., & Tester, M. (2014). Salt resistant crop plants. Current Opinion in Biotechnology, 26, 115–124.CrossRef Roy, S. J., Negrão, S., & Tester, M. (2014). Salt resistant crop plants. Current Opinion in Biotechnology, 26, 115–124.CrossRef
22.
Zurück zum Zitat Carpita, N. C., & McCann, M. C. (2008). Maize and sorghum: Genetic resources for bioenergy grasses. Trends in Plant Science, 13(8), 415–420.CrossRef Carpita, N. C., & McCann, M. C. (2008). Maize and sorghum: Genetic resources for bioenergy grasses. Trends in Plant Science, 13(8), 415–420.CrossRef
23.
Zurück zum Zitat Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12–13), 1781–1788.CrossRef Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12–13), 1781–1788.CrossRef
24.
Zurück zum Zitat Liu, E., Das, L., Zhao, B., Crocker, M., & Shi, J. (2017). Impact of dilute sulfuric acid, ammonium hydroxide, and ionic liquid pretreatments on the fractionation and characterization of engineered switchgrass. Bioenergy Research, 10(4), 1079–1093.CrossRef Liu, E., Das, L., Zhao, B., Crocker, M., & Shi, J. (2017). Impact of dilute sulfuric acid, ammonium hydroxide, and ionic liquid pretreatments on the fractionation and characterization of engineered switchgrass. Bioenergy Research, 10(4), 1079–1093.CrossRef
25.
Zurück zum Zitat Simmons, B. A., Loque, D., & Ralph, J. (2010). Advances in modifying lignin for enhanced biofuel production. Current Opinion in Plant Biology, 13(3), 312–319.CrossRef Simmons, B. A., Loque, D., & Ralph, J. (2010). Advances in modifying lignin for enhanced biofuel production. Current Opinion in Plant Biology, 13(3), 312–319.CrossRef
26.
Zurück zum Zitat Menon, V., & Rao, M. (2012). Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept. Progress in Energy and Combustion Science, 38(4), 522–550.CrossRef Menon, V., & Rao, M. (2012). Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept. Progress in Energy and Combustion Science, 38(4), 522–550.CrossRef
27.
Zurück zum Zitat Vassilev, S. V., Baxter, D., Andersen, L. K., & Vassileva, C. G. (2010). An overview of the chemical composition of biomass. Fuel, 89(5), 913–933.CrossRef Vassilev, S. V., Baxter, D., Andersen, L. K., & Vassileva, C. G. (2010). An overview of the chemical composition of biomass. Fuel, 89(5), 913–933.CrossRef
28.
Zurück zum Zitat Williams, C. L., Westover, T. L., Emerson, R. M., Tumuluru, J. S., & Li, C. (2016). Sources of biomass feedstock variability and the potential impact on biofuels production. Bioenergy Research, 9(1), 1–14.CrossRef Williams, C. L., Westover, T. L., Emerson, R. M., Tumuluru, J. S., & Li, C. (2016). Sources of biomass feedstock variability and the potential impact on biofuels production. Bioenergy Research, 9(1), 1–14.CrossRef
29.
Zurück zum Zitat Pordesimo, L., Hames, B., Sokhansanj, S., & Edens, W. (2005). Variation in corn stover composition and energy content with crop maturity. Biomass & Bioenergy, 28(4), 366–374.CrossRef Pordesimo, L., Hames, B., Sokhansanj, S., & Edens, W. (2005). Variation in corn stover composition and energy content with crop maturity. Biomass & Bioenergy, 28(4), 366–374.CrossRef
30.
Zurück zum Zitat Keshwani, D. R., & Cheng, J. J. (2009). Switchgrass for bioethanol and other value-added applications: A review. Bioresource Technology, 100(4), 1515–1523.CrossRef Keshwani, D. R., & Cheng, J. J. (2009). Switchgrass for bioethanol and other value-added applications: A review. Bioresource Technology, 100(4), 1515–1523.CrossRef
31.
Zurück zum Zitat Brosse, N., Dufour, A., Meng, X., Sun, Q., & Ragauskas, A. (2012). Miscanthus: A fast-growing crop for biofuels and chemicals production. Biofuels, Bioproducts and Biorefining, 6(5), 580–598.CrossRef Brosse, N., Dufour, A., Meng, X., Sun, Q., & Ragauskas, A. (2012). Miscanthus: A fast-growing crop for biofuels and chemicals production. Biofuels, Bioproducts and Biorefining, 6(5), 580–598.CrossRef
32.
Zurück zum Zitat Kreuger, E., Sipos, B., Zacchi, G., Svensson, S.-E., & Björnsson, L. (2011). Bioconversion of industrial hemp to ethanol and methane: The benefits of steam pretreatment and co-production. Bioresource Technology, 102(3), 3457–3465.CrossRef Kreuger, E., Sipos, B., Zacchi, G., Svensson, S.-E., & Björnsson, L. (2011). Bioconversion of industrial hemp to ethanol and methane: The benefits of steam pretreatment and co-production. Bioresource Technology, 102(3), 3457–3465.CrossRef
33.
Zurück zum Zitat Fernández-Fueyo, E., Ruiz-Dueñas, F. J., Ferreira, P., Floudas, D., Hibbett, D. S., Canessa, P., Larrondo, L., James, T. Y., Seelenfreund, D., Lobos, S., Polanco, R., Tello, M., Honda, Y., Watanabe, T., Watanabe, T., Ryu, J. S., Kubicek, C. P., Schmoll, M., Gaskell, J., Hammel, K. E., St. John, F. J., Vanden Wymelenberg, A., Sabat, G., Bondurant, S. S., Syed, K., Yadav, J., Doddapaneni, H., Subramanian, V., Lavín, J. L., & Oguiza, J. A. (2012). Comparative genomics of Ceriporiopisis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis. Proceedings of the National Academy of Sciences of the United States of America, 109(14), 5458–5463.CrossRef Fernández-Fueyo, E., Ruiz-Dueñas, F. J., Ferreira, P., Floudas, D., Hibbett, D. S., Canessa, P., Larrondo, L., James, T. Y., Seelenfreund, D., Lobos, S., Polanco, R., Tello, M., Honda, Y., Watanabe, T., Watanabe, T., Ryu, J. S., Kubicek, C. P., Schmoll, M., Gaskell, J., Hammel, K. E., St. John, F. J., Vanden Wymelenberg, A., Sabat, G., Bondurant, S. S., Syed, K., Yadav, J., Doddapaneni, H., Subramanian, V., Lavín, J. L., & Oguiza, J. A. (2012). Comparative genomics of Ceriporiopisis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis. Proceedings of the National Academy of Sciences of the United States of America, 109(14), 5458–5463.CrossRef
34.
Zurück zum Zitat McKendry, P. (2002). Energy production from biomass (part 1): Overview of biomass. Bioresource Technology, 83(1), 37–46.CrossRef McKendry, P. (2002). Energy production from biomass (part 1): Overview of biomass. Bioresource Technology, 83(1), 37–46.CrossRef
35.
Zurück zum Zitat Pandey, A., Soccol, C. R., Nigam, P., & Soccol, V. T. (2000). Biotechnological potential of agro-industrial residues. I: Sugarcane bagasse. Bioresource Technology, 74(1), 69–80.CrossRef Pandey, A., Soccol, C. R., Nigam, P., & Soccol, V. T. (2000). Biotechnological potential of agro-industrial residues. I: Sugarcane bagasse. Bioresource Technology, 74(1), 69–80.CrossRef
36.
Zurück zum Zitat Adler, E. (1977). Lignin chemistry—Past, present and future. Wood Science and Technology, 11(3), 169–218.CrossRef Adler, E. (1977). Lignin chemistry—Past, present and future. Wood Science and Technology, 11(3), 169–218.CrossRef
37.
Zurück zum Zitat McCarthy, J. L., & Islam, A. (2000). Lignin chemistry, technology, and utilization: A brief history. In W. G. Glasser, R. A. Northey, & T. P. Schuultz (Eds.), Lignin: Historical, biological, and material perspectives (ACS symposium series 742). Washington, DC: American Chemical Society. McCarthy, J. L., & Islam, A. (2000). Lignin chemistry, technology, and utilization: A brief history. In W. G. Glasser, R. A. Northey, & T. P. Schuultz (Eds.), Lignin: Historical, biological, and material perspectives (ACS symposium series 742). Washington, DC: American Chemical Society.
38.
Zurück zum Zitat Lu, F., & Ralph, J. (1997). Derivatization followed by reductive cleavage (DFRC method), a new method for lignin analysis: Protocol for analysis of DFRC monomers. Journal of Agricultural and Food Chemistry, 45(7), 2590–2592.CrossRef Lu, F., & Ralph, J. (1997). Derivatization followed by reductive cleavage (DFRC method), a new method for lignin analysis: Protocol for analysis of DFRC monomers. Journal of Agricultural and Food Chemistry, 45(7), 2590–2592.CrossRef
39.
Zurück zum Zitat Boerjan, W., Ralph, J., & Baucher, M. (2003). Lignin biosynthesis. Annual Review of Plant Biology, 54(1), 519–546.CrossRef Boerjan, W., Ralph, J., & Baucher, M. (2003). Lignin biosynthesis. Annual Review of Plant Biology, 54(1), 519–546.CrossRef
40.
Zurück zum Zitat Hatakeyama, H., & Hatakeyama, T. (2009). Lignin structure, properties, and applications. In Biopolymers (pp. 1–63). Berlin/Heidelberg: Springer. Hatakeyama, H., & Hatakeyama, T. (2009). Lignin structure, properties, and applications. In Biopolymers (pp. 1–63). Berlin/Heidelberg: Springer.
41.
Zurück zum Zitat Vanholme, R., Morreel, K., Ralph, J., & Boerjan, W. (2008). Lignin engineering. Current Opinion in Plant Biology, 11(3), 278–285.CrossRef Vanholme, R., Morreel, K., Ralph, J., & Boerjan, W. (2008). Lignin engineering. Current Opinion in Plant Biology, 11(3), 278–285.CrossRef
42.
Zurück zum Zitat Rencoret, J., Gutierrez, A., Nieto, L., Jimenez-Barbero, J., Faulds, C. B., Kim, H., Ralph, J., Martinez, A. T., & Del Rio, J. C. (2011). Lignin composition and structure in young versus adult Eucalyptus globulus plants. Plant Physiology, 155(2), 667–682.CrossRef Rencoret, J., Gutierrez, A., Nieto, L., Jimenez-Barbero, J., Faulds, C. B., Kim, H., Ralph, J., Martinez, A. T., & Del Rio, J. C. (2011). Lignin composition and structure in young versus adult Eucalyptus globulus plants. Plant Physiology, 155(2), 667–682.CrossRef
43.
Zurück zum Zitat Pandey, M. P., & Kim, C. S. (2011). Lignin depolymerization and conversion: A review of thermochemical methods. Chemical Engineering and Technology, 34(1), 29–41.CrossRef Pandey, M. P., & Kim, C. S. (2011). Lignin depolymerization and conversion: A review of thermochemical methods. Chemical Engineering and Technology, 34(1), 29–41.CrossRef
44.
Zurück zum Zitat Li, C., Zhao, X., Wang, A., Huber, G. W., & Zhang, T. (2015). Catalytic transformation of lignin for the production of chemicals and fuels. Chemical Reviews, 115(21), 11559–11624.CrossRef Li, C., Zhao, X., Wang, A., Huber, G. W., & Zhang, T. (2015). Catalytic transformation of lignin for the production of chemicals and fuels. Chemical Reviews, 115(21), 11559–11624.CrossRef
45.
Zurück zum Zitat Chung, H., & Washburn, N. R. (2016). Extraction and types of lignin. In Lignin in polymer composites (pp. 13–25). New York City: William Andrew Publishing.CrossRef Chung, H., & Washburn, N. R. (2016). Extraction and types of lignin. In Lignin in polymer composites (pp. 13–25). New York City: William Andrew Publishing.CrossRef
46.
Zurück zum Zitat Vanholme, R., Demedts, B., Morreel, K., Ralph, J., & Boerjan, W. (2010). Lignin biosynthesis and structure. Plant Physiology, 153(3), 895–905.CrossRef Vanholme, R., Demedts, B., Morreel, K., Ralph, J., & Boerjan, W. (2010). Lignin biosynthesis and structure. Plant Physiology, 153(3), 895–905.CrossRef
47.
Zurück zum Zitat Kuang, D., Walter, P., Nuesch, F., Kim, S., Ko, J., Comte, P., Zakeeruddin, S. M., Nazeeruddin, M. K., & Gratzel, M. (2007). Co-sensitization of organic dyes for efficient ionic liquid electrolyte-based dye-sensitized solar cells. Langmuir, 23(22), 10906–10909.CrossRef Kuang, D., Walter, P., Nuesch, F., Kim, S., Ko, J., Comte, P., Zakeeruddin, S. M., Nazeeruddin, M. K., & Gratzel, M. (2007). Co-sensitization of organic dyes for efficient ionic liquid electrolyte-based dye-sensitized solar cells. Langmuir, 23(22), 10906–10909.CrossRef
48.
Zurück zum Zitat Weng, J. K., & Chapple, C. (2010). The origin and evolution of lignin biosynthesis. The New Phytologist, 187(2), 273–285.CrossRef Weng, J. K., & Chapple, C. (2010). The origin and evolution of lignin biosynthesis. The New Phytologist, 187(2), 273–285.CrossRef
49.
Zurück zum Zitat Vogel, K. P., & Jung, H.-J. G. (2001). Genetic modification of herbaceous plants for feed and fuel. Critical Reviews in Plant Sciences, 20(1), 15–49.CrossRef Vogel, K. P., & Jung, H.-J. G. (2001). Genetic modification of herbaceous plants for feed and fuel. Critical Reviews in Plant Sciences, 20(1), 15–49.CrossRef
50.
Zurück zum Zitat McLaughlin, S. B., & Kszos, L. A. (2005). Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass & Bioenergy, 28(6), 515–535.CrossRef McLaughlin, S. B., & Kszos, L. A. (2005). Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass & Bioenergy, 28(6), 515–535.CrossRef
51.
Zurück zum Zitat Sticklen, M. B. (2007). Feedstock crop genetic engineering for alcohol fuels. Crop Science, 47(6), 2238.CrossRef Sticklen, M. B. (2007). Feedstock crop genetic engineering for alcohol fuels. Crop Science, 47(6), 2238.CrossRef
52.
Zurück zum Zitat Hisano, H., Nandakumar, R., & Wang, Z.-Y. (2009). Genetic modification of lignin biosynthesis for improved biofuel production. In Vitro Cellular & Developmental Biology. Plant, 45(3), 306–313.CrossRef Hisano, H., Nandakumar, R., & Wang, Z.-Y. (2009). Genetic modification of lignin biosynthesis for improved biofuel production. In Vitro Cellular & Developmental Biology. Plant, 45(3), 306–313.CrossRef
53.
Zurück zum Zitat Sticklen, M. B. (2008). Plant genetic engineering for biofuel production: Towards affordable cellulosic ethanol. Nature Reviews. Genetics, 9(6), 433–443.CrossRef Sticklen, M. B. (2008). Plant genetic engineering for biofuel production: Towards affordable cellulosic ethanol. Nature Reviews. Genetics, 9(6), 433–443.CrossRef
54.
Zurück zum Zitat Xu, B., Escamilla-Treviño, L. L., Sathitsuksanoh, N., Shen, Z., Shen, H., Percival Zhang, Y. H., Dixon, R. A., & Zhao, B. (2011). Silencing of 4-coumarate: Coenzyme A ligase in switchgrass leads to reduced lignin content and improved fermentable sugar yields for biofuel production. The New Phytologist, 192(3), 611–625.CrossRef Xu, B., Escamilla-Treviño, L. L., Sathitsuksanoh, N., Shen, Z., Shen, H., Percival Zhang, Y. H., Dixon, R. A., & Zhao, B. (2011). Silencing of 4-coumarate: Coenzyme A ligase in switchgrass leads to reduced lignin content and improved fermentable sugar yields for biofuel production. The New Phytologist, 192(3), 611–625.CrossRef
55.
