Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 9/2022

16.03.2022 | Technical Article

Fracture and Elastoplastic Behavior of Polymer-Carbon Nanotube Composites under Thermomechanical Environment: An Integrated Dual-Scale Modeling and Experimental Study

verfasst von: Gaurav Arora, Himanshu Pathak

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 9/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a dual-scale modeling approach is established to predict polymer-CNT composites’ elastic and thermal properties. The standard computational platform, i.e., DIGIMAT, was used to execute the mesoscale modeling. A 3D random representative volume element model in conjunction with the mean-field homogenization method is developed for the mesoscale computational analysis. With the assumption of perfect bonding, mesoscale modeling reveals the composites’ orthotropic elastic and thermal nature. Periodic boundary conditions were imposed to obtain the orthotropic nature at the mesoscale. The fracture toughness (mode-I stress intensity factor, KI) of the composites was studied at a macroscale using the mesoscale modeling’s orthotropic properties. The computational Young’s modulus and fracture toughness were found in good agreement with the experimental results. The experimental Young’s modulus of HDPE and LDPE composites has shown a variation from 7.26 ± 1.81 to 3.86 ± 1.44, and 3.81 ± 0.57 to 0.92 ± 0.32 GPa, respectively, with an increase in environmental temperature from 25 to 100 °C. The experimental fracture toughness has varied from 1.81 ± 0.09 to 0.26 ± 0.03, and 1.49 ± 0.12 to 0.07 ± 0.01 MPa-m1/2, respectively, for HDPE and LDPE composites, with an increase in environmental temperature from 25 to 100 °C. A statistical analysis (Weibull distribution) has also been performed to investigate the considered composites’ strength. The study reveals that the temperature has a noticeable effect on the softening, reducing the composites’ strength. Fractographic analysis on the tested composites using scanning electron microscopy reveals the composites’ failure due to the debonding of CNTs, softening of the matrix, formation of holes, and rough patches. The obtained numerical results can provide a suitable reference to study the fracture problems in other polymer nanocomposites.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Allahbakhsh, PVC/Rice Straw/SDBS-Modified Graphene Oxide Sustainable Nanocomposites: Melt Mixing Process and Electrical Insulation Characteristics, Compos. Part A Appl. Sci. Manuf., 2020, 134, p 105902.CrossRef A. Allahbakhsh, PVC/Rice Straw/SDBS-Modified Graphene Oxide Sustainable Nanocomposites: Melt Mixing Process and Electrical Insulation Characteristics, Compos. Part A Appl. Sci. Manuf., 2020, 134, p 105902.CrossRef
2.
4.
Zurück zum Zitat K.V. Balaji, K. Shirvanimoghaddam, G.S. Rajan, A.V. Ellis and M. Naebe, Surface Treatment of Basalt Fiber for Use in Automotive Composites”, Mater. Today Chem., 2020, 17, p 100334.CrossRef K.V. Balaji, K. Shirvanimoghaddam, G.S. Rajan, A.V. Ellis and M. Naebe, Surface Treatment of Basalt Fiber for Use in Automotive Composites”, Mater. Today Chem., 2020, 17, p 100334.CrossRef
5.
Zurück zum Zitat H. KardanMoghaddam, M. Maraki and A. Rajaei, Graphene-Reinforced Polymeric Nanocomposites in Computer and Electronics Industries, Facta Univ. - Ser. Electron. Energ., 2020, 33(3), p 351–378.CrossRef H. KardanMoghaddam, M. Maraki and A. Rajaei, Graphene-Reinforced Polymeric Nanocomposites in Computer and Electronics Industries, Facta Univ. - Ser. Electron. Energ., 2020, 33(3), p 351–378.CrossRef
6.
