Skip to main content
Erschienen in: Archive of Applied Mechanics 5/2020

21.01.2020 | Original

Frequency- and angle-dependent scattering of a finite-sized meta-structure via the relaxed micromorphic model

verfasst von: Alexios Aivaliotis, Domenico Tallarico, Marco-Valerio d’Agostino, Ali Daouadji, Patrizio Neff, Angela Madeo

Erschienen in: Archive of Applied Mechanics | Ausgabe 5/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we explore the use of micromorphic-type interface conditions for the modeling of a finite-sized metamaterial. We show how finite-domain boundary value problems can be approached in the framework of enriched continuum mechanics (relaxed micromorphic model) by imposing continuity of macroscopic displacement and of generalized tractions, as well as additional conditions on the micro-distortion tensor and on the double-traction. The case of a metamaterial slab of finite width is presented, its scattering properties are studied via a semi-analytical solution of the relaxed micromorphic model and compared to a direct finite-element simulation encoding all details of the selected microstructure. The reflection and transmission coefficients obtained via the two methods are presented as a function of the frequency and of the direction of propagation of the incident wave. We find excellent agreement for a large range of frequencies going from the long-wave limit to frequencies beyond the first band-gap and for angles of incidence ranging from normal to near-parallel incidence. The present paper sets the basis for a new viewpoint on finite-size metamaterial modeling enabling the exploration of meta-structures at large scales.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
It is worth noticing that the parameters of the relaxed micromorphic model are “constant” in the sense that they do not depend on frequency, as it is common to see when considering homogenized models for metamaterials. This implies that, once an estimate of the parameters is made for a given metamaterial, it will be possible to study the metamaterial’s response for any type of applied external load. In some sense, one obtains a true “metamaterial’s characterization” via the determination of few constant parameters that are known once for all.
 
2
For example, \((A\cdot v)_i=A_{ij}v_j\), \((A\cdot B)_{ik}=A_{ij}B_{jk}\), \(A:B=A_{ij}B_{ji}\), \((C\cdot B)_{ijk}=C_{ijp}B_{pk}\), \((C:B)_{i}=C_{ijp}B_{pj}\), \(\left\langle v,w\right\rangle = v\cdot w = v_i w_i\), \(\left\langle A, B \right\rangle = A_{ij}B_{ij}\), etc.
 
3
The operators \(\nabla \), \({{\,\mathrm{curl}\,}}\) and \({{\,\mathrm{Div}\,}}\) are the classical gradient, curl and divergence operators. In symbols, for a field u of any order, \((\nabla u)_i=u_{,i}\), for a vector field v, \(({{\,\mathrm{curl}\,}}v)_i = \epsilon _{ijk}v_{k,j}\) and for a field w of order \(k>1\), \(({{\,\mathrm{Div}\,}}w)_{i_1 i_2\ldots i_{k-1}} = w_{i_1 i_2\ldots i_k,i_k}\)
 
4
The use of the letter t is reserved for the time variable and will not be used to denote the components of tensors. Analogously, the subscript t will denote derivation with respect to the scalar variable t. Finally, the subscript tt will indicate the second derivative with respect to time.
 
5
We could consider more complex expressions for the curvature term, which would also include anisotropy and in fact, such expressions will be explored in further works. Here, we want to show that curvature terms provide small corrections to the overall behavior of the metamaterial and so, we limit ourselves to a simplified isotropic expression.
 
6
For example, the fourth-order tensor \(\mathbb {C}_e\) is written as \(\widetilde{\mathbb {C}}_e\) in Voigt notation.
 
7
As we will show in the following, \(k_2\), which is the second component of the wave-number, is always supposed to be known and is given by Snell’s law when imposing interface conditions on a given interface.
 
8
Here again, as in the case of a Cauchy medium, \(k_2\) will be fixed and given by Snell’s law when imposing interface conditions.
 
9
In a more general perspective, mixed interface conditions in which traction and double-traction are proportional to displacement and micro-distortion, respectively, could also be envisaged (e.g., [18]). Nevertheless, the direct interest of this kind of interface conditions is not evident for the case under study and will not be considered in the present work.
 
10
We denote by \(\widetilde{v}\) the first two components of the micromorphic field v defined in Eq. (20).
 
11
We remark that, in the relaxed micromorphic model, only the tangent part of the double-traction in (29) or of the micro-distortion tensor in (30) must be assigned, see [30, 31] for more details.
 
12
The index \(j\in \{L,S\}\) for the elastic field \(u^j\) indicates the fact that \(u^j\) is the solution field generated by an L- or S-incident wave, respectively. Nevertheless, \(u^j\) typically contains in itself coupled L and S waves as a result of scattering.
 