Zurück zum Zitat Baucher, M., Halpin, C., Petit-Conil, M., & Boerjan, W. (2003). Lignin: Genetic engineering and impact on pulping. Critical Reviews in Biochemistry and Molecular Biology, 38(4), 305–350.CrossRef Baucher, M., Halpin, C., Petit-Conil, M., & Boerjan, W. (2003). Lignin: Genetic engineering and impact on pulping. Critical Reviews in Biochemistry and Molecular Biology, 38(4), 305–350.CrossRef
56.
Zurück zum Zitat Nakashima, J., Chen, F., Jackson, L., Shadle, G., & Dixon, R. A. (2008). Multi-site genetic modification of monolignol biosynthesis in alfalfa (Medicago sativa): Effects on lignin composition in specific cell types. The New Phytologist, 179(3), 738–750.CrossRef Nakashima, J., Chen, F., Jackson, L., Shadle, G., & Dixon, R. A. (2008). Multi-site genetic modification of monolignol biosynthesis in alfalfa (Medicago sativa): Effects on lignin composition in specific cell types. The New Phytologist, 179(3), 738–750.CrossRef
57.
Zurück zum Zitat Bjurhager, I., Olsson, A.-M., Zhang, B., Gerber, L., Kumar, M., Berglund, L. A., Burgert, I., Sundberg, B. R., & Salmén, L. (2010). Ultrastructure and mechanical properties of Populus wood with reduced lignin content caused by transgenic down-regulation of cinnamate 4-hydroxylase. Biomacromolecules, 11(9), 2359–2365.CrossRef Bjurhager, I., Olsson, A.-M., Zhang, B., Gerber, L., Kumar, M., Berglund, L. A., Burgert, I., Sundberg, B. R., & Salmén, L. (2010). Ultrastructure and mechanical properties of Populus wood with reduced lignin content caused by transgenic down-regulation of cinnamate 4-hydroxylase. Biomacromolecules, 11(9), 2359–2365.CrossRef
58.
Zurück zum Zitat Chabannes, M., Barakate, A., Lapierre, C., Marita, J. M., Ralph, J., Pean, M., Danoun, S., Halpin, C., Grima-Pettenati, J., & Boudet, A. M. (2001). Strong decrease in lignin content without significant alteration of plant development is induced by simultaneous down-regulation of cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) in tobacco plants. The Plant Journal, 28(3), 257–270.CrossRef Chabannes, M., Barakate, A., Lapierre, C., Marita, J. M., Ralph, J., Pean, M., Danoun, S., Halpin, C., Grima-Pettenati, J., & Boudet, A. M. (2001). Strong decrease in lignin content without significant alteration of plant development is induced by simultaneous down-regulation of cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) in tobacco plants. The Plant Journal, 28(3), 257–270.CrossRef
59.
Zurück zum Zitat Kawaoka, A., Nanto, K., Ishii, K., & Ebinuma, H. (2006). Reduction of lignin content by suppression of expression of the LIM domain transcription factor in Eucalyptus camaldulensis. Silvae Genetica, 55(6), 269–277.CrossRef Kawaoka, A., Nanto, K., Ishii, K., & Ebinuma, H. (2006). Reduction of lignin content by suppression of expression of the LIM domain transcription factor in Eucalyptus camaldulensis. Silvae Genetica, 55(6), 269–277.CrossRef
60.
Zurück zum Zitat Li, Y., Kajita, S., Kawai, S., Katayama, Y., & Morohoshi, N. (2003). Down-regulation of an anionic peroxidase in transgenic aspen and its effect on lignin characteristics. Journal of Plant Research, 116(3), 175–182.CrossRef Li, Y., Kajita, S., Kawai, S., Katayama, Y., & Morohoshi, N. (2003). Down-regulation of an anionic peroxidase in transgenic aspen and its effect on lignin characteristics. Journal of Plant Research, 116(3), 175–182.CrossRef
61.
Zurück zum Zitat Moura, J. C., Bonine, C. A., de Oliveira Fernandes Viana, J., Dornelas, M. C., & Mazzafera, P. (2010). Abiotic and biotic stresses and changes in the lignin content and composition in plants. Journal of Integrative Plant Biology, 52(4), 360–376.CrossRef Moura, J. C., Bonine, C. A., de Oliveira Fernandes Viana, J., Dornelas, M. C., & Mazzafera, P. (2010). Abiotic and biotic stresses and changes in the lignin content and composition in plants. Journal of Integrative Plant Biology, 52(4), 360–376.CrossRef
62.
Zurück zum Zitat Scully, E. D., Gries, T., Funnell-Harris, D. L., Xin, Z., Kovacs, F. A., Vermerris, W., & Sattler, S. E. (2016). Characterization of novel Brown midrib 6 mutations affecting lignin biosynthesis in sorghum. Journal of Integrative Plant Biology, 58(2), 136–149.CrossRef Scully, E. D., Gries, T., Funnell-Harris, D. L., Xin, Z., Kovacs, F. A., Vermerris, W., & Sattler, S. E. (2016). Characterization of novel Brown midrib 6 mutations affecting lignin biosynthesis in sorghum. Journal of Integrative Plant Biology, 58(2), 136–149.CrossRef
63.
Zurück zum Zitat Sattler, S. E., Funnell-Harris, D. L., & Pedersen, J. F. (2010). Brown midrib mutations and their importance to the utilization of maize, sorghum, and pearl millet lignocellulosic tissues. Plant Science, 178(3), 229–238.CrossRef Sattler, S. E., Funnell-Harris, D. L., & Pedersen, J. F. (2010). Brown midrib mutations and their importance to the utilization of maize, sorghum, and pearl millet lignocellulosic tissues. Plant Science, 178(3), 229–238.CrossRef
64.
Zurück zum Zitat Biemelt, S., Tschiersch, H., & Sonnewald, U. (2004). Impact of altered gibberellin metabolism on biomass accumulation, lignin biosynthesis, and photosynthesis in transgenic tobacco plants. Plant Physiology, 135(1), 254–265.CrossRef Biemelt, S., Tschiersch, H., & Sonnewald, U. (2004). Impact of altered gibberellin metabolism on biomass accumulation, lignin biosynthesis, and photosynthesis in transgenic tobacco plants. Plant Physiology, 135(1), 254–265.CrossRef
65.
Zurück zum Zitat Kishimoto, T., Chiba, W., Saito, K., Fukushima, K., Uraki, Y., & Ubukata, M. (2010). Influence of syringyl to guaiacyl ratio on the structure of natural and synthetic lignins. Journal of Agricultural and Food Chemistry, 58(2), 895–901.CrossRef Kishimoto, T., Chiba, W., Saito, K., Fukushima, K., Uraki, Y., & Ubukata, M. (2010). Influence of syringyl to guaiacyl ratio on the structure of natural and synthetic lignins. Journal of Agricultural and Food Chemistry, 58(2), 895–901.CrossRef
66.
Zurück zum Zitat Bonawitz, N. D., Im Kim, J., Tobimatsu, Y., Ciesielski, P. N., Anderson, N. A., Ximenes, E., Maeda, J., Ralph, J., Donohoe, B. S., & Ladisch, M. (2014). Disruption of mediator rescues the stunted growth of a lignin-deficient Arabidopsis mutant. Nature, 509(7500), 376–380.CrossRef Bonawitz, N. D., Im Kim, J., Tobimatsu, Y., Ciesielski, P. N., Anderson, N. A., Ximenes, E., Maeda, J., Ralph, J., Donohoe, B. S., & Ladisch, M. (2014). Disruption of mediator rescues the stunted growth of a lignin-deficient Arabidopsis mutant. Nature, 509(7500), 376–380.CrossRef
67.
Zurück zum Zitat Sewalt, V. J., Ni, W., Blount, J. W., Jung, H. G., Masoud, S. A., Howles, P. A., Lamb, C., & Dixon, R. A. (1997). Reduced lignin content and altered lignin composition in transgenic tobacco down-regulated in expression of L-phenylalanine ammonia-lyase or cinnamate 4-hydroxylase. Plant Physiology, 115(1), 41–50.CrossRef Sewalt, V. J., Ni, W., Blount, J. W., Jung, H. G., Masoud, S. A., Howles, P. A., Lamb, C., & Dixon, R. A. (1997). Reduced lignin content and altered lignin composition in transgenic tobacco down-regulated in expression of L-phenylalanine ammonia-lyase or cinnamate 4-hydroxylase. Plant Physiology, 115(1), 41–50.CrossRef
68.
Zurück zum Zitat Xu, B., Sathitsuksanoh, N., Tang, Y., Udvardi, M. K., Zhang, J.-Y., Shen, Z., Balota, M., Harich, K., Zhang, P. Y.-H., & Zhao, B. (2012). Overexpression of AtLOV1 in switchgrass alters plant architecture, lignin content, and flowering time. PLoS One, 7(12), e47399.CrossRef Xu, B., Sathitsuksanoh, N., Tang, Y., Udvardi, M. K., Zhang, J.-Y., Shen, Z., Balota, M., Harich, K., Zhang, P. Y.-H., & Zhao, B. (2012). Overexpression of AtLOV1 in switchgrass alters plant architecture, lignin content, and flowering time. PLoS One, 7(12), e47399.CrossRef
69.
Zurück zum Zitat Coleman, H. D., Park, J.-Y., Nair, R., Chapple, C., & Mansfield, S. D. (2008). RNAi-mediated suppression of p-coumaroyl-CoA 3′-hydroxylase in hybrid poplar impacts lignin deposition and soluble secondary metabolism. Proceedings of the National Academy of Sciences of the United States of America, 105(11), 4501–4506.CrossRef Coleman, H. D., Park, J.-Y., Nair, R., Chapple, C., & Mansfield, S. D. (2008). RNAi-mediated suppression of p-coumaroyl-CoA 3′-hydroxylase in hybrid poplar impacts lignin deposition and soluble secondary metabolism. Proceedings of the National Academy of Sciences of the United States of America, 105(11), 4501–4506.CrossRef
70.
Zurück zum Zitat Voelker, S. L., Lachenbruch, B., Meinzer, F. C., Jourdes, M., Ki, C., Patten, A. M., Davin, L. B., Lewis, N. G., Tuskan, G. A., & Gunter, L. (2010). Antisense down-regulation of 4CL expression alters lignification, tree growth, and saccharification potential of field-grown poplar. Plant Physiology, 154(2), 874–886.CrossRef Voelker, S. L., Lachenbruch, B., Meinzer, F. C., Jourdes, M., Ki, C., Patten, A. M., Davin, L. B., Lewis, N. G., Tuskan, G. A., & Gunter, L. (2010). Antisense down-regulation of 4CL expression alters lignification, tree growth, and saccharification potential of field-grown poplar. Plant Physiology, 154(2), 874–886.CrossRef
71.
Zurück zum Zitat Ziebell, A., Gracom, K., Katahira, R., Chen, F., Pu, Y., Ragauskas, A., Dixon, R. A., & Davis, M. (2010). Increase in 4-coumaryl alcohol units during lignification in alfalfa (Medicago sativa) alters the extractability and molecular weight of lignin. The Journal of Biological Chemistry, 285(50), 38961–38968.CrossRef Ziebell, A., Gracom, K., Katahira, R., Chen, F., Pu, Y., Ragauskas, A., Dixon, R. A., & Davis, M. (2010). Increase in 4-coumaryl alcohol units during lignification in alfalfa (Medicago sativa) alters the extractability and molecular weight of lignin. The Journal of Biological Chemistry, 285(50), 38961–38968.CrossRef
72.
Zurück zum Zitat Li, X., Weng, J. K., & Chapple, C. (2008). Improvement of biomass through lignin modification. The Plant Journal, 54(4), 569–581.CrossRef Li, X., Weng, J. K., & Chapple, C. (2008). Improvement of biomass through lignin modification. The Plant Journal, 54(4), 569–581.CrossRef
73.
Zurück zum Zitat Hibino, T., Takabe, K., Kawazu, T., Shibata, D., & Higuchi, T. (2014). Increase of cinnamaldehyde groups in lignin of transgenic tobacco plants carrying an antisense gene for cinnamyl alcohol dehydrogenase. Bioscience, Biotechnology, and Biochemistry, 59(5), 929–931.CrossRef Hibino, T., Takabe, K., Kawazu, T., Shibata, D., & Higuchi, T. (2014). Increase of cinnamaldehyde groups in lignin of transgenic tobacco plants carrying an antisense gene for cinnamyl alcohol dehydrogenase. Bioscience, Biotechnology, and Biochemistry, 59(5), 929–931.CrossRef
74.
Zurück zum Zitat Reddy, M. S., Chen, F., Shadle, G., Jackson, L., Aljoe, H., & Dixon, R. A. (2005). Targeted down-regulation of cytochrome P450 enzymes for forage quality improvement in alfalfa (Medicago sativa L.). Proceedings of the National Academy of Sciences of the United States of America, 102(46), 16573–16578.CrossRef Reddy, M. S., Chen, F., Shadle, G., Jackson, L., Aljoe, H., & Dixon, R. A. (2005). Targeted down-regulation of cytochrome P450 enzymes for forage quality improvement in alfalfa (Medicago sativa L.). Proceedings of the National Academy of Sciences of the United States of America, 102(46), 16573–16578.CrossRef
75.
Zurück zum Zitat Scullin, C., Cruz, A. G., Chuang, Y. D., Simmons, B. A., Loque, D., & Singh, S. (2015). Restricting lignin and enhancing sugar deposition in secondary cell walls enhances monomeric sugar release after low temperature ionic liquid pretreatment. Biotechnology for Biofuels, 8, 95.CrossRef Scullin, C., Cruz, A. G., Chuang, Y. D., Simmons, B. A., Loque, D., & Singh, S. (2015). Restricting lignin and enhancing sugar deposition in secondary cell walls enhances monomeric sugar release after low temperature ionic liquid pretreatment. Biotechnology for Biofuels, 8, 95.CrossRef
76.
Zurück zum Zitat Bonawitz, N. D., & Chapple, C. (2013). Can genetic engineering of lignin deposition be accomplished without an unacceptable yield penalty? Current Opinion in Biotechnology, 24(2), 336–343.CrossRef Bonawitz, N. D., & Chapple, C. (2013). Can genetic engineering of lignin deposition be accomplished without an unacceptable yield penalty? Current Opinion in Biotechnology, 24(2), 336–343.CrossRef
77.
Zurück zum Zitat Rogers, L. A., & Campbell, M. M. (2004). The genetic control of lignin deposition during plant growth and development. The New Phytologist, 164(1), 17–30.CrossRef Rogers, L. A., & Campbell, M. M. (2004). The genetic control of lignin deposition during plant growth and development. The New Phytologist, 164(1), 17–30.CrossRef
78.
Zurück zum Zitat Yang, F., Mitra, P., Zhang, L., Prak, L., Verhertbruggen, Y., Kim, J. S., Sun, L., Zheng, K., Tang, K., Auer, M., Scheller, H. V., & Loque, D. (2013). Engineering secondary cell wall deposition in plants. Plant Biotechnology Journal, 11(3), 325–335.CrossRef Yang, F., Mitra, P., Zhang, L., Prak, L., Verhertbruggen, Y., Kim, J. S., Sun, L., Zheng, K., Tang, K., Auer, M., Scheller, H. V., & Loque, D. (2013). Engineering secondary cell wall deposition in plants. Plant Biotechnology Journal, 11(3), 325–335.CrossRef
79.
Zurück zum Zitat Franke, R., Hemm, M. R., Denault, J. W., Ruegger, M. O., Humphreys, J. M., & Chapple, C. (2002). Changes in secondary metabolism and deposition of an unusual lignin in the ref8 mutant of Arabidopsis. The Plant Journal, 30(1), 47–59.CrossRef Franke, R., Hemm, M. R., Denault, J. W., Ruegger, M. O., Humphreys, J. M., & Chapple, C. (2002). Changes in secondary metabolism and deposition of an unusual lignin in the ref8 mutant of Arabidopsis. The Plant Journal, 30(1), 47–59.CrossRef
80.