Zurück zum Zitat N.A. MohdRadzuan, D. Tholibon, A.B. Sulong, N. Muhamad and C.H.C. Haron, New Processing Technique for Biodegradable Kenaf Composites: A Simple Alternative to Commercial Automotive Parts, Compos. Part B Eng., 2020, 184, p 107644.CrossRef N.A. MohdRadzuan, D. Tholibon, A.B. Sulong, N. Muhamad and C.H.C. Haron, New Processing Technique for Biodegradable Kenaf Composites: A Simple Alternative to Commercial Automotive Parts, Compos. Part B Eng., 2020, 184, p 107644.CrossRef
7.
Zurück zum Zitat S. Wilczewski, K. Skórczewska, J. Tomaszewska, K. Lewandowski, J. Szulc and T. Runka, Manufacturing Homogenous PVC/Graphene Nanocomposites Using a Novel Dispersion Agent, Polym. Test., 2020, 91, p 106868.CrossRef S. Wilczewski, K. Skórczewska, J. Tomaszewska, K. Lewandowski, J. Szulc and T. Runka, Manufacturing Homogenous PVC/Graphene Nanocomposites Using a Novel Dispersion Agent, Polym. Test., 2020, 91, p 106868.CrossRef
8.
Zurück zum Zitat S. Clifton, B.H.S. Thimmappa, R. Selvam and B. Shivamurthy, Polymer Nanocomposites for High-Velocity Impact Applications-A Review, Composites Communications, 2020, 17, p 72–86.CrossRef S. Clifton, B.H.S. Thimmappa, R. Selvam and B. Shivamurthy, Polymer Nanocomposites for High-Velocity Impact Applications-A Review, Composites Communications, 2020, 17, p 72–86.CrossRef
9.
Zurück zum Zitat O.T. Adesina, E.R. Sadiku, T. Jamiru, O.S. Adesina, O.F. Ogunbiyi, B.A. Obadele and S. Salifu, Polylactic Acid/Graphene Nanocomposite Consolidated by SPS Technique, J. Mater. Res. Technol., 2020, 9(5), p 11801–11812.CrossRef O.T. Adesina, E.R. Sadiku, T. Jamiru, O.S. Adesina, O.F. Ogunbiyi, B.A. Obadele and S. Salifu, Polylactic Acid/Graphene Nanocomposite Consolidated by SPS Technique, J. Mater. Res. Technol., 2020, 9(5), p 11801–11812.CrossRef
11.
Zurück zum Zitat N. Pundhir, S. Zafar and H. Pathak, Performance Evaluation of HDPE/MWCNT and HDPE/Kenaf Composites, J. Thermoplast. Compos. Mater, 2019, 34(10), p 089270571986827. N. Pundhir, S. Zafar and H. Pathak, Performance Evaluation of HDPE/MWCNT and HDPE/Kenaf Composites, J. Thermoplast. Compos. Mater, 2019, 34(10), p 089270571986827.
12.
Zurück zum Zitat M. Kamkar, S.M. Nourin Sultana, S. Patangrao Pawar, A. Eshraghian, E. Erfanian and U. Sundararaj, The Key Role of Processing in Tuning Nonlinear Viscoelastic Properties and Microwave Absorption in CNT-Based Polymer Nanocomposites, Mater. Today Commun., 2020, 24, p 101010.CrossRef M. Kamkar, S.M. Nourin Sultana, S. Patangrao Pawar, A. Eshraghian, E. Erfanian and U. Sundararaj, The Key Role of Processing in Tuning Nonlinear Viscoelastic Properties and Microwave Absorption in CNT-Based Polymer Nanocomposites, Mater. Today Commun., 2020, 24, p 101010.CrossRef
16.
Zurück zum Zitat M.K. Singh, S. Zafar and M. Talha, Development and Characterisation of Poly-L-Lactide-Based Foams Fabricated through Microwave-Assisted Compression Moulding, J. Cell. Plast., 2019, 55(5), p 523–541.CrossRef M.K. Singh, S. Zafar and M. Talha, Development and Characterisation of Poly-L-Lactide-Based Foams Fabricated through Microwave-Assisted Compression Moulding, J. Cell. Plast., 2019, 55(5), p 523–541.CrossRef
23.