13
We limit ourselves to the plane-strain case, so that we set \(u^j_3=0\) and \(u^j_{i,3}=0\), \(j\in \{L,s\}\), \(i \in \{1,2,3\}\).
 
Literatur
1.
Zurück zum Zitat Aivaliotis, A., Daouadji, A., Barbagallo, G., Tallarico, D., Neff, P., Madeo, A.: Low-and high-frequency Stoneley waves, reflection and transmission at a Cauchy/relaxed micromorphic interface. arXiv preprint arXiv:1810.12578 (2018) Aivaliotis, A., Daouadji, A., Barbagallo, G., Tallarico, D., Neff, P., Madeo, A.: Low-and high-frequency Stoneley waves, reflection and transmission at a Cauchy/relaxed micromorphic interface. arXiv preprint arXiv:​1810.​12578 (2018)
2.
Zurück zum Zitat Aivaliotis, A., Daouadji, A., Barbagallo, G., Tallarico, D., Neff, P., Madeo, A.: Microstructure-related Stoneley waves and their effect on the scattering properties of a 2D Cauchy/relaxed-micromorphic interface. Wave Motion 90, 99–120 (2019)MathSciNetCrossRef Aivaliotis, A., Daouadji, A., Barbagallo, G., Tallarico, D., Neff, P., Madeo, A.: Microstructure-related Stoneley waves and their effect on the scattering properties of a 2D Cauchy/relaxed-micromorphic interface. Wave Motion 90, 99–120 (2019)MathSciNetCrossRef
3.
Zurück zum Zitat Aivaliotis, A., Tallarico, D., Daouadji, A., Neff, P., Madeo, A.: Relaxed micromorphic broadband scattering for finite-size meta-structures—a detailed development. arXiv preprint (2019) Aivaliotis, A., Tallarico, D., Daouadji, A., Neff, P., Madeo, A.: Relaxed micromorphic broadband scattering for finite-size meta-structures—a detailed development. arXiv preprint (2019)
4.
Zurück zum Zitat Auld, B.A.: Acoustic Fields and Waves in Solids, vol. I. Wiley, New York (1973) Auld, B.A.: Acoustic Fields and Waves in Solids, vol. I. Wiley, New York (1973)
6.
Zurück zum Zitat Barbagallo, G., Tallarico, D., d’Agostino, M.V., Aivaliotis, A., Neff, P., Madeo, A.: Relaxed micromorphic model of transient wave propagation in anisotropic band-gap metastructures. Int. J. Solids Struct. 162, 148–163 (2019)CrossRef Barbagallo, G., Tallarico, D., d’Agostino, M.V., Aivaliotis, A., Neff, P., Madeo, A.: Relaxed micromorphic model of transient wave propagation in anisotropic band-gap metastructures. Int. J. Solids Struct. 162, 148–163 (2019)CrossRef
7.
Zurück zum Zitat Basu, U., Chopra, A.K.: Perfectly matched layers for time-harmonic elastodynamics of unbounded domains: theory and finite-element implementation. Comput. Methods Appl. Mech. Eng. 192(11–12), 1337–1375 (2003)CrossRef Basu, U., Chopra, A.K.: Perfectly matched layers for time-harmonic elastodynamics of unbounded domains: theory and finite-element implementation. Comput. Methods Appl. Mech. Eng. 192(11–12), 1337–1375 (2003)CrossRef
8.
Zurück zum Zitat Bloch, F.: Über die Quantenmechanik der Elektronen in Kristallgittern. Zeitschrift für Physik 52(7–8), 555–600 (1929)CrossRef Bloch, F.: Über die Quantenmechanik der Elektronen in Kristallgittern. Zeitschrift für Physik 52(7–8), 555–600 (1929)CrossRef
9.
Zurück zum Zitat Chen, H., Chan, C.T.: Acoustic cloaking and transformation acoustics. J. Phys. D Appl. Phys. 43(11), 113001 (2010)CrossRef Chen, H., Chan, C.T.: Acoustic cloaking and transformation acoustics. J. Phys. D Appl. Phys. 43(11), 113001 (2010)CrossRef
10.
Zurück zum Zitat Craster, R.V., Guenneau, S.: Acoustic Metamaterials: Negative Refraction, Imaging, Lensing and Cloaking, vol. 166. Springer, Berlin (2012) Craster, R.V., Guenneau, S.: Acoustic Metamaterials: Negative Refraction, Imaging, Lensing and Cloaking, vol. 166. Springer, Berlin (2012)
13.
Zurück zum Zitat Floquet, G.: Sur les equations differentielles lineaires. Ann. ENS [2] 12(1883), 47–88 (1883)MATH Floquet, G.: Sur les equations differentielles lineaires. Ann. ENS [2] 12(1883), 47–88 (1883)MATH