Zurück zum Zitat Casler, M. D., Jung, H. G., & Coblentz, W. K. (2008). Clonal selection for lignin and etherified ferulates in three perennial grasses. Crop Science, 48(2), 424.CrossRef Casler, M. D., Jung, H. G., & Coblentz, W. K. (2008). Clonal selection for lignin and etherified ferulates in three perennial grasses. Crop Science, 48(2), 424.CrossRef
81.
Zurück zum Zitat Grabber, J. H., Mertens, D. R., Kim, H., Funk, C., Lu, F., & Ralph, J. (2009). Cell wall fermentation kinetics are impacted more by lignin content and ferulate cross-linking than by lignin composition. Journal of Science and Food Agriculture, 89(1), 122–129.CrossRef Grabber, J. H., Mertens, D. R., Kim, H., Funk, C., Lu, F., & Ralph, J. (2009). Cell wall fermentation kinetics are impacted more by lignin content and ferulate cross-linking than by lignin composition. Journal of Science and Food Agriculture, 89(1), 122–129.CrossRef
82.
Zurück zum Zitat Hatfield, R. D., & Chaptman, A. K. (2009). Comparing corn types for differences in cell wall characteristics and p-coumaroylation of lignin. Journal of Agricultural and Food Chemistry, 57(10), 4243–4249.CrossRef Hatfield, R. D., & Chaptman, A. K. (2009). Comparing corn types for differences in cell wall characteristics and p-coumaroylation of lignin. Journal of Agricultural and Food Chemistry, 57(10), 4243–4249.CrossRef
83.
Zurück zum Zitat Wilkerson, C., Mansfield, S., Lu, F., Withers, S., Park, J.-Y., Karlen, S., Gonzales-Vigil, E., Padmakshan, D., Unda, F., & Rencoret, J. (2014). Monolignol ferulate transferase introduces chemically labile linkages into the lignin backbone. Science, 344(6179), 90–93.CrossRef Wilkerson, C., Mansfield, S., Lu, F., Withers, S., Park, J.-Y., Karlen, S., Gonzales-Vigil, E., Padmakshan, D., Unda, F., & Rencoret, J. (2014). Monolignol ferulate transferase introduces chemically labile linkages into the lignin backbone. Science, 344(6179), 90–93.CrossRef
84.
Zurück zum Zitat Karlen, S. D., Zhang, C., Peck, M. L., Smith, R. A., Padmakshan, D., Helmich, K. E., Free, H. C., Lee, S., Smith, B. G., & Lu, F. (2016). Monolignol ferulate conjugates are naturally incorporated into plant lignins. Science Advances, 2(10), e1600393.CrossRef Karlen, S. D., Zhang, C., Peck, M. L., Smith, R. A., Padmakshan, D., Helmich, K. E., Free, H. C., Lee, S., Smith, B. G., & Lu, F. (2016). Monolignol ferulate conjugates are naturally incorporated into plant lignins. Science Advances, 2(10), e1600393.CrossRef
85.
Zurück zum Zitat Ralph, J. (2010). Hydroxycinnamates in lignification. Phytochemistry Reviews, 9(1), 65–83.CrossRef Ralph, J. (2010). Hydroxycinnamates in lignification. Phytochemistry Reviews, 9(1), 65–83.CrossRef
86.
Zurück zum Zitat Bortesi, L., & Fischer, R. (2015). The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnology Advances, 33(1), 41–52.CrossRef Bortesi, L., & Fischer, R. (2015). The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnology Advances, 33(1), 41–52.CrossRef
87.
Zurück zum Zitat Ma, X., Zhu, Q., Chen, Y., & Liu, Y.-G. (2016). CRISPR/Cas9 platforms for genome editing in plants: Developments and applications. Molecular Plant, 9(7), 961–974.CrossRef Ma, X., Zhu, Q., Chen, Y., & Liu, Y.-G. (2016). CRISPR/Cas9 platforms for genome editing in plants: Developments and applications. Molecular Plant, 9(7), 961–974.CrossRef
88.
Zurück zum Zitat Rani, R., Yadav, P., Barbadikar, K. M., Baliyan, N., Malhotra, E. V., Singh, B. K., Kumar, A., & Singh, D. (2016). CRISPR/Cas9: A promising way to exploit genetic variation in plants. Biotechnology Letters, 38(12), 1991–2006.CrossRef Rani, R., Yadav, P., Barbadikar, K. M., Baliyan, N., Malhotra, E. V., Singh, B. K., Kumar, A., & Singh, D. (2016). CRISPR/Cas9: A promising way to exploit genetic variation in plants. Biotechnology Letters, 38(12), 1991–2006.CrossRef
89.
Zurück zum Zitat Luo, M., Gilbert, B., & Ayliffe, M. (2016). Applications of CRISPR/Cas9 technology for targeted mutagenesis, gene replacement and stacking of genes in higher plants. Plant Cell Reports, 35(7), 1439–1450.CrossRef Luo, M., Gilbert, B., & Ayliffe, M. (2016). Applications of CRISPR/Cas9 technology for targeted mutagenesis, gene replacement and stacking of genes in higher plants. Plant Cell Reports, 35(7), 1439–1450.CrossRef
90.
Zurück zum Zitat Zhou, X., Jacobs, T. B., Xue, L. J., Harding, S. A., & Tsai, C. J. (2015). Exploiting SNPs for biallelic CRISPR mutations in the outcrossing woody perennial Populus reveals 4-coumarate: CoA ligase specificity and redundancy. The New Phytologist, 208(2), 298–301.CrossRef Zhou, X., Jacobs, T. B., Xue, L. J., Harding, S. A., & Tsai, C. J. (2015). Exploiting SNPs for biallelic CRISPR mutations in the outcrossing woody perennial Populus reveals 4-coumarate: CoA ligase specificity and redundancy. The New Phytologist, 208(2), 298–301.CrossRef
91.
Zurück zum Zitat Park, J.-J., Yoo, C. G., Flanagan, A., Pu, Y., Debnath, S., Ge, Y., Ragauskas, A. J., & Wang, Z.-Y. (2017). Defined tetra-allelic gene disruption of the 4-coumarate: Coenzyme A ligase 1 (Pv4CL1) gene by CRISPR/Cas9 in switchgrass results in lignin reduction and improved sugar release. Biotechnology for Biofuels, 10(1), 284.CrossRef Park, J.-J., Yoo, C. G., Flanagan, A., Pu, Y., Debnath, S., Ge, Y., Ragauskas, A. J., & Wang, Z.-Y. (2017). Defined tetra-allelic gene disruption of the 4-coumarate: Coenzyme A ligase 1 (Pv4CL1) gene by CRISPR/Cas9 in switchgrass results in lignin reduction and improved sugar release. Biotechnology for Biofuels, 10(1), 284.CrossRef
92.
Zurück zum Zitat Haddad, M., Mikhaylin, S., Bazinet, L., Savadogo, O., & Paris, J. (2017). Electrochemical acidification of Kraft black liquor by electrodialysis with bipolar membrane: Ion exchange membrane fouling identification and mechanisms. Journal of Colloid and Interface Science, 488, 39–47.CrossRef Haddad, M., Mikhaylin, S., Bazinet, L., Savadogo, O., & Paris, J. (2017). Electrochemical acidification of Kraft black liquor by electrodialysis with bipolar membrane: Ion exchange membrane fouling identification and mechanisms. Journal of Colloid and Interface Science, 488, 39–47.CrossRef
93.
Zurück zum Zitat Wyman, C. E., Balan, V., Dale, B. E., Elander, R. T., Falls, M., Hames, B., Holtzapple, M. T., Ladisch, M. R., Lee, Y., & Mosier, N. (2011). Comparative data on effects of leading pretreatments and enzyme loadings and formulations on sugar yields from different switchgrass sources. Bioresource Technology, 102(24), 11052–11062.CrossRef Wyman, C. E., Balan, V., Dale, B. E., Elander, R. T., Falls, M., Hames, B., Holtzapple, M. T., Ladisch, M. R., Lee, Y., & Mosier, N. (2011). Comparative data on effects of leading pretreatments and enzyme loadings and formulations on sugar yields from different switchgrass sources. Bioresource Technology, 102(24), 11052–11062.CrossRef
94.
Zurück zum Zitat Tao, L., Aden, A., Elander, R. T., Pallapolu, V. R., Lee, Y. Y., Garlock, R. J., Balan, V., Dale, B. E., Kim, Y., Mosier, N. S., Ladisch, M. R., Falls, M., Holtzapple, M. T., Sierra, R., Shi, J., Ebrik, M. A., Redmond, T., Yang, B., Wyman, C. E., Hames, B., Thomas, S., & Warner, R. E. (2011). Process and technoeconomic analysis of leading pretreatment technologies for lignocellulosic ethanol production using switchgrass. Bioresource Technology, 102(24), 11105–11114.CrossRef Tao, L., Aden, A., Elander, R. T., Pallapolu, V. R., Lee, Y. Y., Garlock, R. J., Balan, V., Dale, B. E., Kim, Y., Mosier, N. S., Ladisch, M. R., Falls, M., Holtzapple, M. T., Sierra, R., Shi, J., Ebrik, M. A., Redmond, T., Yang, B., Wyman, C. E., Hames, B., Thomas, S., & Warner, R. E. (2011). Process and technoeconomic analysis of leading pretreatment technologies for lignocellulosic ethanol production using switchgrass. Bioresource Technology, 102(24), 11105–11114.CrossRef
95.
Zurück zum Zitat Harmsen, P., Huijgen, W., Bermudez, L., & Bakker, R. (2010). Literature review of physical and chemical pretreatment processes for lignocellulosic biomass. Wageningen: Wageningen UR Food & Biobased Research. Harmsen, P., Huijgen, W., Bermudez, L., & Bakker, R. (2010). Literature review of physical and chemical pretreatment processes for lignocellulosic biomass. Wageningen: Wageningen UR Food & Biobased Research.
96.
Zurück zum Zitat Sidiras, D., & Koukios, E. (1989). Acid saccharification of ball-milled straw. Biomass, 19(4), 289–306.CrossRef Sidiras, D., & Koukios, E. (1989). Acid saccharification of ball-milled straw. Biomass, 19(4), 289–306.CrossRef
97.
Zurück zum Zitat Tassinari, T., Macy, C., Spano, L., & Ryu, D. D. (1980). Energy requirements and process design considerations in compression-milling pretreatment of cellulosic wastes for enzymatic hydrolysis. Biotechnology and Bioengineering, 22(8), 1689–1705.CrossRef Tassinari, T., Macy, C., Spano, L., & Ryu, D. D. (1980). Energy requirements and process design considerations in compression-milling pretreatment of cellulosic wastes for enzymatic hydrolysis. Biotechnology and Bioengineering, 22(8), 1689–1705.CrossRef
98.
Zurück zum Zitat Alvo, P., & Belkacemi, K. (1997). Enzymatic saccharification of milled timothy (Phleum pratense L.) and alfalfa (Medicago sativa L.). Bioresource Technology, 61(3), 185–198.CrossRef Alvo, P., & Belkacemi, K. (1997). Enzymatic saccharification of milled timothy (Phleum pratense L.) and alfalfa (Medicago sativa L.). Bioresource Technology, 61(3), 185–198.CrossRef
99.
Zurück zum Zitat Fan, L., Lee, Y. H., & Beardmore, D. (1981). The influence of major structural features of cellulose on rate of enzymatic hydrolysis. Biotechnology and Bioengineering, 23(2), 419–424.CrossRef Fan, L., Lee, Y. H., & Beardmore, D. (1981). The influence of major structural features of cellulose on rate of enzymatic hydrolysis. Biotechnology and Bioengineering, 23(2), 419–424.CrossRef
100.
Zurück zum Zitat Jameel, H., & Keshwani, D. R. (2017). Thermochemical conversion of biomass to power and fuels. In Biomass to renewable energy processes (pp. 375–422). Boca Raton: CRC Press. Jameel, H., & Keshwani, D. R. (2017). Thermochemical conversion of biomass to power and fuels. In Biomass to renewable energy processes (pp. 375–422). Boca Raton: CRC Press.
101.
Zurück zum Zitat Ong, H. C., Chen, W.-H., Farooq, A., Gan, Y. Y., Lee, K. T., & Ashokkumar, V. (2019). Catalytic thermochemical conversion of biomass for biofuel production: A comprehensive review. Renewable and Sustainable Energy Reviews, 113, 109266.CrossRef Ong, H. C., Chen, W.-H., Farooq, A., Gan, Y. Y., Lee, K. T., & Ashokkumar, V. (2019). Catalytic thermochemical conversion of biomass for biofuel production: A comprehensive review. Renewable and Sustainable Energy Reviews, 113, 109266.CrossRef
102.
Zurück zum Zitat Pang, S. (2018). Advances in thermochemical conversion of woody biomass to energy, fuels and chemicals. Biotechnology Advances, 37(4), 589–597.CrossRef Pang, S. (2018). Advances in thermochemical conversion of woody biomass to energy, fuels and chemicals. Biotechnology Advances, 37(4), 589–597.CrossRef
103.
Zurück zum Zitat Ramos, L., Breuil, C., Kushner, D., & Saddler, J. (1992). Steam pretreatment conditions for effective enzymatic hydrolysis and recovery yields of Eucalyptus viminalis wood chips. Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood, 46(2), 149–154. Ramos, L., Breuil, C., Kushner, D., & Saddler, J. (1992). Steam pretreatment conditions for effective enzymatic hydrolysis and recovery yields of Eucalyptus viminalis wood chips. Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood, 46(2), 149–154.
104.
Zurück zum Zitat Grous, W. R., Converse, A. O., & Grethlein, H. E. (1986). Effect of steam explosion pretreatment on pore size and enzymatic hydrolysis of poplar. Enzyme and Microbial Technology, 8(5), 274–280.CrossRef Grous, W. R., Converse, A. O., & Grethlein, H. E. (1986). Effect of steam explosion pretreatment on pore size and enzymatic hydrolysis of poplar. Enzyme and Microbial Technology, 8(5), 274–280.CrossRef
105.
Zurück zum Zitat Wyman, C. (1996). Handbook on bioethanol: Production and utilization. Boca Raton: CRC Press. Wyman, C. (1996). Handbook on bioethanol: Production and utilization. Boca Raton: CRC Press.
106.
Zurück zum Zitat Himmel, M. E., Baker, J. O., & Overend, R. P. (1994). Enzymatic conversion of biomass for fuels production. Washington, DC: American Chemical Society.CrossRef Himmel, M. E., Baker, J. O., & Overend, R. P. (1994). Enzymatic conversion of biomass for fuels production. Washington, DC: American Chemical Society.CrossRef
107.
Zurück zum Zitat Weil, J., Sarikaya, A., Rau, S.-L., Goetz, J., Ladisch, C. M., Brewer, M., Hendrickson, R., & Ladisch, M. R. (1997). Pretreatment of yellow poplar sawdust by pressure cooking in water. Applied Biochemistry and Biotechnology, 68(1), 21–40.CrossRef Weil, J., Sarikaya, A., Rau, S.-L., Goetz, J., Ladisch, C. M., Brewer, M., Hendrickson, R., & Ladisch, M. R. (1997). Pretreatment of yellow poplar sawdust by pressure cooking in water. Applied Biochemistry and Biotechnology, 68(1), 21–40.CrossRef
108.
Zurück zum Zitat Baugh, K. D., Levy, J. A., & McCarty, P. L. (1988). Thermochemical pretreatment of lignocellulose to enhance methane fermentation: II. Evaluation and application of pretreatment model. Biotechnology and Bioengineering, 31(1), 62–70.CrossRef Baugh, K. D., Levy, J. A., & McCarty, P. L. (1988). Thermochemical pretreatment of lignocellulose to enhance methane fermentation: II. Evaluation and application of pretreatment model. Biotechnology and Bioengineering, 31(1), 62–70.CrossRef
109.
Zurück zum Zitat Mosier, N. S., Ladisch, C. M., & Ladisch, M. R. (2002). Characterization of acid catalytic domains for cellulose hydrolysis and glucose degradation. Biotechnology and Bioengineering, 79(6), 610–618.CrossRef Mosier, N. S., Ladisch, C. M., & Ladisch, M. R. (2002). Characterization of acid catalytic domains for cellulose hydrolysis and glucose degradation. Biotechnology and Bioengineering, 79(6), 610–618.CrossRef
110.