Zurück zum Zitat I. Doghri, L. Brassart, L. Adam and J.S. Gérard, A Second-Moment Incremental Formulation for the Mean-Field Homogenization of Elasto-Plastic Composites, Int. J. Plast., 2011, 27(3), p 352–371.CrossRef I. Doghri, L. Brassart, L. Adam and J.S. Gérard, A Second-Moment Incremental Formulation for the Mean-Field Homogenization of Elasto-Plastic Composites, Int. J. Plast., 2011, 27(3), p 352–371.CrossRef
24.
Zurück zum Zitat W. Ogierman and G. Kokot, Mean Field Homogenization in Multi- Scale Modelling of Composite Materials, J. Achiev. Mater. Manuf. Eng., 2013, 61(2), p 343–348. W. Ogierman and G. Kokot, Mean Field Homogenization in Multi- Scale Modelling of Composite Materials, J. Achiev. Mater. Manuf. Eng., 2013, 61(2), p 343–348.
25.
Zurück zum Zitat H.Z.J. Wu, J. Lü and Z. Fu, Extended Multiscale Finite Element Method for Mechanical Analysis of Heterogeneous Materials, Acta. Mech. Sin., 2010, 26, p 899–920.CrossRef H.Z.J. Wu, J. Lü and Z. Fu, Extended Multiscale Finite Element Method for Mechanical Analysis of Heterogeneous Materials, Acta. Mech. Sin., 2010, 26, p 899–920.CrossRef
31.
Zurück zum Zitat H. Teng, Effective Elastic-Plastic Response of Two-Phase Composite Materials of Aligned Spheroids under Uniaxial Loading, Mech. Mater., 2018, 117, p 91–104.CrossRef H. Teng, Effective Elastic-Plastic Response of Two-Phase Composite Materials of Aligned Spheroids under Uniaxial Loading, Mech. Mater., 2018, 117, p 91–104.CrossRef
32.
Zurück zum Zitat S. Padmanabhan, A. Gupta, G. Arora, H. Pathak, R.G. Burela and A.S. Bhatnagar, Meso–Macro-Scale Computational Analysis of Boron Nitride Nanotube-Reinforced Aluminium and Epoxy Nanocomposites: A Case Study on Crack Propagation, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl, 2020 https://doi.org/10.1177/1464420720961426CrossRef S. Padmanabhan, A. Gupta, G. Arora, H. Pathak, R.G. Burela and A.S. Bhatnagar, Meso–Macro-Scale Computational Analysis of Boron Nitride Nanotube-Reinforced Aluminium and Epoxy Nanocomposites: A Case Study on Crack Propagation, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl, 2020 https://​doi.​org/​10.​1177/​1464420720961426​CrossRef
41.
Zurück zum Zitat A.R. Shajari, R. Ghajar and M.M. Shokrieh, Multiscale Modeling of the Viscoelastic Properties of CNT/Polymer Nanocomposites, Using Complex and Time-Dependent Homogenizations, Comput. Mater. Sci., 2018, 142, p 395–409.CrossRef A.R. Shajari, R. Ghajar and M.M. Shokrieh, Multiscale Modeling of the Viscoelastic Properties of CNT/Polymer Nanocomposites, Using Complex and Time-Dependent Homogenizations, Comput. Mater. Sci., 2018, 142, p 395–409.CrossRef
42.
Zurück zum Zitat S. Ropers, M. Kardos and T.A. Osswald, A Thermo-Viscoelastic Approach for the Characterization and Modeling of the Bending Behavior of Thermoplastic Composites, Compos. Part A Appl. Sci. Manuf., 2016, 90, p 22–32.CrossRef S. Ropers, M. Kardos and T.A. Osswald, A Thermo-Viscoelastic Approach for the Characterization and Modeling of the Bending Behavior of Thermoplastic Composites, Compos. Part A Appl. Sci. Manuf., 2016, 90, p 22–32.CrossRef
43.