14.
Zurück zum Zitat Geers, M.G.D., Kouznetsova, V.G., Brekelmans, W.A.M.: Multi-scale computational homogenization: trends and challenges. J. Comput. Appl. Math. 234(7), 2175–2182 (2010)CrossRef Geers, M.G.D., Kouznetsova, V.G., Brekelmans, W.A.M.: Multi-scale computational homogenization: trends and challenges. J. Comput. Appl. Math. 234(7), 2175–2182 (2010)CrossRef
15.
Zurück zum Zitat Kadic, M., Bückmann, T., Schittny, R., Wegener, M.: Metamaterials beyond electromagnetism. Rep. Progr. Phys. 76(12), 126501 (2013)CrossRef Kadic, M., Bückmann, T., Schittny, R., Wegener, M.: Metamaterials beyond electromagnetism. Rep. Progr. Phys. 76(12), 126501 (2013)CrossRef
16.
Zurück zum Zitat Krushynska, A.O., Kouznetsova, V.G., Geers, M.G.D.: Towards optimal design of locally resonant acoustic metamaterials. J. Mech. Phys. Solids 71, 179–196 (2014)CrossRef Krushynska, A.O., Kouznetsova, V.G., Geers, M.G.D.: Towards optimal design of locally resonant acoustic metamaterials. J. Mech. Phys. Solids 71, 179–196 (2014)CrossRef
17.
Zurück zum Zitat Leckner, J.: Theory of Reflection: Reflection and Transmission of Electromagnetic, Particle and Acoustic Waves. Wiley, New York (1973) Leckner, J.: Theory of Reflection: Reflection and Transmission of Electromagnetic, Particle and Acoustic Waves. Wiley, New York (1973)
18.
Zurück zum Zitat Lurie, S., Solyaev, Y., Volkov, A., Volkov-Bogorodskiy, D.: Bending problems in the theory of elastic materials with voids and surface effects. Math. Mech. Solids 23(5), 787–804 (2018)MathSciNetCrossRef Lurie, S., Solyaev, Y., Volkov, A., Volkov-Bogorodskiy, D.: Bending problems in the theory of elastic materials with voids and surface effects. Math. Mech. Solids 23(5), 787–804 (2018)MathSciNetCrossRef
19.
Zurück zum Zitat Madeo, A., Neff, P., Ghiba, I.-D., Placidi, L., Rosi, G.: Band gaps in the relaxed linear micromorphic continuum. Zeitschrift für Angewandte Mathematik und Mechanik 95(9), 880–887 (2014)MathSciNetCrossRef Madeo, A., Neff, P., Ghiba, I.-D., Placidi, L., Rosi, G.: Band gaps in the relaxed linear micromorphic continuum. Zeitschrift für Angewandte Mathematik und Mechanik 95(9), 880–887 (2014)MathSciNetCrossRef
27.
Zurück zum Zitat Madeo, A., Neff, P., Barbagallo, G., d’Agostino, M.V., Ghiba, I.-D.: A review on wave propagation modeling in band-gap metamaterials via enriched continuum models. In: dell’Isola, F., Sofonea, M., Steigmann, D.J. (eds.) Mathematical Modelling in Solid Mechanics, Advanced Structured Materials, pp. 89–105. Springer, Berlin (2017). https://doi.org/10.1007/978-981-10-3764-1_6 CrossRefMATH Madeo, A., Neff, P., Barbagallo, G., d’Agostino, M.V., Ghiba, I.-D.: A review on wave propagation modeling in band-gap metamaterials via enriched continuum models. In: dell’Isola, F., Sofonea, M., Steigmann, D.J. (eds.) Mathematical Modelling in Solid Mechanics, Advanced Structured Materials, pp. 89–105. Springer, Berlin (2017). https://​doi.​org/​10.​1007/​978-981-10-3764-1_​6 CrossRefMATH
28.
29.
Zurück zum Zitat Misseroni, D., Colquitt, D.J., Movchan, A.B., Movchan, N.V., Jones, I.S.: Cymatics for the cloaking of flexural vibrations in a structured plate. Sci. Rep. 6, 23929 (2016)CrossRef Misseroni, D., Colquitt, D.J., Movchan, A.B., Movchan, N.V., Jones, I.S.: Cymatics for the cloaking of flexural vibrations in a structured plate. Sci. Rep. 6, 23929 (2016)CrossRef
34.
Zurück zum Zitat Norris, A.N.: Acoustic cloacking. Acoust. Today 11(1), 38–46 (2015) Norris, A.N.: Acoustic cloacking. Acoust. Today 11(1), 38–46 (2015)
35.