Zurück zum Zitat van Walsum, G. P., & Shi, H. (2004). Carbonic acid enhancement of hydrolysis in aqueous pretreatment of corn stover. Bioresource Technology, 93(3), 217–226.CrossRef van Walsum, G. P., & Shi, H. (2004). Carbonic acid enhancement of hydrolysis in aqueous pretreatment of corn stover. Bioresource Technology, 93(3), 217–226.CrossRef
111.
Zurück zum Zitat Luo, C., Brink, D. L., & Blanch, H. W. (2002). Identification of potential fermentation inhibitors in conversion of hybrid poplar hydrolyzate to ethanol. Biomass & Bioenergy, 22(2), 125–138.CrossRef Luo, C., Brink, D. L., & Blanch, H. W. (2002). Identification of potential fermentation inhibitors in conversion of hybrid poplar hydrolyzate to ethanol. Biomass & Bioenergy, 22(2), 125–138.CrossRef
112.
Zurück zum Zitat Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96(6), 673–686.CrossRef Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96(6), 673–686.CrossRef
113.
Zurück zum Zitat Dien, B., Jung, H., Vogel, K., Casler, M., Lamb, J., Iten, L., Mitchell, R., & Sarath, G. (2006). Chemical composition and response to dilute-acid pretreatment and enzymatic saccharification of alfalfa, reed canarygrass, and switchgrass. Biomass & Bioenergy, 30(10), 880–891.CrossRef Dien, B., Jung, H., Vogel, K., Casler, M., Lamb, J., Iten, L., Mitchell, R., & Sarath, G. (2006). Chemical composition and response to dilute-acid pretreatment and enzymatic saccharification of alfalfa, reed canarygrass, and switchgrass. Biomass & Bioenergy, 30(10), 880–891.CrossRef
114.
Zurück zum Zitat Foston, M., & Ragauskas, A. J. (2010). Changes in lignocellulosic supramolecular and ultrastructure during dilute acid pretreatment of Populus and switchgrass. Biomass & Bioenergy, 34(12), 1885–1895.CrossRef Foston, M., & Ragauskas, A. J. (2010). Changes in lignocellulosic supramolecular and ultrastructure during dilute acid pretreatment of Populus and switchgrass. Biomass & Bioenergy, 34(12), 1885–1895.CrossRef
115.
Zurück zum Zitat Jensen, J. R., Morinelly, J. E., Gossen, K. R., Brodeur-Campbell, M. J., & Shonnard, D. R. (2010). Effects of dilute acid pretreatment conditions on enzymatic hydrolysis monomer and oligomer sugar yields for aspen, balsam, and switchgrass. Bioresource Technology, 101(7), 2317–2325.CrossRef Jensen, J. R., Morinelly, J. E., Gossen, K. R., Brodeur-Campbell, M. J., & Shonnard, D. R. (2010). Effects of dilute acid pretreatment conditions on enzymatic hydrolysis monomer and oligomer sugar yields for aspen, balsam, and switchgrass. Bioresource Technology, 101(7), 2317–2325.CrossRef
116.
Zurück zum Zitat Zhou, X., Xu, J., Wang, Z., Cheng, J. J., Li, R., & Qu, R. (2012). Dilute sulfuric acid pretreatment of transgenic switchgrass for sugar production. Bioresource Technology, 104, 823–827.CrossRef Zhou, X., Xu, J., Wang, Z., Cheng, J. J., Li, R., & Qu, R. (2012). Dilute sulfuric acid pretreatment of transgenic switchgrass for sugar production. Bioresource Technology, 104, 823–827.CrossRef
117.
Zurück zum Zitat Cha, Y. L., Yang, J., Park, Y., An, G. H., Ahn, J. W., Moon, Y. H., Yoon, Y. M., Yu, G. D., & Choi, I. H. (2015). Continuous alkaline pretreatment of Miscanthus sacchariflorus using a bench-scale single screw reactor. Bioresource Technology, 181, 338–344.CrossRef Cha, Y. L., Yang, J., Park, Y., An, G. H., Ahn, J. W., Moon, Y. H., Yoon, Y. M., Yu, G. D., & Choi, I. H. (2015). Continuous alkaline pretreatment of Miscanthus sacchariflorus using a bench-scale single screw reactor. Bioresource Technology, 181, 338–344.CrossRef
118.
Zurück zum Zitat Xu, J., Cheng, J. J., Sharma-Shivappa, R. R., & Burns, J. C. (2010). Lime pretreatment of switchgrass at mild temperatures for ethanol production. Bioresource Technology, 101(8), 2900–2903.CrossRef Xu, J., Cheng, J. J., Sharma-Shivappa, R. R., & Burns, J. C. (2010). Lime pretreatment of switchgrass at mild temperatures for ethanol production. Bioresource Technology, 101(8), 2900–2903.CrossRef
119.
Zurück zum Zitat Salvi, D. A., Aita, G. M., Robert, D., & Bazan, V. (2010). Dilute ammonia pretreatment of sorghum and its effectiveness on enzyme hydrolysis and ethanol fermentation. Applied Biochemistry and Biotechnology, 161(1–8), 67–74.CrossRef Salvi, D. A., Aita, G. M., Robert, D., & Bazan, V. (2010). Dilute ammonia pretreatment of sorghum and its effectiveness on enzyme hydrolysis and ethanol fermentation. Applied Biochemistry and Biotechnology, 161(1–8), 67–74.CrossRef
120.
Zurück zum Zitat Ko, J. K., Bak, J. S., Jung, M. W., Lee, H. J., Choi, I. G., Kim, T. H., & Kim, K. H. (2009). Ethanol production from rice straw using optimized aqueous-ammonia soaking pretreatment and simultaneous saccharification and fermentation processes. Bioresource Technology, 100(19), 4374–4380.CrossRef Ko, J. K., Bak, J. S., Jung, M. W., Lee, H. J., Choi, I. G., Kim, T. H., & Kim, K. H. (2009). Ethanol production from rice straw using optimized aqueous-ammonia soaking pretreatment and simultaneous saccharification and fermentation processes. Bioresource Technology, 100(19), 4374–4380.CrossRef
121.
Zurück zum Zitat Gao, K., Boiano, S., Marzocchella, A., & Rehmann, L. (2014). Cellulosic butanol production from alkali-pretreated switchgrass (Panicum virgatum) and phragmites (Phragmites australis). Bioresource Technology, 174, 176–181.CrossRef Gao, K., Boiano, S., Marzocchella, A., & Rehmann, L. (2014). Cellulosic butanol production from alkali-pretreated switchgrass (Panicum virgatum) and phragmites (Phragmites australis). Bioresource Technology, 174, 176–181.CrossRef
122.
Zurück zum Zitat Gupta, R., & Lee, Y. (2010). Investigation of biomass degradation mechanism in pretreatment of switchgrass by aqueous ammonia and sodium hydroxide. Bioresource Technology, 101(21), 8185–8191.CrossRef Gupta, R., & Lee, Y. (2010). Investigation of biomass degradation mechanism in pretreatment of switchgrass by aqueous ammonia and sodium hydroxide. Bioresource Technology, 101(21), 8185–8191.CrossRef
123.
Zurück zum Zitat Qin, L., Liu, Z.-H., Jin, M., Li, B.-Z., & Yuan, Y.-J. (2013). High temperature aqueous ammonia pretreatment and post-washing enhance the high solids enzymatic hydrolysis of corn stover. Bioresource Technology, 146, 504–511.CrossRef Qin, L., Liu, Z.-H., Jin, M., Li, B.-Z., & Yuan, Y.-J. (2013). High temperature aqueous ammonia pretreatment and post-washing enhance the high solids enzymatic hydrolysis of corn stover. Bioresource Technology, 146, 504–511.CrossRef
124.
Zurück zum Zitat Palonen, H., Thomsen, A. B., Tenkanen, M., Schmidt, A. S., & Viikari, L. (2004). Evaluation of wet oxidation pretreatment for enzymatic hydrolysis of softwood. Applied Biochemistry and Biotechnology, 117(1), 1–17.CrossRef Palonen, H., Thomsen, A. B., Tenkanen, M., Schmidt, A. S., & Viikari, L. (2004). Evaluation of wet oxidation pretreatment for enzymatic hydrolysis of softwood. Applied Biochemistry and Biotechnology, 117(1), 1–17.CrossRef
125.
Zurück zum Zitat Varga, E., Klinke, H. B., Reczey, K., & Thomsen, A. B. (2004). High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol. Biotechnology and Bioengineering, 88(5), 567–574.CrossRef Varga, E., Klinke, H. B., Reczey, K., & Thomsen, A. B. (2004). High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol. Biotechnology and Bioengineering, 88(5), 567–574.CrossRef
126.
Zurück zum Zitat Garrote, G., Dominguez, H., & Parajo, J. (1999). Hydrothermal processing of lignocellulosic materials. European Journal of Wood and Wood Products, 57(3), 191–202.CrossRef Garrote, G., Dominguez, H., & Parajo, J. (1999). Hydrothermal processing of lignocellulosic materials. European Journal of Wood and Wood Products, 57(3), 191–202.CrossRef
127.
Zurück zum Zitat Bjerre, A. B., Olesen, A. B., Fernqvist, T., Plöger, A., & Schmidt, A. S. (1996). Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose. Biotechnology and Bioengineering, 49(5), 568–577.CrossRef Bjerre, A. B., Olesen, A. B., Fernqvist, T., Plöger, A., & Schmidt, A. S. (1996). Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose. Biotechnology and Bioengineering, 49(5), 568–577.CrossRef
128.
Zurück zum Zitat Ahring, B. K., Jensen, K., Nielsen, P., Bjerre, A., & Schmidt, A. (1996). Pretreatment of wheat straw and conversion of xylose and xylan to ethanol by thermophilic anaerobic bacteria. Bioresource Technology, 58(2), 107–113.CrossRef Ahring, B. K., Jensen, K., Nielsen, P., Bjerre, A., & Schmidt, A. (1996). Pretreatment of wheat straw and conversion of xylose and xylan to ethanol by thermophilic anaerobic bacteria. Bioresource Technology, 58(2), 107–113.CrossRef
129.
Zurück zum Zitat Martin, C., Klinke, H. B., & Thomsen, A. B. (2007). Wet oxidation as a pretreatment method for enhancing the enzymatic convertibility of sugarcane bagasse. Enzyme and Microbial Technology, 40(3), 426–432.CrossRef Martin, C., Klinke, H. B., & Thomsen, A. B. (2007). Wet oxidation as a pretreatment method for enhancing the enzymatic convertibility of sugarcane bagasse. Enzyme and Microbial Technology, 40(3), 426–432.CrossRef
130.
Zurück zum Zitat Curreli, N., Fadda, M. B., Rescigno, A., Rinaldi, A. C., Soddu, G., Sollai, F., Vaccargiu, S., Sanjust, E., & Rinaldi, A. (1997). Mild alkaline/oxidative pretreatment of wheat straw. Process Biochemistry, 32(8), 665–670.CrossRef Curreli, N., Fadda, M. B., Rescigno, A., Rinaldi, A. C., Soddu, G., Sollai, F., Vaccargiu, S., Sanjust, E., & Rinaldi, A. (1997). Mild alkaline/oxidative pretreatment of wheat straw. Process Biochemistry, 32(8), 665–670.CrossRef
131.
Zurück zum Zitat Itoh, H., Wada, M., Honda, Y., Kuwahara, M., & Watanabe, T. (2003). Bioorganosolve pretreatments for simultaneous saccharification and fermentation of beech wood by ethanolysis and white rot fungi. Journal of Biotechnology, 103(3), 273–280.CrossRef Itoh, H., Wada, M., Honda, Y., Kuwahara, M., & Watanabe, T. (2003). Bioorganosolve pretreatments for simultaneous saccharification and fermentation of beech wood by ethanolysis and white rot fungi. Journal of Biotechnology, 103(3), 273–280.CrossRef
132.
Zurück zum Zitat Pan, X., Gilkes, N., Kadla, J., Pye, K., Saka, S., Gregg, D., Ehara, K., Xie, D., Lam, D., & Saddler, J. (2006). Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: Optimization of process yields. Biotechnology and Bioengineering, 94(5), 851–861.CrossRef Pan, X., Gilkes, N., Kadla, J., Pye, K., Saka, S., Gregg, D., Ehara, K., Xie, D., Lam, D., & Saddler, J. (2006). Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: Optimization of process yields. Biotechnology and Bioengineering, 94(5), 851–861.CrossRef
133.
Zurück zum Zitat Rolz, C., de Arriola, M., Valladares, J., & de Cabrera, S. (1986). Effects of some physical and chemical pretreatments on the composition and enzymatic hydrolysis and digestibility of lemon grass and citronella bagasse. Agricultural Wastes, 18(2), 145–161.CrossRef Rolz, C., de Arriola, M., Valladares, J., & de Cabrera, S. (1986). Effects of some physical and chemical pretreatments on the composition and enzymatic hydrolysis and digestibility of lemon grass and citronella bagasse. Agricultural Wastes, 18(2), 145–161.CrossRef
134.
Zurück zum Zitat Lora, J. H., & Aziz, S. (1985). Organosolv pulping: A versatile approach to wood refining. Tappi (United States), 68(8), 94–97. Lora, J. H., & Aziz, S. (1985). Organosolv pulping: A versatile approach to wood refining. Tappi (United States), 68(8), 94–97.
135.
Zurück zum Zitat Zhao, X. (2009). Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Applied Microbiology and Biotechnology, 82(5), 815.CrossRef Zhao, X. (2009). Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Applied Microbiology and Biotechnology, 82(5), 815.CrossRef
136.
Zurück zum Zitat Dale, B. E. (1986). Method for increasing the reactivity and digestibility of cellulose with ammonia. United States Patent. Dale, B. E. (1986). Method for increasing the reactivity and digestibility of cellulose with ammonia. United States Patent.
137.
Zurück zum Zitat Dale, B. E., Leong, C., Pham, T., Esquivel, V., Rios, I., & Latimer, V. (1996). Hydrolysis of lignocellulosics at low enzyme levels: Application of the AFEX process. Bioresource Technology, 56(1), 111–116.CrossRef Dale, B. E., Leong, C., Pham, T., Esquivel, V., Rios, I., & Latimer, V. (1996). Hydrolysis of lignocellulosics at low enzyme levels: Application of the AFEX process. Bioresource Technology, 56(1), 111–116.CrossRef
138.
Zurück zum Zitat Chundawat, S. P., Venkatesh, B., & Dale, B. E. (2007). Effect of particle size based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility. Biotechnology and Bioengineering, 96(2), 219–231.CrossRef Chundawat, S. P., Venkatesh, B., & Dale, B. E. (2007). Effect of particle size based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility. Biotechnology and Bioengineering, 96(2), 219–231.CrossRef
139.
Zurück zum Zitat Carvalheiro, F., Duarte, L. C., & Gírio, F. M. (2008). Hemicellulose biorefineries: A review on biomass pretreatments. Journal of Scientific and Industrial Research, 67, 849–864. Carvalheiro, F., Duarte, L. C., & Gírio, F. M. (2008). Hemicellulose biorefineries: A review on biomass pretreatments. Journal of Scientific and Industrial Research, 67, 849–864.
140.
Zurück zum Zitat Lin, L., Yan, R., Liu, Y., & Jiang, W. (2010). In-depth investigation of enzymatic hydrolysis of biomass wastes based on three major components: Cellulose, hemicellulose and lignin. Bioresource Technology, 101(21), 8217–8223.CrossRef Lin, L., Yan, R., Liu, Y., & Jiang, W. (2010). In-depth investigation of enzymatic hydrolysis of biomass wastes based on three major components: Cellulose, hemicellulose and lignin. Bioresource Technology, 101(21), 8217–8223.CrossRef
141.
Zurück zum Zitat Yoon, H., Wu, Z., & Lee, Y. (1995). Ammonia-recycled percolation process for pretreatment of biomass feedstock. Applied Biochemistry and Biotechnology, 51(1), 5–19.CrossRef Yoon, H., Wu, Z., & Lee, Y. (1995). Ammonia-recycled percolation process for pretreatment of biomass feedstock. Applied Biochemistry and Biotechnology, 51(1), 5–19.CrossRef
142.