Zurück zum Zitat G. Arora, H. Pathak and S. Zafar, Fabrication and Characterization of Microwave Cured High-Density Polyethylene/Carbon Nanotube and Polypropylene/Carbon Nanotube Composites, J. Compos. Mater., 2019, 53(15), p 2091–2104.CrossRef G. Arora, H. Pathak and S. Zafar, Fabrication and Characterization of Microwave Cured High-Density Polyethylene/Carbon Nanotube and Polypropylene/Carbon Nanotube Composites, J. Compos. Mater., 2019, 53(15), p 2091–2104.CrossRef
46.
Zurück zum Zitat K. Shirasu, G. Yamamoto, I. Tamaki and T. Ogasawara, Negative Axial Thermal Expansion Coef Fi Cient of Carbon Nanotubes: Experimental Determination Based on Measurements of Coef Fi Cient of Thermal Expansion for Aligned Carbon Nanotube Reinforced Epoxy Composites, Carbon N. Y., 2015, 95, p 904–909. https://doi.org/10.1016/j.carbon.2015.09.026CrossRef K. Shirasu, G. Yamamoto, I. Tamaki and T. Ogasawara, Negative Axial Thermal Expansion Coef Fi Cient of Carbon Nanotubes: Experimental Determination Based on Measurements of Coef Fi Cient of Thermal Expansion for Aligned Carbon Nanotube Reinforced Epoxy Composites, Carbon N. Y., 2015, 95, p 904–909. https://​doi.​org/​10.​1016/​j.​carbon.​2015.​09.​026CrossRef
47.
Zurück zum Zitat M. Karimi, A. Montazeri and R. Ghajar, On the Elasto-Plastic Behavior of CNT-Polymer Nanocomposites, Compos. Struct., 2017, 160, p 782–791.CrossRef M. Karimi, A. Montazeri and R. Ghajar, On the Elasto-Plastic Behavior of CNT-Polymer Nanocomposites, Compos. Struct., 2017, 160, p 782–791.CrossRef
49.
Zurück zum Zitat D. Feng, X. Dawei, Q. Wang and P. Liu, Highly Stretchable Electromagnetic Interference (EMI) Shielding Segregated Polyurethane/Carbon Nanotube Composites Fabricated by Microwave Selective Sintering, J. Mater. Chem. C, 2019, 7(26), p 7938–7946. https://doi.org/10.1039/C9TC02311ACrossRef D. Feng, X. Dawei, Q. Wang and P. Liu, Highly Stretchable Electromagnetic Interference (EMI) Shielding Segregated Polyurethane/Carbon Nanotube Composites Fabricated by Microwave Selective Sintering, J. Mater. Chem. C, 2019, 7(26), p 7938–7946. https://​doi.​org/​10.​1039/​C9TC02311ACrossRef
50.
Zurück zum Zitat W. Lin, K.-S. Moon and C.P. Wong, A Combined Process of In Situ Functionalization and Microwave Treatment to Achieve Ultrasmall Thermal Expansion of Aligned Carbon Nanotube-Polymer Nanocomposites: Toward Applications as Thermal Interface Materials, Adv. Mater., 2009, 21(23), p 2421–2424. https://doi.org/10.1002/ADMA.200803548CrossRef W. Lin, K.-S. Moon and C.P. Wong, A Combined Process of In Situ Functionalization and Microwave Treatment to Achieve Ultrasmall Thermal Expansion of Aligned Carbon Nanotube-Polymer Nanocomposites: Toward Applications as Thermal Interface Materials, Adv. Mater., 2009, 21(23), p 2421–2424. https://​doi.​org/​10.​1002/​ADMA.​200803548CrossRef
51.