Zurück zum Zitat Owczarek, S., Ghiba, I.-D., d’Agostino, M.-V., Neff, P.: Nonstandard micro-inertia terms in the relaxed micromorphic model: well-posedness for dynamics. Math. Mech. Solids 24(10), 3200–3215 (2019)MathSciNetCrossRef Owczarek, S., Ghiba, I.-D., d’Agostino, M.-V., Neff, P.: Nonstandard micro-inertia terms in the relaxed micromorphic model: well-posedness for dynamics. Math. Mech. Solids 24(10), 3200–3215 (2019)MathSciNetCrossRef
36.
Zurück zum Zitat Platts, S.B., Movchan, N.V., McPhedran, R.C., Movchan, A.B.: Two-dimensional phononic crystals and scattering of elastic waves by an array of voids. Proc. R. Soc. A 458(2026), 2327–2347 (2002)MathSciNetCrossRef Platts, S.B., Movchan, N.V., McPhedran, R.C., Movchan, A.B.: Two-dimensional phononic crystals and scattering of elastic waves by an array of voids. Proc. R. Soc. A 458(2026), 2327–2347 (2002)MathSciNetCrossRef
37.
Zurück zum Zitat Rokoš, O., Ameen, M.M., Peerlings, R.H.J., Geers, M.G.D.: Micromorphic computational homogenization for mechanical metamaterials with patterning fluctuation fields. J. Mech. Phys. Solids 123, 119–137 (2019)MathSciNetCrossRef Rokoš, O., Ameen, M.M., Peerlings, R.H.J., Geers, M.G.D.: Micromorphic computational homogenization for mechanical metamaterials with patterning fluctuation fields. J. Mech. Phys. Solids 123, 119–137 (2019)MathSciNetCrossRef
38.
Zurück zum Zitat Sridhar, A., Kouznetsova, V.G., Geers, M.G.D.: A general multiscale framework for the emergent effective elastodynamics of metamaterials. J. Mech. Phys. Solids 111, 414–433 (2018)MathSciNetCrossRef Sridhar, A., Kouznetsova, V.G., Geers, M.G.D.: A general multiscale framework for the emergent effective elastodynamics of metamaterials. J. Mech. Phys. Solids 111, 414–433 (2018)MathSciNetCrossRef
39.
Zurück zum Zitat Srivastava, A., Willis, J.R.: Evanescent wave boundary layers in metamaterials and sidestepping them through a variational approach. Proc. R. Soc. A 473(2200), 20160765 (2017)MathSciNetCrossRef Srivastava, A., Willis, J.R.: Evanescent wave boundary layers in metamaterials and sidestepping them through a variational approach. Proc. R. Soc. A 473(2200), 20160765 (2017)MathSciNetCrossRef
40.
Zurück zum Zitat Willis, J.R.: Dynamics of composites. In: Continuum Micromechanics, pp. 265–290. Springer (1997) Willis, J.R.: Dynamics of composites. In: Continuum Micromechanics, pp. 265–290. Springer (1997)
41.
Zurück zum Zitat Willis, J.R.: Exact effective relations for dynamics of a laminated body. Mech. Mater. 41(4), 385–393 (2009)CrossRef Willis, J.R.: Exact effective relations for dynamics of a laminated body. Mech. Mater. 41(4), 385–393 (2009)CrossRef
42.
Zurück zum Zitat Willis, J.R.: Effective constitutive relations for waves in composites and metamaterials. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 467, pp. 1865–1879. The Royal Society (2011) Willis, J.R.: Effective constitutive relations for waves in composites and metamaterials. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 467, pp. 1865–1879. The Royal Society (2011)
43.
Zurück zum Zitat Willis, J.R.: The construction of effective relations for waves in a composite. Comptes Rendus Mécanique 340(4–5), 181–192 (2012)CrossRef Willis, J.R.: The construction of effective relations for waves in a composite. Comptes Rendus Mécanique 340(4–5), 181–192 (2012)CrossRef
Metadaten
Titel
Frequency- and angle-dependent scattering of a finite-sized meta-structure via the relaxed micromorphic model
verfasst von
Alexios Aivaliotis
Domenico Tallarico
Marco-Valerio d’Agostino
Ali Daouadji
Patrizio Neff
Angela Madeo
Publikationsdatum
21.01.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Archive of Applied Mechanics / Ausgabe 5/2020
Print ISSN: 0939-1533
Elektronische ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-019-01651-9

Weitere Artikel der Ausgabe 5/2020

Archive of Applied Mechanics 5/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.