Zurück zum Zitat Shi, J., Balamurugan, K., Parthasarathi, R., Sathitsuksanoh, N., Zhang, S., Stavila, V., Subramanian, V., Simmons, B. A., & Singh, S. (2014). Understanding the role of water during ionic liquid pretreatment of lignocellulose: Co-solvent or anti-solvent? Green Chemistry, 16(8), 3830–3840.CrossRef Shi, J., Balamurugan, K., Parthasarathi, R., Sathitsuksanoh, N., Zhang, S., Stavila, V., Subramanian, V., Simmons, B. A., & Singh, S. (2014). Understanding the role of water during ionic liquid pretreatment of lignocellulose: Co-solvent or anti-solvent? Green Chemistry, 16(8), 3830–3840.CrossRef
143.
Zurück zum Zitat Liu, E., Li, M., Das, L., Pu, Y., Frazier, T., Zhao, B., Crocker, M., Ragauskas, A. J., & Shi, J. (2018). Understanding lignin fractionation and characterization from engineered switchgrass treated by an aqueous ionic liquid. ACS Sustainable Chemistry & Engineering, 6(5), 6612–6623.CrossRef Liu, E., Li, M., Das, L., Pu, Y., Frazier, T., Zhao, B., Crocker, M., Ragauskas, A. J., & Shi, J. (2018). Understanding lignin fractionation and characterization from engineered switchgrass treated by an aqueous ionic liquid. ACS Sustainable Chemistry & Engineering, 6(5), 6612–6623.CrossRef
144.
Zurück zum Zitat Kirk, T. K., & Chang, H.-M. (1981). Potential applications of bio-ligninolytic systems. Enzyme and Microbial Technology, 3(3), 189–196.CrossRef Kirk, T. K., & Chang, H.-M. (1981). Potential applications of bio-ligninolytic systems. Enzyme and Microbial Technology, 3(3), 189–196.CrossRef
145.
Zurück zum Zitat Hatakka, A. I. (1983). Pretreatment of wheat straw by white-rot fungi for enzymic saccharification of cellulose. Applied Microbiology and Biotechnology, 18(6), 350–357.CrossRef Hatakka, A. I. (1983). Pretreatment of wheat straw by white-rot fungi for enzymic saccharification of cellulose. Applied Microbiology and Biotechnology, 18(6), 350–357.CrossRef
146.
Zurück zum Zitat Keller, F. A., Hamilton, J. E., & Nguyen, Q. A. (2003). Microbial pretreatment of biomass. In Biotechnology for fuels and chemicals (pp. 27–41). Totowa: Springer.CrossRef Keller, F. A., Hamilton, J. E., & Nguyen, Q. A. (2003). Microbial pretreatment of biomass. In Biotechnology for fuels and chemicals (pp. 27–41). Totowa: Springer.CrossRef
147.
Zurück zum Zitat Yao, W., & Nokes, S. E. (2014). Phanerochaete chrysosporium pretreatment of biomass to enhance solvent production in subsequent bacterial solid-substrate cultivation. Biomass & Bioenergy, 62, 100–107.CrossRef Yao, W., & Nokes, S. E. (2014). Phanerochaete chrysosporium pretreatment of biomass to enhance solvent production in subsequent bacterial solid-substrate cultivation. Biomass & Bioenergy, 62, 100–107.CrossRef
148.
Zurück zum Zitat Chinn, M. S., & Nokes, S. E. (2006). Screening of thermophilic anaerobic bacteria for solid substrate cultivation on lignocellulosic substrates. Biotechnology Progress, 22(1), 53–59.CrossRef Chinn, M. S., & Nokes, S. E. (2006). Screening of thermophilic anaerobic bacteria for solid substrate cultivation on lignocellulosic substrates. Biotechnology Progress, 22(1), 53–59.CrossRef
149.
Zurück zum Zitat Flythe, M. D., Elía, N. M., Schmal, M. B., & Nokes, S. E. (2015). Switchgrass (Panicum virgatum) fermentation by Clostridium thermocellum and Clostridium beijerinckii sequential culture: Effect of feedstock particle size on gas production. Advances in Microbiology, 5(05), 311.CrossRef Flythe, M. D., Elía, N. M., Schmal, M. B., & Nokes, S. E. (2015). Switchgrass (Panicum virgatum) fermentation by Clostridium thermocellum and Clostridium beijerinckii sequential culture: Effect of feedstock particle size on gas production. Advances in Microbiology, 5(05), 311.CrossRef
150.
Zurück zum Zitat Bhandiwad, A., Shaw, A. J., Guss, A., Guseva, A., Bahl, H., & Lynd, L. R. (2014). Metabolic engineering of Thermoanaerobacterium saccharolyticum for n-butanol production. Metabolic Engineering, 21, 17–25.CrossRef Bhandiwad, A., Shaw, A. J., Guss, A., Guseva, A., Bahl, H., & Lynd, L. R. (2014). Metabolic engineering of Thermoanaerobacterium saccharolyticum for n-butanol production. Metabolic Engineering, 21, 17–25.CrossRef
151.
Zurück zum Zitat da Costa Sousa, L., Chundawat, S. P., Balan, V., & Dale, B. E. (2009). ‘Cradle-to-grave’assessment of existing lignocellulose pretreatment technologies. Current Opinion in Biotechnology, 20(3), 339–347.CrossRef da Costa Sousa, L., Chundawat, S. P., Balan, V., & Dale, B. E. (2009). ‘Cradle-to-grave’assessment of existing lignocellulose pretreatment technologies. Current Opinion in Biotechnology, 20(3), 339–347.CrossRef
152.
Zurück zum Zitat Lin, Z., Huang, H., Zhang, H., Zhang, L., Yan, L., & Chen, J. (2010). Ball milling pretreatment of corn stover for enhancing the efficiency of enzymatic hydrolysis. Applied Biochemistry and Biotechnology, 162(7), 1872–1880.CrossRef Lin, Z., Huang, H., Zhang, H., Zhang, L., Yan, L., & Chen, J. (2010). Ball milling pretreatment of corn stover for enhancing the efficiency of enzymatic hydrolysis. Applied Biochemistry and Biotechnology, 162(7), 1872–1880.CrossRef
153.
Zurück zum Zitat Zakaria, M. R., Fujimoto, S., Hirata, S., & Hassan, M. A. (2014). Ball milling pretreatment of oil palm biomass for enhancing enzymatic hydrolysis. Applied Biochemistry and Biotechnology, 173(7), 1778–1789.CrossRef Zakaria, M. R., Fujimoto, S., Hirata, S., & Hassan, M. A. (2014). Ball milling pretreatment of oil palm biomass for enhancing enzymatic hydrolysis. Applied Biochemistry and Biotechnology, 173(7), 1778–1789.CrossRef
154.
Zurück zum Zitat Li, J., Henriksson, G., & Gellerstedt, G. (2007). Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresource Technology, 98(16), 3061–3068.CrossRef Li, J., Henriksson, G., & Gellerstedt, G. (2007). Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresource Technology, 98(16), 3061–3068.CrossRef
155.
Zurück zum Zitat Ko, J. K., Kim, Y., Ximenes, E., & Ladisch, M. R. (2015). Effect of liquid hot water pretreatment severity on properties of hardwood lignin and enzymatic hydrolysis of cellulose. Biotechnology and Bioengineering, 112(2), 252–262.CrossRef Ko, J. K., Kim, Y., Ximenes, E., & Ladisch, M. R. (2015). Effect of liquid hot water pretreatment severity on properties of hardwood lignin and enzymatic hydrolysis of cellulose. Biotechnology and Bioengineering, 112(2), 252–262.CrossRef
156.
Zurück zum Zitat Samuel, R., Pu, Y., Raman, B., & Ragauskas, A. J. (2010). Structural characterization and comparison of switchgrass ball-milled lignin before and after dilute acid pretreatment. Applied Biochemistry and Biotechnology, 162(1), 62–74.CrossRef Samuel, R., Pu, Y., Raman, B., & Ragauskas, A. J. (2010). Structural characterization and comparison of switchgrass ball-milled lignin before and after dilute acid pretreatment. Applied Biochemistry and Biotechnology, 162(1), 62–74.CrossRef
157.
Zurück zum Zitat Kang, S., Xiao, L., Meng, L., Zhang, X., & Sun, R. (2012). Isolation and structural characterization of lignin from cotton stalk treated in an ammonia hydrothermal system. International Journal of Molecular Sciences, 13(11), 15209–15226.CrossRef Kang, S., Xiao, L., Meng, L., Zhang, X., & Sun, R. (2012). Isolation and structural characterization of lignin from cotton stalk treated in an ammonia hydrothermal system. International Journal of Molecular Sciences, 13(11), 15209–15226.CrossRef
158.
Zurück zum Zitat Klinke, H. B., Ahring, B. K., Schmidt, A. S., & Thomsen, A. B. (2002). Characterization of degradation products from alkaline wet oxidation of wheat straw. Bioresource Technology, 82(1), 15–26.CrossRef Klinke, H. B., Ahring, B. K., Schmidt, A. S., & Thomsen, A. B. (2002). Characterization of degradation products from alkaline wet oxidation of wheat straw. Bioresource Technology, 82(1), 15–26.CrossRef
159.
Zurück zum Zitat Li, M., Foster, C., Kelkar, S., Pu, Y., Holmes, D., Ragauskas, A., Saffron, C. M., & Hodge, D. B. (2012). Structural characterization of alkaline hydrogen peroxide pretreated grasses exhibiting diverse lignin phenotypes. Biotechnology for Biofuels, 5(1), 38.CrossRef Li, M., Foster, C., Kelkar, S., Pu, Y., Holmes, D., Ragauskas, A., Saffron, C. M., & Hodge, D. B. (2012). Structural characterization of alkaline hydrogen peroxide pretreated grasses exhibiting diverse lignin phenotypes. Biotechnology for Biofuels, 5(1), 38.CrossRef
160.
Zurück zum Zitat Hu, G., Cateto, C., Pu, Y., Samuel, R., & Ragauskas, A. J. (2011). Structural characterization of switchgrass lignin after ethanol organosolv pretreatment. Energy & Fuels, 26(1), 740–745.CrossRef Hu, G., Cateto, C., Pu, Y., Samuel, R., & Ragauskas, A. J. (2011). Structural characterization of switchgrass lignin after ethanol organosolv pretreatment. Energy & Fuels, 26(1), 740–745.CrossRef
161.
Zurück zum Zitat Li, C., Cheng, G., Balan, V., Kent, M. S., Ong, M., Chundawat, S. P., daCosta, S. L., Melnichenko, Y. B., Dale, B. E., & Simmons, B. A. (2011). Influence of physico-chemical changes on enzymatic digestibility of ionic liquid and AFEX pretreated corn stover. Bioresource Technology, 102(13), 6928–6936.CrossRef Li, C., Cheng, G., Balan, V., Kent, M. S., Ong, M., Chundawat, S. P., daCosta, S. L., Melnichenko, Y. B., Dale, B. E., & Simmons, B. A. (2011). Influence of physico-chemical changes on enzymatic digestibility of ionic liquid and AFEX pretreated corn stover. Bioresource Technology, 102(13), 6928–6936.CrossRef
162.
Zurück zum Zitat Lee, J.-W., Gwak, K.-S., Park, J.-Y., Park, M.-J., Choi, D.-H., Kwon, M., & Choi, I.-G. (2007). Biological pretreatment of softwood Pinus densiflora by three white rot fungi. Journal of Microbiology, 45(6), 485–491. Lee, J.-W., Gwak, K.-S., Park, J.-Y., Park, M.-J., Choi, D.-H., Kwon, M., & Choi, I.-G. (2007). Biological pretreatment of softwood Pinus densiflora by three white rot fungi. Journal of Microbiology, 45(6), 485–491.
163.
Zurück zum Zitat Suhara, H., Kodama, S., Kamei, I., Maekawa, N., & Meguro, S. (2012). Screening of selective lignin-degrading basidiomycetes and biological pretreatment for enzymatic hydrolysis of bamboo culms. International Biodeterioration & Biodegradation, 75, 176–180.CrossRef Suhara, H., Kodama, S., Kamei, I., Maekawa, N., & Meguro, S. (2012). Screening of selective lignin-degrading basidiomycetes and biological pretreatment for enzymatic hydrolysis of bamboo culms. International Biodeterioration & Biodegradation, 75, 176–180.CrossRef
164.
Zurück zum Zitat Martone, P. T., Estevez, J. M., Lu, F., Ruel, K., Denny, M. W., Somerville, C., & Ralph, J. (2009). Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture. Current Biology, 19(2), 169–175.CrossRef Martone, P. T., Estevez, J. M., Lu, F., Ruel, K., Denny, M. W., Somerville, C., & Ralph, J. (2009). Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture. Current Biology, 19(2), 169–175.CrossRef
165.
Zurück zum Zitat Yeh, T.-F., Chang, H.-m., & Kadla, J. F. (2004). Rapid prediction of solid wood lignin content using transmittance near-infrared spectroscopy. Journal of Agricultural and Food Chemistry, 52(6), 1435–1439.CrossRef Yeh, T.-F., Chang, H.-m., & Kadla, J. F. (2004). Rapid prediction of solid wood lignin content using transmittance near-infrared spectroscopy. Journal of Agricultural and Food Chemistry, 52(6), 1435–1439.CrossRef
166.
Zurück zum Zitat Easty, D. B., Berben, S. A., DeThomas, F. A., & Brimmer, P. J. (1990). Near-infrared spectroscopy for the analysis of wood pulp: Quantifying hardwood-softwood mixtures and estimating lignin content. Tappi Journal, 73(10), 257–261. Easty, D. B., Berben, S. A., DeThomas, F. A., & Brimmer, P. J. (1990). Near-infrared spectroscopy for the analysis of wood pulp: Quantifying hardwood-softwood mixtures and estimating lignin content. Tappi Journal, 73(10), 257–261.
167.
Zurück zum Zitat Hatfield, R., & Fukushima, R. S. (2005). Can lignin be accurately measured? Crop Science, 45(3), 832–839.CrossRef Hatfield, R., & Fukushima, R. S. (2005). Can lignin be accurately measured? Crop Science, 45(3), 832–839.CrossRef
168.
Zurück zum Zitat Fukushima, R. S., & Hatfield, R. D. (2001). Extraction and isolation of lignin for utilization as a standard to determine lignin concentration using the acetyl bromide spectrophotometric method. Journal of Agricultural and Food Chemistry, 49(7), 3133–3139.CrossRef Fukushima, R. S., & Hatfield, R. D. (2001). Extraction and isolation of lignin for utilization as a standard to determine lignin concentration using the acetyl bromide spectrophotometric method. Journal of Agricultural and Food Chemistry, 49(7), 3133–3139.CrossRef
169.
Zurück zum Zitat Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2008). Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure, 1617(1), 1–16. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2008). Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure, 1617(1), 1–16.
170.
Zurück zum Zitat Freudenberg, K. (1965). Lignin: Its constitution and formation from p-hydroxycinnamyl alcohols. Science, 148(3670), 595–600.CrossRef Freudenberg, K. (1965). Lignin: Its constitution and formation from p-hydroxycinnamyl alcohols. Science, 148(3670), 595–600.CrossRef
171.
Zurück zum Zitat Li, L., Zhou, Y., Cheng, X., Sun, J., Marita, J. M., Ralph, J., & Chiang, V. L. (2003). Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. Proceedings of the National Academy of Sciences of the United States of America, 100(8), 4939–4944.CrossRef Li, L., Zhou, Y., Cheng, X., Sun, J., Marita, J. M., Ralph, J., & Chiang, V. L. (2003). Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. Proceedings of the National Academy of Sciences of the United States of America, 100(8), 4939–4944.CrossRef
172.
Zurück zum Zitat Pilate, G., Guiney, E., Holt, K., Petit-Conil, M., Lapierre, C., Leplé, J.-C., Pollet, B., Mila, I., Webster, E. A., & Marstorp, H. G. (2002). Field and pulping performances of transgenic trees with altered lignification. Nature Biotechnology, 20(6), 607.CrossRef Pilate, G., Guiney, E., Holt, K., Petit-Conil, M., Lapierre, C., Leplé, J.-C., Pollet, B., Mila, I., Webster, E. A., & Marstorp, H. G. (2002). Field and pulping performances of transgenic trees with altered lignification. Nature Biotechnology, 20(6), 607.CrossRef
173.