Zurück zum Zitat E. Rezvanpanah, S.R. Ghaffarian Anbaran and E. Di Maio, Carbon Nanotubes in Microwave Foaming of Thermoplastics, Carbon N. Y., 2017, 125, p 32–38.CrossRef E. Rezvanpanah, S.R. Ghaffarian Anbaran and E. Di Maio, Carbon Nanotubes in Microwave Foaming of Thermoplastics, Carbon N. Y., 2017, 125, p 32–38.CrossRef
52.
Zurück zum Zitat Y. Zhou, F. Pervin, L. Lewis and S. Jeelani, Fabrication and Characterization of Carbon/Epoxy Composites Mixed with Multi-Walled Carbon Nanotubes, Mater. Sci. Eng. A, 2008, 475(1–2), p 157–165.CrossRef Y. Zhou, F. Pervin, L. Lewis and S. Jeelani, Fabrication and Characterization of Carbon/Epoxy Composites Mixed with Multi-Walled Carbon Nanotubes, Mater. Sci. Eng. A, 2008, 475(1–2), p 157–165.CrossRef
53.
Zurück zum Zitat F. Pervin, Y. Zhou, V.K. Rangari and S. Jeelani, Testing and Evaluation on the Thermal and Mechanical Properties of Carbon Nano Fiber Reinforced SC-15 Epoxy, Mater. Sci. Eng. A, 2005, 405(1–2), p 246–253.CrossRef F. Pervin, Y. Zhou, V.K. Rangari and S. Jeelani, Testing and Evaluation on the Thermal and Mechanical Properties of Carbon Nano Fiber Reinforced SC-15 Epoxy, Mater. Sci. Eng. A, 2005, 405(1–2), p 246–253.CrossRef
56.
Zurück zum Zitat O. Benjeddou, Weibull Statistical Analysis and Experimental Investigation of Size Effects on Tensile Behavior of Dry Unidirectional Carbon Fiber Sheets, Polym. Test., 2020, 86, p 106498.CrossRef O. Benjeddou, Weibull Statistical Analysis and Experimental Investigation of Size Effects on Tensile Behavior of Dry Unidirectional Carbon Fiber Sheets, Polym. Test., 2020, 86, p 106498.CrossRef
57.
Zurück zum Zitat D. Djeghader and B. Redjel, Weibull Analysis of Fatigue Test in Jute Reinforced Polyester Composite Material, Compos. Commun., 2020, 17, p 123–128.CrossRef D. Djeghader and B. Redjel, Weibull Analysis of Fatigue Test in Jute Reinforced Polyester Composite Material, Compos. Commun., 2020, 17, p 123–128.CrossRef
58.
Zurück zum Zitat W. Hwang and K.S. Han, Statistical Study of Strength and Fatigue Life of Composite Materials, Composites, 1987, 18(1), p 47–53.CrossRef W. Hwang and K.S. Han, Statistical Study of Strength and Fatigue Life of Composite Materials, Composites, 1987, 18(1), p 47–53.CrossRef
60.
Zurück zum Zitat J. Chen, J. Han and D. Xu, Thermal Expansion Properties of the Polycaprolactam Nanocomposites Reinforced with Single-Walled Carbon Nanotubes, Res. Phys., 2019, 12, p 1645–1652. J. Chen, J. Han and D. Xu, Thermal Expansion Properties of the Polycaprolactam Nanocomposites Reinforced with Single-Walled Carbon Nanotubes, Res. Phys., 2019, 12, p 1645–1652.
Metadaten
Titel
Fracture and Elastoplastic Behavior of Polymer-Carbon Nanotube Composites under Thermomechanical Environment: An Integrated Dual-Scale Modeling and Experimental Study
verfasst von
Gaurav Arora
Himanshu Pathak
Publikationsdatum
16.03.2022
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 9/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-06743-2

Weitere Artikel der Ausgabe 9/2022

Journal of Materials Engineering and Performance 9/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.