Zurück zum Zitat Holtman, K. M., Chang, H.-M., & Kadla, J. F. (2004). Solution-state nuclear magnetic resonance study of the similarities between milled wood lignin and cellulolytic enzyme lignin. Journal of Agricultural and Food Chemistry, 52(4), 720–726.CrossRef Holtman, K. M., Chang, H.-M., & Kadla, J. F. (2004). Solution-state nuclear magnetic resonance study of the similarities between milled wood lignin and cellulolytic enzyme lignin. Journal of Agricultural and Food Chemistry, 52(4), 720–726.CrossRef
174.
Zurück zum Zitat Chang, H.-M., Cowling, E. B., & Brown, W. (1975). Comparative studies on cellulolytic enzyme lignin and milled wood lignin of sweetgum and spruce. Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood, 29(5), 153–159. Chang, H.-M., Cowling, E. B., & Brown, W. (1975). Comparative studies on cellulolytic enzyme lignin and milled wood lignin of sweetgum and spruce. Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood, 29(5), 153–159.
175.
Zurück zum Zitat Ralph, J., Hatfield, R. D., Piquemal, J., Yahiaoui, N., Pean, M., Lapierre, C., & Boudet, A. M. (1998). NMR characterization of altered lignins extracted from tobacco plants down-regulated for lignification enzymes cinnamylalcohol dehydrogenase and cinnamoyl-CoA reductase. Proceedings of the National Academy of Sciences of the United States of America, 95(22), 12803–12808.CrossRef Ralph, J., Hatfield, R. D., Piquemal, J., Yahiaoui, N., Pean, M., Lapierre, C., & Boudet, A. M. (1998). NMR characterization of altered lignins extracted from tobacco plants down-regulated for lignification enzymes cinnamylalcohol dehydrogenase and cinnamoyl-CoA reductase. Proceedings of the National Academy of Sciences of the United States of America, 95(22), 12803–12808.CrossRef
176.
Zurück zum Zitat Gosselink, R., Abächerli, A., Semke, H., Malherbe, R., Käuper, P., Nadif, A., & Van Dam, J. (2004). Analytical protocols for characterisation of sulphur-free lignin. Industrial Crops and Products, 19(3), 271–281.CrossRef Gosselink, R., Abächerli, A., Semke, H., Malherbe, R., Käuper, P., Nadif, A., & Van Dam, J. (2004). Analytical protocols for characterisation of sulphur-free lignin. Industrial Crops and Products, 19(3), 271–281.CrossRef
177.
Zurück zum Zitat Jönsson, A.-S., Nordin, A.-K., & Wallberg, O. (2008). Concentration and purification of lignin in hardwood kraft pulping liquor by ultrafiltration and nanofiltration. Chemical Engineering Research and Design, 86(11), 1271–1280.CrossRef Jönsson, A.-S., Nordin, A.-K., & Wallberg, O. (2008). Concentration and purification of lignin in hardwood kraft pulping liquor by ultrafiltration and nanofiltration. Chemical Engineering Research and Design, 86(11), 1271–1280.CrossRef
178.
Zurück zum Zitat Gidh, A. V., Decker, S. R., See, C. H., Himmel, M. E., & Williford, C. W. (2006). Characterization of lignin using multi-angle laser light scattering and atomic force microscopy. Analytica Chimica Acta, 555(2), 250–258.CrossRef Gidh, A. V., Decker, S. R., See, C. H., Himmel, M. E., & Williford, C. W. (2006). Characterization of lignin using multi-angle laser light scattering and atomic force microscopy. Analytica Chimica Acta, 555(2), 250–258.CrossRef
179.
Zurück zum Zitat Evtuguin, D., Domingues, P., Amado, F., Neto, C. P., & Correia, A. (1999). Electrospray ionization mass spectrometry as a tool for lignins molecular weight and structural characterisation. Holzforschung, 53(5), 525–528.CrossRef Evtuguin, D., Domingues, P., Amado, F., Neto, C. P., & Correia, A. (1999). Electrospray ionization mass spectrometry as a tool for lignins molecular weight and structural characterisation. Holzforschung, 53(5), 525–528.CrossRef
180.
Zurück zum Zitat Gidh, A. V., Decker, S. R., Vinzant, T. B., Himmel, M. E., & Williford, C. (2006). Determination of lignin by size exclusion chromatography using multi angle laser light scattering. Journal of Chromatography. A, 1114(1), 102–110.CrossRef Gidh, A. V., Decker, S. R., Vinzant, T. B., Himmel, M. E., & Williford, C. (2006). Determination of lignin by size exclusion chromatography using multi angle laser light scattering. Journal of Chromatography. A, 1114(1), 102–110.CrossRef
181.
Zurück zum Zitat Baumberger, S., Abaecherli, A., Fasching, M., Gellerstedt, G., Gosselink, R., Hortling, B., Li, J., Saake, B., & de Jong, E. (2007). Molar mass determination of lignins by size-exclusion chromatography: Towards standardisation of the method. Holzforschung, 61(4), 459–468.CrossRef Baumberger, S., Abaecherli, A., Fasching, M., Gellerstedt, G., Gosselink, R., Hortling, B., Li, J., Saake, B., & de Jong, E. (2007). Molar mass determination of lignins by size-exclusion chromatography: Towards standardisation of the method. Holzforschung, 61(4), 459–468.CrossRef
182.
Zurück zum Zitat El Hage, R., Brosse, N., Chrusciel, L., Sanchez, C., Sannigrahi, P., & Ragauskas, A. (2009). Characterization of milled wood lignin and ethanol organosolv lignin from miscanthus. Polymer Degradation and Stability, 94(10), 1632–1638.CrossRef El Hage, R., Brosse, N., Chrusciel, L., Sanchez, C., Sannigrahi, P., & Ragauskas, A. (2009). Characterization of milled wood lignin and ethanol organosolv lignin from miscanthus. Polymer Degradation and Stability, 94(10), 1632–1638.CrossRef
183.
Zurück zum Zitat Joffres, B., Lorentz, C., Vidalie, M., Laurenti, D., Quoineaud, A.-A., Charon, N., Daudin, A., Quignard, A., & Geantet, C. (2014). Catalytic hydroconversion of a wheat straw soda lignin: Characterization of the products and the lignin residue. Applied Catalysis B: Environmental, 145, 167–176.CrossRef Joffres, B., Lorentz, C., Vidalie, M., Laurenti, D., Quoineaud, A.-A., Charon, N., Daudin, A., Quignard, A., & Geantet, C. (2014). Catalytic hydroconversion of a wheat straw soda lignin: Characterization of the products and the lignin residue. Applied Catalysis B: Environmental, 145, 167–176.CrossRef
184.
Zurück zum Zitat Salanti, A., Zoia, L., Orlandi, M., Zanini, F., & Elegir, G. (2010). Structural characterization and antioxidant activity evaluation of lignins from rice husk. Journal of Agricultural and Food Chemistry, 58(18), 10049–10055.CrossRef Salanti, A., Zoia, L., Orlandi, M., Zanini, F., & Elegir, G. (2010). Structural characterization and antioxidant activity evaluation of lignins from rice husk. Journal of Agricultural and Food Chemistry, 58(18), 10049–10055.CrossRef
185.
Zurück zum Zitat Tejado, A., Pena, C., Labidi, J., Echeverria, J., & Mondragon, I. (2007). Physico-chemical characterization of lignins from different sources for use in phenol–formaldehyde resin synthesis. Bioresource Technology, 98(8), 1655–1663.CrossRef Tejado, A., Pena, C., Labidi, J., Echeverria, J., & Mondragon, I. (2007). Physico-chemical characterization of lignins from different sources for use in phenol–formaldehyde resin synthesis. Bioresource Technology, 98(8), 1655–1663.CrossRef
186.
Zurück zum Zitat Baumberger, S., Dole, P., & Lapierre, C. (2002). Using transgenic poplars to elucidate the relationship between the structure and the thermal properties of lignins. Journal of Agricultural and Food Chemistry, 50(8), 2450–2453.CrossRef Baumberger, S., Dole, P., & Lapierre, C. (2002). Using transgenic poplars to elucidate the relationship between the structure and the thermal properties of lignins. Journal of Agricultural and Food Chemistry, 50(8), 2450–2453.CrossRef
187.
Zurück zum Zitat Shen, H., Poovaiah, C. R., Ziebell, A., Tschaplinski, T. J., Pattathil, S., Gjersing, E., Engle, N. L., Katahira, R., Pu, Y., & Sykes, R. (2013). Enhanced characteristics of genetically modified switchgrass (Panicum virgatum L.) for high biofuel production. Biotechnology for Biofuels, 6(1), 71.CrossRef Shen, H., Poovaiah, C. R., Ziebell, A., Tschaplinski, T. J., Pattathil, S., Gjersing, E., Engle, N. L., Katahira, R., Pu, Y., & Sykes, R. (2013). Enhanced characteristics of genetically modified switchgrass (Panicum virgatum L.) for high biofuel production. Biotechnology for Biofuels, 6(1), 71.CrossRef
188.
Zurück zum Zitat Chen, C. (1991). Lignins: Occurrence in woody tissues, isolation, reactions, and structure. New York: Wood Structure and Composition. Chen, C. (1991). Lignins: Occurrence in woody tissues, isolation, reactions, and structure. New York: Wood Structure and Composition.
189.
Zurück zum Zitat Crews, P., Rodriquez, J., Jaspars, M., & Crews, R. J. (2010). Organic structure analysis (Vol. 636). New York: Oxford University Press. Crews, P., Rodriquez, J., Jaspars, M., & Crews, R. J. (2010). Organic structure analysis (Vol. 636). New York: Oxford University Press.
190.
Zurück zum Zitat Robert, D., & Gagnaire, D. (1981). Quantitative analysis of lignins by 13C NMR. Proceedings of the National Academy of Sciences of the United States of America, 1, 9–12. Robert, D., & Gagnaire, D. (1981). Quantitative analysis of lignins by 13C NMR. Proceedings of the National Academy of Sciences of the United States of America, 1, 9–12.
191.
Zurück zum Zitat Xia, Z., Akim, L. G., & Argyropoulos, D. S. (2001). Quantitative 13C NMR analysis of lignins with internal standards. Journal of Agricultural and Food Chemistry, 49(8), 3573–3578.CrossRef Xia, Z., Akim, L. G., & Argyropoulos, D. S. (2001). Quantitative 13C NMR analysis of lignins with internal standards. Journal of Agricultural and Food Chemistry, 49(8), 3573–3578.CrossRef
192.
Zurück zum Zitat Ralph, J., Marita, J. M., Ralph, S. A., Hatfield, R. D., Lu, F., Ede, R. M., Peng, J., Quideau, S., Helm, R. F., & Grabber, J. H. (1999). Solution-state NMR of lignins. In Advances in lignocellulosics characterization (pp. 55–108). Atlanta: TAPPI Press. Ralph, J., Marita, J. M., Ralph, S. A., Hatfield, R. D., Lu, F., Ede, R. M., Peng, J., Quideau, S., Helm, R. F., & Grabber, J. H. (1999). Solution-state NMR of lignins. In Advances in lignocellulosics characterization (pp. 55–108). Atlanta: TAPPI Press.
193.
Zurück zum Zitat Marita, J. M., Ralph, J., Hatfield, R. D., & Chapple, C. (1999). NMR characterization of lignins in Arabidopsis altered in the activity of ferulate 5-hydroxylase. Proceedings of the National Academy of Sciences of the United States of America, 96(22), 12328–12332.CrossRef Marita, J. M., Ralph, J., Hatfield, R. D., & Chapple, C. (1999). NMR characterization of lignins in Arabidopsis altered in the activity of ferulate 5-hydroxylase. Proceedings of the National Academy of Sciences of the United States of America, 96(22), 12328–12332.CrossRef
194.
Zurück zum Zitat Ralph, J., Lapierre, C., Marita, J. M., Kim, H., Lu, F., Hatfield, R. D., Ralph, S., Chapple, C., Franke, R., & Hemm, M. R. (2001). Elucidation of new structures in lignins of CAD-and COMT-deficient plants by NMR. Phytochemistry, 57(6), 993–1003.CrossRef Ralph, J., Lapierre, C., Marita, J. M., Kim, H., Lu, F., Hatfield, R. D., Ralph, S., Chapple, C., Franke, R., & Hemm, M. R. (2001). Elucidation of new structures in lignins of CAD-and COMT-deficient plants by NMR. Phytochemistry, 57(6), 993–1003.CrossRef
195.
Zurück zum Zitat Pu, Y., Cao, S., & Ragauskas, A. J. (2011). Application of quantitative 31P NMR in biomass lignin and biofuel precursors characterization. Energy & Environmental Science, 4(9), 3154–3166.CrossRef Pu, Y., Cao, S., & Ragauskas, A. J. (2011). Application of quantitative 31P NMR in biomass lignin and biofuel precursors characterization. Energy & Environmental Science, 4(9), 3154–3166.CrossRef
196.
Zurück zum Zitat Yuan, T.-Q., Sun, S.-N., Xu, F., & Sun, R.-C. (2011). Characterization of lignin structures and lignin–carbohydrate complex (LCC) linkages by quantitative 13C and 2D HSQC NMR spectroscopy. Journal of Agricultural and Food Chemistry, 59(19), 10604–10614.CrossRef Yuan, T.-Q., Sun, S.-N., Xu, F., & Sun, R.-C. (2011). Characterization of lignin structures and lignin–carbohydrate complex (LCC) linkages by quantitative 13C and 2D HSQC NMR spectroscopy. Journal of Agricultural and Food Chemistry, 59(19), 10604–10614.CrossRef
197.
Zurück zum Zitat Del Río, J. C., Rencoret, J., Prinsen, P., Martínez, A. T., Ralph, J., & Gutiérrez, A. (2012). Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage methods. Journal of Agricultural and Food Chemistry, 60(23), 5922–5935.CrossRef Del Río, J. C., Rencoret, J., Prinsen, P., Martínez, A. T., Ralph, J., & Gutiérrez, A. (2012). Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage methods. Journal of Agricultural and Food Chemistry, 60(23), 5922–5935.CrossRef
198.
Zurück zum Zitat Cao, S., Pu, Y., Studer, M., Wyman, C., & Ragauskas, A. J. (2012). Chemical transformations of Populus trichocarpa during dilute acid pretreatment. RSC Advances, 2(29), 10925–10936.CrossRef Cao, S., Pu, Y., Studer, M., Wyman, C., & Ragauskas, A. J. (2012). Chemical transformations of Populus trichocarpa during dilute acid pretreatment. RSC Advances, 2(29), 10925–10936.CrossRef
199.
Zurück zum Zitat Shi, J., Gladden, J. M., Sathitsuksanoh, N., Kambam, P., Sandoval, L., Mitra, D., Zhang, S., George, A., Singer, S. W., & Simmons, B. A. (2013). One-pot ionic liquid pretreatment and saccharification of switchgrass. Green Chemistry, 15(9), 2579–2589.CrossRef Shi, J., Gladden, J. M., Sathitsuksanoh, N., Kambam, P., Sandoval, L., Mitra, D., Zhang, S., George, A., Singer, S. W., & Simmons, B. A. (2013). One-pot ionic liquid pretreatment and saccharification of switchgrass. Green Chemistry, 15(9), 2579–2589.CrossRef
200.
Zurück zum Zitat Hou, X. D., Li, N., & Zong, M. H. (2013). Renewable bio ionic liquids-water mixtures-mediated selective removal of lignin from rice straw: Visualization of changes in composition and cell wall structure. Biotechnology and Bioengineering, 110(7), 1895–1902.CrossRef Hou, X. D., Li, N., & Zong, M. H. (2013). Renewable bio ionic liquids-water mixtures-mediated selective removal of lignin from rice straw: Visualization of changes in composition and cell wall structure. Biotechnology and Bioengineering, 110(7), 1895–1902.CrossRef
201.
Zurück zum Zitat Sun, N., Parthasarathi, R., Socha, A. M., Shi, J., Zhang, S., Stavila, V., Sale, K. L., Simmons, B. A., & Singh, S. (2014). Understanding pretreatment efficacy of four cholinium and imidazolium ionic liquids by chemistry and computation. Green Chemistry, 16(5), 2546–2557.CrossRef Sun, N., Parthasarathi, R., Socha, A. M., Shi, J., Zhang, S., Stavila, V., Sale, K. L., Simmons, B. A., & Singh, S. (2014). Understanding pretreatment efficacy of four cholinium and imidazolium ionic liquids by chemistry and computation. Green Chemistry, 16(5), 2546–2557.CrossRef
202.
Zurück zum Zitat Trajano, H. L., Engle, N. L., Foston, M., Ragauskas, A. J., Tschaplinski, T. J., & Wyman, C. E. (2013). The fate of lignin during hydrothermal pretreatment. Biotechnology for Biofuels, 6(1), 110.CrossRef Trajano, H. L., Engle, N. L., Foston, M., Ragauskas, A. J., Tschaplinski, T. J., & Wyman, C. E. (2013). The fate of lignin during hydrothermal pretreatment. Biotechnology for Biofuels, 6(1), 110.CrossRef
203.
Zurück zum Zitat Ben, H., & Ragauskas, A. J. (2011). NMR characterization of pyrolysis oils from kraft lignin. Energy and Fuels, 25(5), 2322–2332.CrossRef Ben, H., & Ragauskas, A. J. (2011). NMR characterization of pyrolysis oils from kraft lignin. Energy and Fuels, 25(5), 2322–2332.CrossRef
204.
Zurück zum Zitat Eudes, A., Sathitsuksanoh, N., Baidoo, E. E., George, A., Liang, Y., Yang, F., Singh, S., Keasling, J. D., Simmons, B. A., & Loqué, D. (2015). Expression of a bacterial 3-dehydroshikimate dehydratase reduces lignin content and improves biomass saccharification efficiency. Plant Biotechnology Journal, 13(9), 1241–1250.CrossRef Eudes, A., Sathitsuksanoh, N., Baidoo, E. E., George, A., Liang, Y., Yang, F., Singh, S., Keasling, J. D., Simmons, B. A., & Loqué, D. (2015). Expression of a bacterial 3-dehydroshikimate dehydratase reduces lignin content and improves biomass saccharification efficiency. Plant Biotechnology Journal, 13(9), 1241–1250.CrossRef
205.
Zurück zum Zitat Mansfield, S. D., Kim, H., Lu, F., & Ralph, J. (2012). Whole plant cell wall characterization using solution-state 2D NMR. Nature Protocols, 7(9), 1579.CrossRef Mansfield, S. D., Kim, H., Lu, F., & Ralph, J. (2012). Whole plant cell wall characterization using solution-state 2D NMR. Nature Protocols, 7(9), 1579.CrossRef
206.
Zurück zum Zitat Griffiths, P. R., & De Haseth, J. A. (2007). Fourier transform infrared spectrometry (Vol. 171). Hoboken: Wiley.CrossRef Griffiths, P. R., & De Haseth, J. A. (2007). Fourier transform infrared spectrometry (Vol. 171). Hoboken: Wiley.CrossRef
207.
Zurück zum Zitat Müller, G., Schöpper, C., Vos, H., Kharazipour, A., & Polle, A. (2008). FTIR-ATR spectroscopic analyses of changes in wood properties during particle-and fibreboard production of hard-and softwood trees. BioResources, 4(1), 49–71.CrossRef Müller, G., Schöpper, C., Vos, H., Kharazipour, A., & Polle, A. (2008). FTIR-ATR spectroscopic analyses of changes in wood properties during particle-and fibreboard production of hard-and softwood trees. BioResources, 4(1), 49–71.CrossRef
208.
Zurück zum Zitat Sarkanen, K. V., & Ludwig, C. H. (1971). Liguins. Occurrence, formation, structure, and reactions. New York: Wiley-Interscience. Sarkanen, K. V., & Ludwig, C. H. (1971). Liguins. Occurrence, formation, structure, and reactions. New York: Wiley-Interscience.
209.
Zurück zum Zitat Faix, O. (1986). Investigation of lignin polymer models (DHP’s) by FTIR spectroscopy. Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood, 40(5), 273–280. Faix, O. (1986). Investigation of lignin polymer models (DHP’s) by FTIR spectroscopy. Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood, 40(5), 273–280.
210.
Zurück zum Zitat Freer, J., Ruiz, J., Peredo, M. A., Rodríguez, J., & Baeza, J. (2003). Estimating the density and pulping yield of E. globulus wood by DRIFT-MIR spectroscopy and principal components regression (PCR). Journal of the Chilean Chemical Society, 48(3), 19–22.CrossRef Freer, J., Ruiz, J., Peredo, M. A., Rodríguez, J., & Baeza, J. (2003). Estimating the density and pulping yield of E. globulus wood by DRIFT-MIR spectroscopy and principal components regression (PCR). Journal of the Chilean Chemical Society, 48(3), 19–22.CrossRef
211.
Zurück zum Zitat Kim, T. H., & Lee, Y. Y. (2005). Pretreatment and fractionation of corn stover by ammonia recycle percolation process. Bioresource Technology, 96(18), 2007–2013.CrossRef Kim, T. H., & Lee, Y. Y. (2005). Pretreatment and fractionation of corn stover by ammonia recycle percolation process. Bioresource Technology, 96(18), 2007–2013.CrossRef
212.
Zurück zum Zitat Li, C., Knierim, B., Manisseri, C., Arora, R., Scheller, H. V., Auer, M., Vogel, K. P., Simmons, B. A., & Singh, S. (2010). Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification. Bioresource Technology, 101(13), 4900–4906.CrossRef Li, C., Knierim, B., Manisseri, C., Arora, R., Scheller, H. V., Auer, M., Vogel, K. P., Simmons, B. A., & Singh, S. (2010). Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification. Bioresource Technology, 101(13), 4900–4906.CrossRef
213.
Zurück zum Zitat Caballero, J., Conesa, J., Font, R., & Marcilla, A. (1997). Pyrolysis kinetics of almond shells and olive stones considering their organic fractions. Journal of Analytical and Applied Pyrolysis, 42(2), 159–175.CrossRef Caballero, J., Conesa, J., Font, R., & Marcilla, A. (1997). Pyrolysis kinetics of almond shells and olive stones considering their organic fractions. Journal of Analytical and Applied Pyrolysis, 42(2), 159–175.CrossRef
214.
Zurück zum Zitat Sharma, R. K., Wooten, J. B., Baliga, V. L., Lin, X., Chan, W. G., & Hajaligol, M. R. (2004). Characterization of chars from pyrolysis of lignin. Fuel, 83(11), 1469–1482.CrossRef Sharma, R. K., Wooten, J. B., Baliga, V. L., Lin, X., Chan, W. G., & Hajaligol, M. R. (2004). Characterization of chars from pyrolysis of lignin. Fuel, 83(11), 1469–1482.CrossRef
215.
Zurück zum Zitat Brebu, M., & Vasile, C. (2010). Thermal degradation of lignin—A review. Cellulose Chemistry and Technology, 44(9), 353. Brebu, M., & Vasile, C. (2010). Thermal degradation of lignin—A review. Cellulose Chemistry and Technology, 44(9), 353.
216.
Zurück zum Zitat Fierro, V., Torné-Fernández, V., Montané, D., & Celzard, A. (2005). Study of the decomposition of kraft lignin impregnated with orthophosphoric acid. Thermochimica Acta, 433(1), 142–148.CrossRef Fierro, V., Torné-Fernández, V., Montané, D., & Celzard, A. (2005). Study of the decomposition of kraft lignin impregnated with orthophosphoric acid. Thermochimica Acta, 433(1), 142–148.CrossRef
217.
Zurück zum Zitat Erä, V., & Mattila, A. (1976). Thermal analysis of thermosetting resins. Journal of Thermal Analysis and Calorimetry, 10(3), 461–469.CrossRef Erä, V., & Mattila, A. (1976). Thermal analysis of thermosetting resins. Journal of Thermal Analysis and Calorimetry, 10(3), 461–469.CrossRef
218.
Zurück zum Zitat Coats, A., & Redfern, J. (1963). Thermogravimetric analysis. A review. Analyst, 88(1053), 906–924.CrossRef Coats, A., & Redfern, J. (1963). Thermogravimetric analysis. A review. Analyst, 88(1053), 906–924.CrossRef
219.
Zurück zum Zitat Wunderlich, B. (2005). Thermal analysis of polymeric materials. New York: Springer. Wunderlich, B. (2005). Thermal analysis of polymeric materials. New York: Springer.
220.
Zurück zum Zitat Ma, R., Xu, Y., & Zhang, X. (2015). Catalytic oxidation of biorefinery lignin to value-added chemicals to support sustainable biofuel production. ChemSusChem, 8(1), 24–51.CrossRef Ma, R., Xu, Y., & Zhang, X. (2015). Catalytic oxidation of biorefinery lignin to value-added chemicals to support sustainable biofuel production. ChemSusChem, 8(1), 24–51.CrossRef
221.
Zurück zum Zitat Li, C., Zhao, X., Wang, A., Huber, G. W., & Zhang, T. (2015). Catalytic transformation of lignin for the production of chemicals and fuels. Chemical Reviews, 115(21), 11559–11624.CrossRef Li, C., Zhao, X., Wang, A., Huber, G. W., & Zhang, T. (2015). Catalytic transformation of lignin for the production of chemicals and fuels. Chemical Reviews, 115(21), 11559–11624.CrossRef
222.
Zurück zum Zitat Zakzeski, J., Bruijnincx, P. C., Jongerius, A. L., & Weckhuysen, B. M. (2010). The catalytic valorization of lignin for the production of renewable chemicals. Chemical Reviews, 110(6), 3552–3599.CrossRef Zakzeski, J., Bruijnincx, P. C., Jongerius, A. L., & Weckhuysen, B. M. (2010). The catalytic valorization of lignin for the production of renewable chemicals. Chemical Reviews, 110(6), 3552–3599.CrossRef
223.
Zurück zum Zitat Luo, H., & Abu-Omar, M. M. (2018). Lignin extraction and catalytic upgrading from genetically modified poplar. Green Chemistry, 20(3), 745–753.CrossRef Luo, H., & Abu-Omar, M. M. (2018). Lignin extraction and catalytic upgrading from genetically modified poplar. Green Chemistry, 20(3), 745–753.CrossRef
224.
Zurück zum Zitat Parsell, T., Yohe, S., Degenstein, J., Jarrell, T., Klein, I., Gencer, E., Hewetson, B., Hurt, M., Im Kim, J., & Choudhari, H. (2015). A synergistic biorefinery based on catalytic conversion of lignin prior to cellulose starting from lignocellulosic biomass. Green Chemistry, 17(3), 1492–1499.CrossRef Parsell, T., Yohe, S., Degenstein, J., Jarrell, T., Klein, I., Gencer, E., Hewetson, B., Hurt, M., Im Kim, J., & Choudhari, H. (2015). A synergistic biorefinery based on catalytic conversion of lignin prior to cellulose starting from lignocellulosic biomass. Green Chemistry, 17(3), 1492–1499.CrossRef
225.
Zurück zum Zitat Feghali, E., Carrot, G., Thuéry, P., Genre, C., & Cantat, T. (2015). Convergent reductive depolymerization of wood lignin to isolated phenol derivatives by metal-free catalytic hydrosilylation. Energy & Environmental Science, 8(9), 2734–2743.CrossRef Feghali, E., Carrot, G., Thuéry, P., Genre, C., & Cantat, T. (2015). Convergent reductive depolymerization of wood lignin to isolated phenol derivatives by metal-free catalytic hydrosilylation. Energy & Environmental Science, 8(9), 2734–2743.CrossRef
226.
Zurück zum Zitat Parsell, T. H., Owen, B. C., Klein, I., Jarrell, T. M., Marcum, C. L., Haupert, L. J., Amundson, L. M., Kenttämaa, H. I., Ribeiro, F., & Miller, J. T. (2013). Cleavage and hydrodeoxygenation (HDO) of C–O bonds relevant to lignin conversion using Pd/Zn synergistic catalysis. Chemical Science, 4(2), 806–813.CrossRef Parsell, T. H., Owen, B. C., Klein, I., Jarrell, T. M., Marcum, C. L., Haupert, L. J., Amundson, L. M., Kenttämaa, H. I., Ribeiro, F., & Miller, J. T. (2013). Cleavage and hydrodeoxygenation (HDO) of C–O bonds relevant to lignin conversion using Pd/Zn synergistic catalysis. Chemical Science, 4(2), 806–813.CrossRef
227.
Zurück zum Zitat Milczarek, G. (2009). Lignosulfonate-modified electrodes: Electrochemical properties and electrocatalysis of NADH oxidation. Langmuir, 25(17), 10345–10353.CrossRef Milczarek, G. (2009). Lignosulfonate-modified electrodes: Electrochemical properties and electrocatalysis of NADH oxidation. Langmuir, 25(17), 10345–10353.CrossRef
228.
Zurück zum Zitat Reichert, E., Wintringer, R., Volmer, D. A., & Hempelmann, R. (2012). Electro-catalytic oxidative cleavage of lignin in a protic ionic liquid. Physical Chemistry Chemical Physics, 14(15), 5214–5221.CrossRef Reichert, E., Wintringer, R., Volmer, D. A., & Hempelmann, R. (2012). Electro-catalytic oxidative cleavage of lignin in a protic ionic liquid. Physical Chemistry Chemical Physics, 14(15), 5214–5221.CrossRef
229.
Zurück zum Zitat Wen, X., Jia, Y., & Li, J. (2009). Degradation of tetracycline and oxytetracycline by crude lignin peroxidase prepared from Phanerochaete chrysosporium—A white rot fungus. Chemosphere, 75(8), 1003–1007.CrossRef Wen, X., Jia, Y., & Li, J. (2009). Degradation of tetracycline and oxytetracycline by crude lignin peroxidase prepared from Phanerochaete chrysosporium—A white rot fungus. Chemosphere, 75(8), 1003–1007.CrossRef
230.
Zurück zum Zitat Nousiainen, P., Kontro, J., Manner, H., Hatakka, A., & Sipila, J. (2014). Phenolic mediators enhance the manganese peroxidase catalyzed oxidation of recalcitrant lignin model compounds and synthetic lignin. Fungal Genetics and Biology, 72, 137–149.CrossRef Nousiainen, P., Kontro, J., Manner, H., Hatakka, A., & Sipila, J. (2014). Phenolic mediators enhance the manganese peroxidase catalyzed oxidation of recalcitrant lignin model compounds and synthetic lignin. Fungal Genetics and Biology, 72, 137–149.CrossRef
231.
Zurück zum Zitat Hirai, H., Sugiura, M., Kawai, S., & Nishida, T. (2005). Characteristics of novel lignin peroxidases produced by white-rot fungus Phanerochaete sordida YK-624. FEMS Microbiology Letters, 246(1), 19–24.CrossRef Hirai, H., Sugiura, M., Kawai, S., & Nishida, T. (2005). Characteristics of novel lignin peroxidases produced by white-rot fungus Phanerochaete sordida YK-624. FEMS Microbiology Letters, 246(1), 19–24.CrossRef
232.
Zurück zum Zitat Thanh Mai Pham, L., Eom, M. H., & Kim, Y. H. (2014). Inactivating effect of phenolic unit structures on the biodegradation of lignin by lignin peroxidase from Phanerochaete chrysosporium. Enzyme and Microbial Technology, 61–62, 48–54.CrossRef Thanh Mai Pham, L., Eom, M. H., & Kim, Y. H. (2014). Inactivating effect of phenolic unit structures on the biodegradation of lignin by lignin peroxidase from Phanerochaete chrysosporium. Enzyme and Microbial Technology, 61–62, 48–54.CrossRef
233.
Zurück zum Zitat Sitarz, A. K., Mikkelsen, J. D., Hojrup, P., & Meyer, A. S. (2013). Identification of a laccase from Ganoderma lucidum CBS 229.93 having potential for enhancing cellulase catalyzed lignocellulose degradation. Enzyme and Microbial Technology, 53(6–7), 378–385.CrossRef Sitarz, A. K., Mikkelsen, J. D., Hojrup, P., & Meyer, A. S. (2013). Identification of a laccase from Ganoderma lucidum CBS 229.93 having potential for enhancing cellulase catalyzed lignocellulose degradation. Enzyme and Microbial Technology, 53(6–7), 378–385.CrossRef
234.
Zurück zum Zitat Shleev, S., Persson, P., Shumakovich, G., Mazhugo, Y., Yaropolov, A., Ruzgas, T., & Gorton, L. (2006). Interaction of fungal laccases and laccase-mediator systems with lignin. Enzyme and Microbial Technology, 39(4), 841–847.CrossRef Shleev, S., Persson, P., Shumakovich, G., Mazhugo, Y., Yaropolov, A., Ruzgas, T., & Gorton, L. (2006). Interaction of fungal laccases and laccase-mediator systems with lignin. Enzyme and Microbial Technology, 39(4), 841–847.CrossRef
235.
Zurück zum Zitat Bugg, T. D., & Rahmanpour, R. (2015). Enzymatic conversion of lignin into renewable chemicals. Current Opinion in Chemical Biology, 29, 10–17.CrossRef Bugg, T. D., & Rahmanpour, R. (2015). Enzymatic conversion of lignin into renewable chemicals. Current Opinion in Chemical Biology, 29, 10–17.CrossRef
236.
Zurück zum Zitat Bugg, T. D., Ahmad, M., Hardiman, E. M., & Singh, R. (2011). The emerging role for bacteria in lignin degradation and bio-product formation. Current Opinion in Biotechnology, 22(3), 394–400.CrossRef Bugg, T. D., Ahmad, M., Hardiman, E. M., & Singh, R. (2011). The emerging role for bacteria in lignin degradation and bio-product formation. Current Opinion in Biotechnology, 22(3), 394–400.CrossRef
237.
Zurück zum Zitat Sato, Y., Moriuchi, H., Hishiyama, S., Otsuka, Y., Oshima, K., Kasai, D., Nakamura, M., Ohara, S., Katayama, Y., & Fukuda, M. (2009). Identification of three alcohol dehydrogenase genes involved in the stereospecific catabolism of arylglycerol-β-aryl ether by Sphingobium sp. strain SYK-6. Applied and Environmental Microbiology, 75(16), 5195–5201.CrossRef Sato, Y., Moriuchi, H., Hishiyama, S., Otsuka, Y., Oshima, K., Kasai, D., Nakamura, M., Ohara, S., Katayama, Y., & Fukuda, M. (2009). Identification of three alcohol dehydrogenase genes involved in the stereospecific catabolism of arylglycerol-β-aryl ether by Sphingobium sp. strain SYK-6. Applied and Environmental Microbiology, 75(16), 5195–5201.CrossRef
238.
Zurück zum Zitat Masai, E., Kamimura, N., Kasai, D., Oguchi, A., Ankai, A., Fukui, S., Takahashi, M., Yashiro, I., Sasaki, H., Harada, T., Nakamura, S., Katano, Y., Narita-Yamada, S., Nakazawa, H., Hara, H., Katayama, Y., Fukuda, M., Yamazaki, S., & Fujita, N. (2012). Complete genome sequence of Sphingobium sp. strain SYK-6, a degrader of lignin-derived biaryls and monoaryls. Journal of Bacteriology, 194(2), 534–535.CrossRef Masai, E., Kamimura, N., Kasai, D., Oguchi, A., Ankai, A., Fukui, S., Takahashi, M., Yashiro, I., Sasaki, H., Harada, T., Nakamura, S., Katano, Y., Narita-Yamada, S., Nakazawa, H., Hara, H., Katayama, Y., Fukuda, M., Yamazaki, S., & Fujita, N. (2012). Complete genome sequence of Sphingobium sp. strain SYK-6, a degrader of lignin-derived biaryls and monoaryls. Journal of Bacteriology, 194(2), 534–535.CrossRef
239.
Zurück zum Zitat Meux, E., Prosper, P., Masai, E., Mulliert, G., Dumarçay, S., Morel, M., Didierjean, C., Gelhaye, E., & Favier, F. (2012). Sphingobium sp. SYK-6 LigG involved in lignin degradation is structurally and biochemically related to the glutathione transferase omega class. FEBS Letters, 586(22), 3944–3950.CrossRef Meux, E., Prosper, P., Masai, E., Mulliert, G., Dumarçay, S., Morel, M., Didierjean, C., Gelhaye, E., & Favier, F. (2012). Sphingobium sp. SYK-6 LigG involved in lignin degradation is structurally and biochemically related to the glutathione transferase omega class. FEBS Letters, 586(22), 3944–3950.CrossRef
240.
Zurück zum Zitat Pereira, J. H., Heins, R. A., Gall, D. L., McAndrew, R. P., Deng, K., Holland, K. C., Donohue, T. J., Noguera, D. R., Simmons, B. A., & Sale, K. L. (2016). Structural and biochemical characterization of the early and late enzymes in the lignin β-aryl ether cleavage pathway from Sphingobium sp. SYK-6. The Journal of Biological Chemistry, 291(19), 10228–10238.CrossRef Pereira, J. H., Heins, R. A., Gall, D. L., McAndrew, R. P., Deng, K., Holland, K. C., Donohue, T. J., Noguera, D. R., Simmons, B. A., & Sale, K. L. (2016). Structural and biochemical characterization of the early and late enzymes in the lignin β-aryl ether cleavage pathway from Sphingobium sp. SYK-6. The Journal of Biological Chemistry, 291(19), 10228–10238.CrossRef
241.
Zurück zum Zitat Mori, K., Kamimura, N., & Masai, E. (2018). Identification of the protocatechuate transporter gene in Sphingobium sp. strain SYK-6 and effects of overexpression on production of a value-added metabolite. Applied Microbiology and Biotechnology, 102(11), 4807–4816.CrossRef Mori, K., Kamimura, N., & Masai, E. (2018). Identification of the protocatechuate transporter gene in Sphingobium sp. strain SYK-6 and effects of overexpression on production of a value-added metabolite. Applied Microbiology and Biotechnology, 102(11), 4807–4816.CrossRef
242.
Zurück zum Zitat McAndrew, R. P., Sathitsuksanoh, N., Mbughuni, M. M., Heins, R. A., Pereira, J. H., George, A., Sale, K. L., Fox, B. G., Simmons, B. A., & Adams, P. D. (2016). Structure and mechanism of NOV1, a resveratrol-cleaving dioxygenase. Proceedings of the National Academy of Sciences of the United States of America, 113(50), 14324–14329.CrossRef McAndrew, R. P., Sathitsuksanoh, N., Mbughuni, M. M., Heins, R. A., Pereira, J. H., George, A., Sale, K. L., Fox, B. G., Simmons, B. A., & Adams, P. D. (2016). Structure and mechanism of NOV1, a resveratrol-cleaving dioxygenase. Proceedings of the National Academy of Sciences of the United States of America, 113(50), 14324–14329.CrossRef
243.
Zurück zum Zitat Kosa, M., & Ragauskas, A. J. (2012). Bioconversion of lignin model compounds with oleaginous Rhodococci. Applied Microbiology and Biotechnology, 93(2), 891–900.CrossRef Kosa, M., & Ragauskas, A. J. (2012). Bioconversion of lignin model compounds with oleaginous Rhodococci. Applied Microbiology and Biotechnology, 93(2), 891–900.CrossRef
244.
Zurück zum Zitat Wei, Z., Zeng, G., Huang, F., Kosa, M., Huang, D., & Ragauskas, A. J. (2015). Bioconversion of oxygen-pretreated Kraft lignin to microbial lipid with oleaginous Rhodococcus opacus DSM 1069. Green Chemistry, 17(5), 2784–2789.CrossRef Wei, Z., Zeng, G., Huang, F., Kosa, M., Huang, D., & Ragauskas, A. J. (2015). Bioconversion of oxygen-pretreated Kraft lignin to microbial lipid with oleaginous Rhodococcus opacus DSM 1069. Green Chemistry, 17(5), 2784–2789.CrossRef
245.
Zurück zum Zitat Le, R. K., Wells, T., Jr., Das, P., Meng, X., Stoklosa, R. J., Bhalla, A., Hodge, D. B., Yuan, J. S., & Ragauskas, A. J. (2017). Conversion of corn stover alkaline pre-treatment waste streams into biodiesel via Rhodococci. RSC Advances, 7(7), 4108–4115.CrossRef Le, R. K., Wells, T., Jr., Das, P., Meng, X., Stoklosa, R. J., Bhalla, A., Hodge, D. B., Yuan, J. S., & Ragauskas, A. J. (2017). Conversion of corn stover alkaline pre-treatment waste streams into biodiesel via Rhodococci. RSC Advances, 7(7), 4108–4115.CrossRef
246.
Zurück zum Zitat He, Y., Li, X., Xue, X., Swita, M. S., Schmidt, A. J., & Yang, B. (2017). Biological conversion of the aqueous wastes from hydrothermal liquefaction of algae and pine wood by Rhodococci. Bioresource Technology, 224, 457–464.CrossRef He, Y., Li, X., Xue, X., Swita, M. S., Schmidt, A. J., & Yang, B. (2017). Biological conversion of the aqueous wastes from hydrothermal liquefaction of algae and pine wood by Rhodococci. Bioresource Technology, 224, 457–464.CrossRef
247.
Zurück zum Zitat He, Y., Li, X., Ben, H., Xue, X., & Yang, B. (2017). Lipids production from dilute alkali corn stover lignin by Rhodococcus strains. ACS Sustainable Chemistry & Engineering, 5(3), 2302–2311.CrossRef He, Y., Li, X., Ben, H., Xue, X., & Yang, B. (2017). Lipids production from dilute alkali corn stover lignin by Rhodococcus strains. ACS Sustainable Chemistry & Engineering, 5(3), 2302–2311.CrossRef
248.
Zurück zum Zitat Kohlstedt, M., Starck, S., Barton, N., Stolzenberger, J., Selzer, M., Mehlmann, K., Schneider, R., Pleissner, D., Rinkel, J., & Dickschat, J. S. (2018). From lignin to nylon: Cascaded chemical and biochemical conversion using metabolically engineered Pseudomonas putida. Metabolic Engineering, 47, 279–293.CrossRef Kohlstedt, M., Starck, S., Barton, N., Stolzenberger, J., Selzer, M., Mehlmann, K., Schneider, R., Pleissner, D., Rinkel, J., & Dickschat, J. S. (2018). From lignin to nylon: Cascaded chemical and biochemical conversion using metabolically engineered Pseudomonas putida. Metabolic Engineering, 47, 279–293.CrossRef
249.
Zurück zum Zitat Granja-Travez, R. S., & Bugg, T. D. (2018). Characterization of multicopper oxidase CopA from Pseudomonas putida KT2440 and Pseudomonas fluorescens Pf-5: Involvement in bacterial lignin oxidation. Archives of Biochemistry and Biophysics, 660, 97–107.CrossRef Granja-Travez, R. S., & Bugg, T. D. (2018). Characterization of multicopper oxidase CopA from Pseudomonas putida KT2440 and Pseudomonas fluorescens Pf-5: Involvement in bacterial lignin oxidation. Archives of Biochemistry and Biophysics, 660, 97–107.CrossRef
250.
Zurück zum Zitat Lin, L., Wang, X., Cao, L., & Xu, M. (2019). Lignin catabolic pathways reveal unique characteristics of dye-decolorizing peroxidases in Pseudomonas putida. Environmental Microbiology, 21(5), 1847–1863.CrossRef Lin, L., Wang, X., Cao, L., & Xu, M. (2019). Lignin catabolic pathways reveal unique characteristics of dye-decolorizing peroxidases in Pseudomonas putida. Environmental Microbiology, 21(5), 1847–1863.CrossRef
251.
Zurück zum Zitat Kumar, M., Singhal, A., Verma, P. K., & Thakur, I. S. (2017). Production and characterization of polyhydroxyalkanoate from lignin derivatives by Pandoraea sp. ISTKB. ACS Omega, 2(12), 9156–9163.CrossRef Kumar, M., Singhal, A., Verma, P. K., & Thakur, I. S. (2017). Production and characterization of polyhydroxyalkanoate from lignin derivatives by Pandoraea sp. ISTKB. ACS Omega, 2(12), 9156–9163.CrossRef
252.
Zurück zum Zitat Li, M., Eskridge, K., Liu, E., & Wilkins, M. (2019). Enhancement of polyhydroxybutyrate (PHB) production by 10-fold from alkaline pretreatment liquor with an oxidative enzyme-mediator-surfactant system under Plackett-Burman and central composite designs. Bioresource Technology, 281, 99–106.CrossRef Li, M., Eskridge, K., Liu, E., & Wilkins, M. (2019). Enhancement of polyhydroxybutyrate (PHB) production by 10-fold from alkaline pretreatment liquor with an oxidative enzyme-mediator-surfactant system under Plackett-Burman and central composite designs. Bioresource Technology, 281, 99–106.CrossRef
253.
Zurück zum Zitat Mottiar, Y., Vanholme, R., Boerjan, W., Ralph, J., & Mansfield, S. D. (2016). Designer lignins: Harnessing the plasticity of lignification. Current Opinion in Biotechnology, 37, 190–200.CrossRef Mottiar, Y., Vanholme, R., Boerjan, W., Ralph, J., & Mansfield, S. D. (2016). Designer lignins: Harnessing the plasticity of lignification. Current Opinion in Biotechnology, 37, 190–200.CrossRef
254.
Zurück zum Zitat Das, L., Kolar, P., & Sharma-Shivappa, R. (2012). Heterogeneous catalytic oxidation of lignin into value-added chemicals. Biofuels, 3(2), 155–166.CrossRef Das, L., Kolar, P., & Sharma-Shivappa, R. (2012). Heterogeneous catalytic oxidation of lignin into value-added chemicals. Biofuels, 3(2), 155–166.CrossRef
255.
Zurück zum Zitat Stärk, K., Taccardi, N., Bösmann, A., & Wasserscheid, P. (2010). Oxidative depolymerization of lignin in ionic liquids. ChemSusChem, 3(6), 719–723.CrossRef Stärk, K., Taccardi, N., Bösmann, A., & Wasserscheid, P. (2010). Oxidative depolymerization of lignin in ionic liquids. ChemSusChem, 3(6), 719–723.CrossRef
256.
Zurück zum Zitat Himmel, M. E., Ding, S.-Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W., & Foust, T. D. (2007). Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science, 315(5813), 804–807.CrossRef Himmel, M. E., Ding, S.-Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W., & Foust, T. D. (2007). Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science, 315(5813), 804–807.CrossRef
257.
Zurück zum Zitat Li, X., Ximenes, E., Kim, Y., Slininger, M., Meilan, R., Ladisch, M., & Chapple, C. (2010). Lignin monomer composition affects Arabidopsis cell-wall degradability after liquid hot water pretreatment. Biotechnology for Biofuels, 3(1), 27.CrossRef Li, X., Ximenes, E., Kim, Y., Slininger, M., Meilan, R., Ladisch, M., & Chapple, C. (2010). Lignin monomer composition affects Arabidopsis cell-wall degradability after liquid hot water pretreatment. Biotechnology for Biofuels, 3(1), 27.CrossRef
258.
Zurück zum Zitat Fu, C., Mielenz, J. R., Xiao, X., Ge, Y., Hamilton, C. Y., Rodriguez, M., Chen, F., Foston, M., Ragauskas, A., & Bouton, J. (2011). Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proceedings of the National Academy of Sciences of the United States of America, 108(9), 3803–3808.CrossRef Fu, C., Mielenz, J. R., Xiao, X., Ge, Y., Hamilton, C. Y., Rodriguez, M., Chen, F., Foston, M., Ragauskas, A., & Bouton, J. (2011). Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proceedings of the National Academy of Sciences of the United States of America, 108(9), 3803–3808.CrossRef
Metadaten
Titel
Fractionation, Characterization, and Valorization of Lignin Derived from Engineered Plants
verfasst von
Enshi Liu
Wenqi Li
Seth DeBolt
Sue E. Nokes
Jian Shi
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-65584-6_11